
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9033238/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Applied and Environmental Microbiology, 1996, 62, 625-630.	1.4	1,646
2	Bacterial Rhodopsin: Evidence for a New Type of Phototrophy in the Sea. Science, 2000, 289, 1902-1906.	6.0	1,357
3	Quantitative Analysis of Small-Subunit rRNA Genes in Mixed Microbial Populations via 5′-Nuclease Assays. Applied and Environmental Microbiology, 2000, 66, 4605-4614.	1.4	1,020
4	Mercury Methylation by Dissimilatory Iron-Reducing Bacteria. Applied and Environmental Microbiology, 2006, 72, 7919-7921.	1.4	448
5	Unsuspected diversity among marine aerobic anoxygenic phototrophs. Nature, 2002, 415, 630-633.	13.7	380
6	Kinetic Bias in Estimates of Coastal Picoplankton Community Structure Obtained by Measurements of Small-Subunit rRNA Gene PCR Amplicon Length Heterogeneity. Applied and Environmental Microbiology, 1998, 64, 4522-4529.	1.4	337
7	Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage. Environmental Microbiology, 2000, 2, 516-529.	1.8	313
8	Bacterial diversity among small-subunit rRNA gene clones and cellular isolates from the same seawater sample. Applied and Environmental Microbiology, 1997, 63, 983-989.	1.4	313
9	Proteorhodopsin genes are distributed among divergent marine bacterial taxa. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12830-12835.	3.3	255
10	Assessing diversity and biogeography of aerobic anoxygenic phototrophic bacteria in surface waters of the Atlantic and Pacific Oceans using the Global Ocean Sampling expedition metagenomes. Environmental Microbiology, 2007, 9, 1464-1475.	1.8	156
11	Phylogenetic analysis of ribosomal RNA operons from uncultivated coastal marine bacterioplankton. Environmental Microbiology, 2001, 3, 323-331.	1.8	152
12	Quantitative mapping of bacterioplankton populations in seawater: field tests across an upwelling plume in Monterey Bay. Aquatic Microbial Ecology, 2001, 24, 117-127.	0.9	117
13	Different SAR86 subgroups harbour divergent proteorhodopsins. Environmental Microbiology, 2004, 6, 903-910.	1.8	106
14	Diverse and Unique Picocyanobacteria in Chesapeake Bay, Revealed by 16S-23S rRNA Internal Transcribed Spacer Sequences. Applied and Environmental Microbiology, 2006, 72, 2239-2243.	1.4	105
15	Phylogenetic Screening of Ribosomal RNA Gene-Containing Clones in Bacterial Artificial Chromosome (BAC) Libraries from Different Depths in Monterey Bay. Microbial Ecology, 2004, 48, 473-488.	1.4	101
16	Comparative community genomics in the Dead Sea: an increasingly extreme environment. ISME Journal, 2010, 4, 399-407.	4.4	101
17	Phylogenetic Diversity of Ultraplankton Plastid Small-Subunit rRNA Genes Recovered in Environmental Nucleic Acid Samples from the Pacific and Atlantic Coasts of the United States. Applied and Environmental Microbiology, 1998, 64, 294-303.	1.4	99
18	Multiple Streptomyces species with distinct secondary metabolomes have identical 16S rRNA gene sequences. Scientific Reports, 2017, 7, 11089.	1.6	96

#	Article	IF	CITATIONS
19	DAPI direct counting underestimates bacterial abundances and average cell size compared to AO direct counting. Limnology and Oceanography, 1993, 38, 1566-1570.	1.6	94
20	Seasonal dynamics of active SAR11 ecotypes in the oligotrophic Northwest Mediterranean Sea. ISME Journal, 2015, 9, 347-360.	4.4	93
21	Novel Primers Reveal Wider Diversity among Marine Aerobic Anoxygenic Phototrophs. Applied and Environmental Microbiology, 2005, 71, 8958-8962.	1.4	80
22	High Temporal but Low Spatial Heterogeneity of Bacterioplankton in the Chesapeake Bay. Applied and Environmental Microbiology, 2007, 73, 6776-6789.	1.4	73
23	Effect of protistan bacterivory on coastal bacterioplankton diversity. Aquatic Microbial Ecology, 1999, 20, 261-272.	0.9	70
