Yu-Dong Yao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9032974/publications.pdf

Version: 2024-02-01

190 papers	5,797 citations	36 h-index	95266 68 g-index
191	191	191	4350 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Finger Vein Image Deblurring Using Neighbors-Based Binary-GAN (NB-GAN). IEEE Transactions on Emerging Topics in Computational Intelligence, 2023, 7, 295-307.	4.9	5
2	A state-of-the-art survey of object detection techniques in microorganism image analysis: from classical methods to deep learning approaches. Artificial Intelligence Review, 2023, 56, 1627-1698.	15.7	31
3	An Entropy Weighted Nonnegative Matrix Factorization Algorithm for Feature Representation. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 5381-5391.	11.3	2
4	A Survey of Modulation Classification Using Deep Learning: Signal Representation and Data Preprocessing. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 7020-7038.	11.3	71
5	Deep learning techniques for tumor segmentation: a review. Journal of Supercomputing, 2022, 78, 1807-1851.	3.6	22
6	A comprehensive review of image analysis methods for microorganism counting: from classical image processing to deep learning approaches. Artificial Intelligence Review, 2022, 55, 2875-2944.	15.7	52
7	HD-RDS-UNet: Leveraging Spatial-Temporal Correlation Between the Decoder Feature Maps for Lymphoma Segmentation. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 1116-1127.	6. 3	12
8	Content-based image retrieval with a Convolutional Siamese Neural Network: Distinguishing lung cancer and tuberculosis in CT images. Computers in Biology and Medicine, 2022, 140, 105096.	7.0	23
9	Is the aspect ratio of cells important in deep learning? A robust comparison of deep learning methods for multi-scale cytopathology cell image classification: From convolutional neural networks to visual transformers. Computers in Biology and Medicine, 2022, 141, 105026.	7.0	39
10	Estimation of coronary artery movement using a non-rigid registration with global-local structure preservation. Computers in Biology and Medicine, 2022, 141, 105125.	7.0	1
11	GasHisSDB: A new gastric histopathology image dataset for computer aided diagnosis of gastric cancer. Computers in Biology and Medicine, 2022, 142, 105207.	7.0	40
12	Automatic pulmonary groundâ€glass opacity nodules detection and classification based on 3D neural network. Medical Physics, 2022, 49, 2555-2569.	3.0	5
13	An Accurate Segmentation Framework for Static Ultrasound Images of the Gestational Sac. Journal of Medical and Biological Engineering, 2022, 42, 49-62.	1.8	2
14	A hierarchical conditional random field-based attention mechanism approach for gastric histopathology image classification. Applied Intelligence, 2022, 52, 9717-9738.	5.3	9
15	SVIA dataset: A new dataset of microscopic videos and images for computer-aided sperm analysis. Biocybernetics and Biomedical Engineering, 2022, 42, 204-214.	5.9	45
16	A comprehensive review of computer-aided whole-slide image analysis: from datasets to feature extraction, segmentation, classification and detection approaches. Artificial Intelligence Review, 2022, 55, 4809-4878.	15.7	77
17	Improving the accuracy and robustness of carotid-femoral pulse wave velocity measurement using a simplified tube-load model. Scientific Reports, 2022, 12, 5147.	3.3	4
18	Estimation of central pulse wave velocity from radial pulse wave analysis. Computer Methods and Programs in Biomedicine, 2022, 219, 106781.	4.7	7

#	Article	IF	Citations
19	Noninvasive estimation of aortic pressure waveform based on simplified Kalman filter and dual peripheral artery pressure waveforms. Computer Methods and Programs in Biomedicine, 2022, 219, 106760.	4.7	3
20	TOD-CNN: An effective convolutional neural network for tiny object detection in sperm videos. Computers in Biology and Medicine, 2022, 146, 105543.	7.0	23
21	CVM-Cervix: A hybrid cervical Pap-smear image classification framework using CNN, visual transformer and multilayer perceptron. Pattern Recognition, 2022, 130, 108829.	8.1	56
