
Aurora Ruiz-Herrera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9033228/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unpacking chromatin remodelling in germ cells: implications for development and evolution. Trends in Genetics, 2022, 38, 422-425.	6.7	7
2	Strategies for meiotic sex chromosome dynamics and telomeric elongation in Marsupials. PLoS Genetics, 2022, 18, e1010040.	3.5	9
3	Fragile, unfaithful and persistent Ys—on how meiosis can shape sex chromosome evolution. Heredity, 2022, 129, 22-30.	2.6	4
4	3D chromatin remodelling in the germ line modulates genome evolutionary plasticity. Nature Communications, 2022, 13, 2608.	12.8	10
5	Chromosomal evolution in Raphicerus antelope suggests divergent X chromosomes may drive speciation through females, rather than males, contrary to Haldane's rule. Scientific Reports, 2021, 11, 3152.	3.3	3
6	The impact of chromosomal fusions on 3D genome folding and recombination in the germ line. Nature Communications, 2021, 12, 2981.	12.8	34
7	Microchromosomes are building blocks of bird, reptile, and mammal chromosomes. Proceedings of the United States of America, 2021, 118, .	7.1	84
8	Meiotic Executioner Genes Protect the Y from Extinction. Trends in Genetics, 2020, 36, 728-738.	6.7	19
9	Whole genome sequencing identifies allelic ratio distortion in sperm involving genes related to spermatogenesis in a swine model. DNA Research, 2020, 27, .	3.4	6
10	The Plasticity of Genome Architecture. Genes, 2020, 11, 1413.	2.4	2
11	Chromosomal Differentiation in Genetically Isolated Populations of the Marsh-Specialist Crocidura suaveolens (Mammalia: Soricidae). Genes, 2020, 11, 270.	2.4	2
12	Three-Dimensional Genomic Structure and Cohesin Occupancy Correlate with Transcriptional Activity during Spermatogenesis. Cell Reports, 2019, 28, 352-367.e9.	6.4	112
13	CENP-A binding domains and recombination patterns in horse spermatocytes. Scientific Reports, 2019, 9, 15800.	3.3	10
14	Chromosomics: Bridging the Gap between Genomes and Chromosomes. Genes, 2019, 10, 627.	2.4	79
15	PRDM9 Diversity at Fine Geographical Scale Reveals Contrasting Evolutionary Patterns and Functional Constraints in Natural Populations of House Mice. Molecular Biology and Evolution, 2019, 36, 1686-1700.	8.9	17
16	Per-Nucleus Crossover Covariation and Implications for Evolution. Cell, 2019, 177, 326-338.e16.	28.9	64
17	Detailed analysis of inversions predicted between two human genomes: errors, real polymorphisms, and their origin and population distribution. Human Molecular Genetics, 2017, 26, ddw415.	2.9	12
18	Recombination correlates with synaptonemal complex length and chromatin loop size in bovids—insights into mammalian meiotic chromosomal organization. Chromosoma, 2017, 126, 615-631.	2.2	45

Aurora Ruiz-Herrera

#	Article	IF	CITATIONS
19	Mammalian Meiotic Recombination: A Toolbox for Genome Evolution. Cytogenetic and Genome Research, 2016, 150, 1-16.	1.1	38
20	Extreme genomic erosion after recurrent demographic bottlenecks in the highly endangered Iberian lynx. Genome Biology, 2016, 17, 251.	8.8	131
21	Meiotic behaviour of evolutionary sex-autosome translocations in Bovidae. Chromosome Research, 2016, 24, 325-338.	2.2	21
22	Mammalian comparative genomics reveals genetic and epigenetic features associated with genome reshuffling in Rodentia. Genome Biology and Evolution, 2016, 8, evw276.	2.5	21
23	Telomere homeostasis in mammalian germ cells: a review. Chromosoma, 2016, 125, 337-351.	2.2	46
24	Extreme selective sweeps independently targeted the X chromosomes of the great apes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6413-6418.	7.1	75
25	Use of targeted SNP selection for an improved anchoring of the melon (Cucumis melo L.) scaffold genome assembly. BMC Genomics, 2015, 16, 4.	2.8	67
26	An Integrative Breakage Model of genome architecture, reshuffling and evolution. BioEssays, 2015, 37, 479-488.	2.5	54
27	On the origin of Robertsonian fusions in nature: evidence of telomere shortening in wild house mice. Journal of Evolutionary Biology, 2015, 28, 241-249.	1.7	18
28	Validation and Genotyping of Multiple Human Polymorphic Inversions Mediated by Inverted Repeats Reveals a High Degree of Recurrence. PLoS Genetics, 2014, 10, e1004208.	3.5	28
29	Genetic recombination variation in wild Robertsonian mice: on the role of chromosomal fusions and <i>Prdm9</i> allelic background. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140297.	2.6	36
30	Telomeric Repeat-Containing RNA (TERRA) and Telomerase Are Components of Telomeres During Mammalian Gametogenesis1. Biology of Reproduction, 2014, 90, 103.	2.7	36
31	Unraveling the effect of genomic structural changes in the rhesus macaque - implications for the adaptive role of inversions. BMC Genomics, 2014, 15, 530.	2.8	24
32	Telomere homeostasis is compromised in spermatocytes from patients with idiopathic infertility. Fertility and Sterility, 2014, 102, 728-738.e1.	1.0	41
33	Recombination Rates and Genomic Shuffling in Human and Chimpanzee—A New Twist in the Chromosomal Speciation Theory. Molecular Biology and Evolution, 2013, 30, 853-864.	8.9	73
34	Evolution of recombination in eutherian mammals: insights into mechanisms that affect recombination rates and crossover interference. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131945.	2.6	74
35	Telomeric repeat-containing RNA and telomerase in human fetal oocytes. Human Reproduction, 2013, 28, 414-422.	0.9	30
36	Great ape genetic diversity and population history. Nature, 2013, 499, 471-475.	27.8	768