24	Microbial community genomics in eastern Mediterranean Sea surface waters. ISME Journal, 2010, 4, 78-87.	4.4	66
25	A single betaproteobacterium dominates the microbial community of the crambescidine-containing sponge Crambe crambe. Scientific Reports, 2013, 3, 2583.	1.6	66
26	Littoral lichens as a novel source of potentially bioactive Actinobacteria. Scientific Reports, 2015, 5, 15839.	1.6	65
27	Near realâ€ŧime, autonomous detection of marine bacterioplankton on a coastal mooring in Monterey Bay, California, using rRNAâ€ŧargeted DNA probes. Environmental Microbiology, 2009, 11, 1168-1180.	1.8	63
28	Novel estuarine bacterioplankton in rRNA operon libraries from the Chesapeake Bay. Aquatic Microbial Ecology, 2008, 51, 55-66.	0.9	54
29	A novel clade of <i>Prochlorococcus</i> found in high nutrient low chlorophyll waters in the South and Equatorial Pacific Ocean. ISME Journal, 2011, 5, 933-944.	4.4	49
30	Lichens as natural sources of biotechnologically relevant bacteria. Applied Microbiology and Biotechnology, 2016, 100, 583-595.	1.7	48
31	A unique approach to monitor stress in coral exposed to emerging pollutants. Scientific Reports, 2020, 10, 9601.	1.6	45
32	Surface properties of SAR11 bacteria facilitate grazing avoidance. Nature Microbiology, 2017, 2, 1608-1615.	5.9	44
33	Current and future chemical treatments to fight biodeterioration of outdoor building materials and associated biofilms: Moving away from ecotoxic and towards efficient, sustainable solutions. Science of the Total Environment, 2022, 802, 149846.	3.9	33
34	Characterisation of the gill mucosal bacterial communities of four butterflyfish species: a reservoir of bacterial diversity in coral reef ecosystems. FEMS Microbiology Ecology, 2017, 93, .	1.3	31
35	Marine cyanolichens from different littoral zones are associated with distinct bacterial communities. PeerJ, 2018, 6, e5208.	0.9	31
36	Pleionea mediterranea gen. nov., sp. nov., a gammaproteobacterium isolated from coastal seawater. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 2700-2705.	0.8	28

#	Article	IF	CITATIONS
37	Review – Lichen-Associated Bacteria as a Hot Spot of Chemodiversity: Focus on Uncialamycin, a Promising Compound for Future Medicinal Applications. Planta Medica, 2016, 82, 1143-1152.	0.7	28
38	Spherulization as a process for the exudation of chemical cues by the encrusting sponge C. crambe. Scientific Reports, 2016, 6, 29474.	1.6	28
39	Eosinopenia <100/μL as a marker of active COVID-19: An observational prospective study. Journal of Microbiology, Immunology and Infection, 2021, 54, 61-68.	1.5	27
40	Host Species and Body Site Explain the Variation in the Microbiota Associated to Wild Sympatric Mediterranean Teleost Fishes. Microbial Ecology, 2020, 80, 212-222.	1.4	25
41	BchY-Based Degenerate Primers Target All Types of Anoxygenic Photosynthetic Bacteria in a Single PCR. Applied and Environmental Microbiology, 2009, 75, 7556-7559.	1.4	21
42	Primary Production in a Subtropical Stratified Coastal Lagoon—Contribution of Anoxygenic Phototrophic Bacteria. Microbial Ecology, 2011, 61, 223-237.	1.4	21
43	Characterization of N-Acyl Homoserine Lactones in Vibrio tasmaniensis LGP32 by a Biosensor-Based UHPLC-HRMS/MS Method. Sensors, 2017, 17, 906.	2.1	21
44	Cyaneodimycin, a Bioactive Compound Isolated from the Culture of <i>Streptomyces cyaneofuscatus</i> Associated with <i>Lichina confinis</i> . European Journal of Organic Chemistry, 2016, 2016, 3977-3982.	1.2	17
45	Cytotoxic indole alkaloids from Pseudovibrio denitrificans BBCC725. Tetrahedron Letters, 2017, 58, 3172-3173.	0.7	17
46	Development and Application of Quantitative-PCR Tools for Subgroups of the <i>Roseobacter</i> Clade. Applied and Environmental Microbiology, 2009, 75, 7542-7547.	1.4	16