22	Multi-scale segmentation squeeze-and-excitation UNet with conditional random field for segmenting lung tumor from CT images. Computer Methods and Programs in Biomedicine, 2022, 222, 106946.	4.7	15
23	Secure mmWave-Radar-Based Speaker Verification for IoT Smart Home. IEEE Internet of Things Journal, 2021, 8, 3500-3511.	8.7	39
24	AW-SDRLSE: Adaptive Weighting and Scalable Distance Regularized Level Set Evolution for Lymphoma Segmentation on PET Images. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 1173-1184.	6.3	8
25	Brain functional network modeling and analysis based on fMRI: a systematic review. Cognitive Neurodynamics, 2021, 15, 389-403.	4.0	23
26	Deep Learning in Medical Ultrasound Image Analysis: A Review. IEEE Access, 2021, 9, 54310-54324.	4.2	38
27	IoT Platform for COVID-19 Prevention and Control: A Survey. IEEE Access, 2021, 9, 49929-49941.	4.2	68
28	Channel Estimation for One-Bit Multiuser Massive MIMO Using Conditional GAN. IEEE Communications Letters, 2021, 25, 854-858.	4.1	47
29	Integrating Structural and Functional Interhemispheric Brain Connectivity of Gait Freezing in Parkinson's Disease. Frontiers in Neurology, 2021, 12, 609866.	2.4	12
30	EMDS-5: Environmental Microorganism image dataset Fifth Version for multiple image analysis tasks. PLoS ONE, 2021, 16, e0250631.	2.5	12
31	A State-of-the-Art Review for Gastric Histopathology Image Analysis Approaches and Future Development. BioMed Research International, 2021, 2021, 1-19.	1.9	23
32	Performance Analysis Models of BLE Neighbor Discovery: A Survey. IEEE Internet of Things Journal, 2021, 8, 8734-8746.	8.7	12
33	Noncontact Heart Rate Measurement Using a Webcam, Based on Joint Blind Source Separation and a Skin Reflection Model: For a Wide Range of Imaging Conditions. Journal of Sensors, 2021, 2021, 1-18.	1.1	1
34	Review of machine learning methods for RNA secondary structure prediction. PLoS Computational Biology, 2021, 17, e1009291.	3.2	48
35	EFNet: evidence fusion network for tumor segmentation from PET-CT volumes. Physics in Medicine and Biology, 2021, 66, 205005.	3.0	11
36	DeepCervix: A deep learning-based framework for the classification of cervical cells using hybrid deep feature fusion techniques. Computers in Biology and Medicine, 2021, 136, 104649.	7.0	107

#	Article	IF	CITATIONS
37	Altered Degree Centrality of Brain Networks in Parkinson's Disease With Freezing of Gait: A Resting-State Functional MRI Study. Frontiers in Neurology, 2021, 12, 743135.	2.4	12
38	QAM Signal Classification and Timing Jitter Identification Based on Eye Diagrams and Deep Learning. , 2021, , .		3
39	A vision transformer for emphysema classification using CT images. Physics in Medicine and Biology, 2021, 66, 245016.	3.0	30
40	Modulation Classification in a Multipath Fading Channel Using Deep Learning: $16QAM$, $32QAM$ and $64QAM$., 2021 ,,.		2
41	Foldover Features for Dynamic Object Behaviour Description in Microscopic Videos. IEEE Access, 2020, 8, 114519-114540.	4.2	8
42	Classification of QPSK Signals with Different Phase Noise Levels Using Deep Learning., 2020,,.		6
43	Identification of COVID-19 samples from chest X-Ray images using deep learning: A comparison of transfer learning approaches. Journal of X-Ray Science and Technology, 2020, 28, 821-839.	1.0	165
44	Computer-Aided Diagnosis Based on Extreme Learning Machine: A Review. IEEE Access, 2020, 8, 141657-141673.	4.2	11
45	Rician K-Factor Estimation Using Deep Learning. , 2020, , .		14
46	Identification of ISM Band Signals Using Deep Learning. , 2020, , .		8
46	Identification of ISM Band Signals Using Deep Learning., 2020, , . An Enhanced Framework of Generative Adversarial Networks (EF-GANs) for Environmental Microorganism Image Augmentation With Limited Rotation-Invariant Training Data. IEEE Access, 2020, 8, 187455-187469.	4.2	8 24
	An Enhanced Framework of Generative Adversarial Networks (EF-GANs) for Environmental Microorganism Image Augmentation With Limited Rotation-Invariant Training Data. IEEE Access, 2020, 8,	4.2 6.9	