Aurora Ruiz-Herrera

#	Article	IF	CITATIONS
37	Molecular cytogenetic and genomic insights into chromosomal evolution. Heredity, 2012, 108, 28-36.	2.6	51
38	Radiobiology and Reproduction—What Can We Learn from Mammalian Females?. Genes, 2012, 3, 521-544.	2.4	5
39	Polymorphic organization of constitutive heterochromatin in Equus asinus (2n = 62) chromosome 1. Hereditas, 2011, 148, 110-113.	1.4	10
40	A comparative study of the recombination pattern in three species of Platyrrhini monkeys (primates). Chromosoma, 2011, 120, 521-530.	2.2	21
41	Gene amplification in human cells knocked down for RAD54. Genome Integrity, 2011, 2, 5.	1.0	19
42	Assessing the Role of Tandem Repeats in Shaping the Genomic Architecture of Great Apes. PLoS ONE, 2011, 6, e27239.	2.5	35
43	Selection against Robertsonian fusions involving housekeeping genes in the house mouse: integrating data from gene expression arrays and chromosome evolution. Chromosome Research, 2010, 18, 801-808.	2.2	8
44	Mammalian Chromosomal Evolution: From Ancestral States to Evolutionary Regions. , 2010, , 143-158.		1
45	Enhanced gene amplification in human cells knocked down for DNA-PKcs. DNA Repair, 2009, 8, 19-28.	2.8	10
46	Defining the ancestral eutherian karyotype: A cladistic interpretation of chromosome painting and genome sequence assembly data. Chromosome Research, 2008, 16, 1133-1141.	2.2	33
47	Dissection of a Y-autosome translocation in Cryptomys hottentotus (Rodentia, Bathyergidae) and implications for the evolution of a meiotic sex chromosome chain. Chromosoma, 2008, 117, 211-217.	2.2	12
48	Evolutionary plasticity and cancer breakpoints in human chromosome 3. BioEssays, 2008, 30, 1126-1137.	2.5	15
49	Telomeric repeats far from the ends: mechanisms of origin and role in evolution. Cytogenetic and Genome Research, 2008, 122, 219-228.	1.1	181
50	Hemiplasy and homoplasy in the karyotypic phylogenies of mammals. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14477-14481.	7.1	51
51	Chromosomal instability in Afrotheria: fragile sites, evolutionary breakpoints and phylogenetic inference from genome sequence assemblies. BMC Evolutionary Biology, 2007, 7, 199.	3.2	37
52	Sex chromosomes of basal placental mammals. Chromosoma, 2007, 116, 511-518.	2.2	16
53	ls mammalian chromosomal evolution driven by regions of genome fragility?. Genome Biology, 2006, 7, R115.	9.6	130
54	Dissecting the mammalian genome – new insights into chromosomal evolution. Trends in Genetics, 2006, 22, 297-301.	6.7	32

#	Article	IF	CITATIONS
55	Genomic instability in rat: Breakpoints induced by ionising radiation and interstitial telomeric-like sequences. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2006, 595, 156-166.	1.0	20
56	Comparative chromosome painting inAotusreveals a highly derived evolution. American Journal of Primatology, 2005, 65, 73-85.	1.7	23
57	Evolutionary breakpoints are co-localized with fragile sites and intrachromosomal telomeric sequences in primates. Cytogenetic and Genome Research, 2005, 108, 234-247.	1.1	62
58	Evolutionary conserved chromosomal segments in the human karyotype are bounded by unstable chromosome bands. Cytogenetic and Genome Research, 2005, 108, 161-174.	1.1	34
59	Conservation of aphidicolin-induced fragile sites in Papionini (Primates) species and humans. Chromosome Research, 2004, 12, 683-690.	2.2	31
60	New polymorphisms in a Cebus (Platyrrhini, Primates) species. The case of Cebus nigrivittatus. Caryologia, 2004, 57, 206-209.	0.3	2
61	Chromosomal homologies between <i>Cebus</i> and <i>Ateles</i> (Primates) based on ZOOâ€FISH and Gâ€banding comparisons. American Journal of Primatology, 2002, 57, 177-188.	1.7	33
62	Distribution of intrachromosomal telomeric sequences (ITS) on Macaca fascicularis (Primates) chromosomes and their implication for chromosome evolution. Human Genetics, 2002, 110, 578-586.	3.8	69
63	Fragile sites in human and Macaca fascicularis chromosomes are breakpoints in chromosome evolution. Chromosome Research, 2002, 10, 33-44.	2.2	46
64	Chromosomal homologies between humans and Cebus apella (Primates) revealed by ZOO-FISH. Mammalian Genome, 2000, 11, 399-401.	2.2	38