47	The use of denaturing gradient gel electrophoresis with fully degenerate pufM primers to monitor aerobic anoxygenic phototrophic assemblages. Limnology and Oceanography: Methods, 2008, 6, 427-440.	1.0	15
48	Estimation of ammonium regeneration efficiencies associated with bacterivory in pelagic food webs via a 15N tracer method. Journal of Plankton Research, 1996, 18, 411-428.	0.8	13
49	The response of microbial communities to diverse organic matter sources in the Arctic Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56, 1249-1263.	0.6	12
50	Genetic diversity and phenotypic plasticity of AHL-mediated Quorum sensing in environmental strains of <i>Vibrio mediterranei</i> . ISME Journal, 2019, 13, 159-169.	4.4	10
51	Low-diversity bacterial microbiota in Southern Ocean representatives of lanternfish genera Electrona, Protomyctophum and Gymnoscopelus (family Myctophidae). PLoS ONE, 2019, 14, e0226159.	1.1	10
52	Chemical analysis of the Alphaproteobacterium strain MOLA1416 associated with the marine lichen Lichina pygmaea. Phytochemistry, 2018, 145, 57-67.	1.4	9
53	Characterization of ecto- and endoparasite communities of wild Mediterranean teleosts by a metabarcoding approach. PLoS ONE, 2019, 14, e0221475.	1.1	9
54	Evidence of a Large Diversity of <i>N</i> -acyl-Homoserine Lactones in Symbiotic <i>Vibrio fischeri</i> Strains Associated with the Squid <i>Euprymna scolopes</i> . Microbes and Environments, 2019, 34, 99-103.	0.7	9

#	Article	IF	CITATIONS
55	An elusive marine photosynthetic bacterium is finally unveiled. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2561-2562.	3.3	8
56	Two-dimensional ultra high pressure liquid chromatography quadrupole/time-of-flight mass spectrometry for semi-targeted natural compounds identification. Phytochemistry Letters, 2014, 10, 318-323.	0.6	8
57	Inâ€depth prospection of Avène Thermal Spring Water reveals an uncommon and stable microbial community. Journal of the European Academy of Dermatology and Venereology, 2020, 34, 8-14.	1.3	8
58	<i>In situ</i> activity of NAC11â€7 roseobacters in coastal waters off the Chesapeake Bay based on <i>ftsZ</i> expression. Environmental Microbiology, 2011, 13, 1032-1041.	1.8	7
59	<scp>D</scp> ead <scp>S</scp> ea rhodopsins revisited. Environmental Microbiology Reports, 2012, 4, 617-621.	1.0	7
60	Light-driven increase in carbon yield is linked to maintenance in the proteorhodopsin-containing Photobacterium angustum S14. Frontiers in Microbiology, 2015, 6, 688.	1.5	6
61	Genome Sequence of the Sponge-Associated Ruegeria halocynthiae Strain MOLA R1/13b, a Marine Roseobacter with Two Quorum-Sensing-Based Communication Systems. Genome Announcements, 2014, 2, .	0.8	4
62	Draft Genome Sequence of the Gammaproteobacterial Strain MOLA455, a Representative of a Ubiquitous Proteorhodopsin-Producing Group in the Ocean. Genome Announcements, 2014, 2, .	0.8	4
63	Selective isolation, antimicrobial screening and phylogenetic diversity of marine actinomycetes derived from the Coast of Bejaia City (Algeria), a polluted and microbiologically unexplored environment. Journal of Applied Microbiology, 2022, 132, 2870-2882.	1.4	4
64	Genome Sequence of Strain MOLA814, a Proteorhodopsin-Containing Representative of the <i>Betaproteobacteria</i> Common in the Ocean. Genome Announcements, 2013, 1, .	0.8	3
65	Insights into the Natural Defenses of a Coral Reef Fish Against Gill Ectoparasites: Integrated Metabolome and Microbiome Approach. Metabolites, 2020, 10, 227.	1.3	3
66	Integrated Metabolomic, Molecular Networking, and Genome Mining Analyses Uncover Novel Angucyclines From Streptomyces sp. RO-S4 Strain Isolated From Bejaia Bay, Algeria. Frontiers in Microbiology, 0, 13, .	1.5	2