47	An Enhanced Framework of Generative Adversarial Networks (EF-GANs) for Environmental Microorganism Image Augmentation With Limited Rotation-Invariant Training Data. IEEE Access, 2020, 8, 187455-187469. Ouantum Bacterial Foraging Optimization: From Theory to MIMO System Designs. IEEE Open Journal of		24
47	An Enhanced Framework of Generative Adversarial Networks (EF-GANs) for Environmental Microorganism Image Augmentation With Limited Rotation-Invariant Training Data. IEEE Access, 2020, 8, 187455-187469. Quantum Bacterial Foraging Optimization: From Theory to MIMO System Designs. IEEE Open Journal of the Communications Society, 2020, 1, 1632-1646. A Survey of Distributed and Parallel Extreme Learning Machine for Big Data. IEEE Access, 2020, 8,	6.9	24 8
48	An Enhanced Framework of Generative Adversarial Networks (EF-GANs) for Environmental Microorganism Image Augmentation With Limited Rotation-Invariant Training Data. IEEE Access, 2020, 8, 187455-187469. Quantum Bacterial Foraging Optimization: From Theory to MIMO System Designs. IEEE Open Journal of the Communications Society, 2020, 1, 1632-1646. A Survey of Distributed and Parallel Extreme Learning Machine for Big Data. IEEE Access, 2020, 8, 201247-201258. Recovery Responses of Central Hemodynamics in Basketball Athletes and Controls After the Bruce	6.9 4.2	24 8 6
47 48 49 50	An Enhanced Framework of Generative Adversarial Networks (EF-GANs) for Environmental Microorganism Image Augmentation With Limited Rotation-Invariant Training Data. IEEE Access, 2020, 8, 187455-187469. Quantum Bacterial Foraging Optimization: From Theory to MIMO System Designs. IEEE Open Journal of the Communications Society, 2020, 1, 1632-1646. A Survey of Distributed and Parallel Extreme Learning Machine for Big Data. IEEE Access, 2020, 8, 201247-201258. Recovery Responses of Central Hemodynamics in Basketball Athletes and Controls After the Bruce Test. Frontiers in Physiology, 2020, 11, 593277.	6.9 4.2 2.8	24 8 6
47 48 49 50	An Enhanced Framework of Generative Adversarial Networks (EF-GANs) for Environmental Microorganism Image Augmentation With Limited Rotation-Invariant Training Data. IEEE Access, 2020, 8, 187455-187469. Quantum Bacterial Foraging Optimization: From Theory to MIMO System Designs. IEEE Open Journal of the Communications Society, 2020, 1, 1632-1646. A Survey of Distributed and Parallel Extreme Learning Machine for Big Data. IEEE Access, 2020, 8, 201247-201258. Recovery Responses of Central Hemodynamics in Basketball Athletes and Controls After the Bruce Test. Frontiers in Physiology, 2020, 11, 593277. Image Patch-Based Net Water Uptake and Radiomics Models Predict Malignant Cerebral Edema After Ischemic Stroke. Frontiers in Neurology, 2020, 11, 609747. A Comprehensive Review for Breast Histopathology Image Analysis Using Classical and Deep Neural	6.9 4.2 2.8	24 8 6 1 15

#	Article	IF	CITATIONS
55	MAC Protocol Identification Using Convolutional Neural Networks. , 2020, , .		4
56	An Application of Transfer Learning and Ensemble Learning Techniques for Cervical Histopathology Image Classification. IEEE Access, 2020, 8, 104603-104618.	4.2	83
57	Feature-Level Fusion of Finger Vein and Fingerprint Based on a Single Finger Image: The Use of Incompletely Closed Near-Infrared Equipment. Symmetry, 2020, 12, 709.	2.2	9
58	A Survey for Cervical Cytopathology Image Analysis Using Deep Learning. IEEE Access, 2020, 8, 61687-61710.	4.2	77
59	An Optimized Registration Method Based on Distribution Similarity and DVF Smoothness for 3D PET and CT Images. IEEE Access, 2020, 8, 1135-1145.	4.2	9
60	Identification of COPD From Multi-View Snapshots of 3D Lung Airway Tree via Deep CNN. IEEE Access, 2020, 8, 38907-38919.	4.2	30
61	Unsupervised 3D PET-CT Image Registration Method Using a Metabolic Constraint Function and a Multi-Domain Similarity Measure. IEEE Access, 2020, 8, 63077-63089.	4.2	10
62	A surface-enhanced Raman scattering-based probe method for detecting chromogranin A in adrenal tumors. Nanomedicine, 2020, 15, 397-407.	3.3	3
63	Less Is Better: Single-Digit Brain Functional Connections Predict T2DM and T2DM-Induced Cognitive Impairment. Frontiers in Neuroscience, 2020, 14, 588684.	2.8	7
64	Deep CNN Model Using CT Radiomics Feature Mapping Recognizes EGFR Gene Mutation Status of Lung Adenocarcinoma. Frontiers in Oncology, 2020, 10, 598721.	2.8	26
65	Programmable hyperspectral microscopy for high-contrast biomedical imaging in a snapshot. Journal of Biomedical Optics, 2020, 25, 1.	2.6	2
66	Modulation Classification Based on Signal Constellation Diagrams and Deep Learning. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30, 718-727.	11.3	339
67	Joint Power and Bandwidth Allocation for Energy-Efficient Heterogeneous Cellular Networks. IEEE Transactions on Communications, 2019, 67, 6168-6178.	7.8	34
68	Liver Tumor Segmentation Based on Multi-Scale Candidate Generation and Fractal Residual Network. IEEE Access, 2019, 7, 82122-82133.	4.2	40
69	Visibility Attribute Extraction and Anomaly Detection for Chinese Diagnostic Report Based on Cascade Networks. IEEE Access, 2019, 7, 116402-116412.	4.2	0
70	Segmentation of lung parenchyma in CT images using CNN trained with the clustering algorithm generated dataset. BioMedical Engineering OnLine, 2019, 18, 2.	2.7	73
71	Cellular System Identification Using Deep Learning: GSM, UMTS and LTE. , 2019, , .		20
72	A Programmable Optical Filter With Arbitrary Transmittance for Fast Spectroscopic Imaging and Spectral Data Post-Processing. IEEE Access, 2019, 7, 119294-119308.	4.2	4

#	Article	IF	Citations
73	Breast Cancer Detection Using Extreme Learning Machine Based on Feature Fusion With CNN Deep Features. IEEE Access, 2019, 7, 105146-105158.	4.2	215
74	Secrecy Outage Probability Analysis of Friendly Jammer Selection Aided Multiuser Scheduling for Wireless Networks. IEEE Transactions on Communications, 2019, 67, 3482-3495.	7.8	32
75	Deep CNN models for pulmonary nodule classification: Model modification, model integration, and transfer learning. Journal of X-Ray Science and Technology, 2019, 27, 615-629.	1.0	35
76	Detection and Classification of Pulmonary Nodules Using Convolutional Neural Networks: A Survey. IEEE Access, 2019, 7, 78075-78091.	4.2	82
77	BLE Neighbor Discovery Parameter Configuration for IoT Applications. IEEE Access, 2019, 7, 54097-54105.	4.2	19
78	Research on Non-Contact Monitoring System for Human Physiological Signal and Body Movement. Biosensors, 2019, 9, 58.	4.7	16
79	A review on low-dimensional physics-based models of systemic arteries: application to estimation of central aortic pressure. BioMedical Engineering OnLine, 2019, 18, 41.	2.7	31
80	Secondary User Access Control with MassiveMIMO in Cognitive Radio Networks., 2019,,.		2
81	Cascaded Conditional Generative Adversarial Networks With Multi-Scale Attention Fusion for Automated Bi-Ventricle Segmentation in Cardiac MRI. IEEE Access, 2019, 7, 172305-172320.	4.2	10
82	Cellular Signal Identification Using Convolutional Neural Networks: AWGN and Rayleigh Fading Channels. , 2019, , .		21
83	Multiband Spectrum Sensing in Cognitive Radio Networks With Secondary User Hardware Limitation: Random and Adaptive Spectrum Sensing Strategies. IEEE Transactions on Wireless Communications, 2018, 17, 3018-3029.	9.2	49
84	Prioritized Secondary User Access Control in Cognitive Radio Networks. IEEE Access, 2018, 6, 11007-11016.	4.2	8
85	Primary User Boundary Detection in Cognitive Radio Networks: Estimated Secondary User Locations and Impact of Malicious Secondary Users. IEEE Transactions on Vehicular Technology, 2018, 67, 4577-4588.	6.3	12
86	CUDAMPF++: A Proactive Resource Exhaustion Scheme for Accelerating Homologous Sequence Search on CUDA-Enabled GPU. IEEE Transactions on Parallel and Distributed Systems, 2018, 29, 2206-2222.	5.6	2
87	An effective computer aided diagnosis model for pancreas cancer on PET/CT images. Computer Methods and Programs in Biomedicine, 2018, 165, 205-214.	4.7	52
88	Improved lung nodule diagnosis accuracy using lung CT images with uncertain class. Computer Methods and Programs in Biomedicine, 2018, 162, 197-209.	4.7	40
89	Cryptanalysis and improvement in an image encryption scheme using combination of the 1D chaotic map. Nonlinear Dynamics, 2018, 93, 2399-2413.	5.2	51
90	Exploiting the Security Aspects of Compressive Sampling. Security and Communication Networks, 2018, 2018, 1-1.	1.5	0

#	Article	IF	CITATIONS
91	Cooperative Spectrum Sensing With Random Access Reporting Channels in Cognitive Radio Networks. IEEE Transactions on Vehicular Technology, 2017, 66, 7249-7261.	6.3	28
92	Modulation classification using convolutional Neural Network based deep learning model., 2017,,.		117
93	Diastolic Augmentation Index Improves Radial Augmentation Index in Assessing Arterial Stiffness. Scientific Reports, 2017, 7, 5864.	3.3	19
94	Random, Persistent, and Adaptive Spectrum Sensing Strategies for Multiband Spectrum Sensing in Cognitive Radio Networks With Secondary User Hardware Limitation. IEEE Access, 2017, 5, 14854-14866.	4.2	16
95	An Alzheimers disease related genes identification method based on multiple classifier integration. Computer Methods and Programs in Biomedicine, 2017, 150, 107-115.	4.7	21
96	ICA Based Semi-Blind Decoding Method for a Multicell Multiuser Massive MIMO Uplink System in Rician/Rayleigh Fading Channels. IEEE Transactions on Wireless Communications, 2017, 16, 7501-7511.	9.2	10
97	Power allocation optimisation for high throughput with mixed spectrum access based on interference evaluation strategy in cognitive relay networks. IET Communications, 2016, 10, 1428-1435.	2.2	3
98	Secondary User Access Control in Cognitive Radio Networks. IEEE Journal on Selected Areas in Communications, 2016, 34, 2866-2873.	14.0	8
99	Traffic-Aware Online Network Selection in Heterogeneous Wireless Networks. IEEE Transactions on Vehicular Technology, 2016, 65, 381-397.	6.3	39
100	Energy-Efficiency-Based Optimal Relay Selection Scheme With a BER Constraint in Cooperative Cognitive Radio Networks. IEEE Transactions on Vehicular Technology, 2016, 65, 191-203.	6.3	31
101	Blind Decoding Based on Independent Component Analysis for a Massive MIMO Uplink System in Microcell Rician/Rayleigh Fading Channels. IEEE Transactions on Vehicular Technology, 2016, 65, 8322-8330.	6.3	12
102	Cellular-Base-Station-Assisted Device-to-Device Communications in TV White Space. IEEE Journal on Selected Areas in Communications, 2016, 34, 107-121.	14.0	147
103	Applying matrix factorization in data reconstruction for heart disease patient classification., 2015,,.		0
104	Secondary user scheduling in cognitive radio networks with transmit beamforming for interference mitigation. , 2015, , .		2
105	Reporting Channel Design and Analysis in Cooperative Spectrum Sensing for Cognitive Radio Networks. , 2015, , .		3
106	Exploiting User Demand Diversity in Heterogeneous Wireless Networks. IEEE Transactions on Wireless Communications, 2015, 14, 4142-4155.	9.2	47
107	User-Demand-Aware Wireless Network Selection: A Localized Cooperation Approach. IEEE Transactions on Vehicular Technology, 2014, 63, 4492-4507.	6.3	75
108	Robust Spectrum Sensing With Crowd Sensors. IEEE Transactions on Communications, 2014, 62, 3129-3143.	7.8	117

#	Article	IF	Citations
109	Adaptive time division duplexing network with network coding embedded twoâ€way relay. IET Communications, 2014, 8, 2153-2161.	2.2	0
110	Spatial-Temporal Opportunity Detection for Spectrum-Heterogeneous Cognitive Radio Networks: Two-Dimensional Sensing. IEEE Transactions on Wireless Communications, 2013, 12, 516-526.	9.2	203
111	Identification of legacy radios in a cognitive radio network using a radio frequency fingerprinting based method., 2012,,.		17
112	Radio access behavior (RAB) based cognitive radio classification and identification. , 2012, , .		1
113	Most Active Band (MAB) Attack and Countermeasures in a Cognitive Radio Network. IEEE Transactions on Wireless Communications, 2012, 11, 898-902.	9.2	18
114	Opportunistic Spectrum Access in Unknown Dynamic Environment: A Game-Theoretic Stochastic Learning Solution. IEEE Transactions on Wireless Communications, 2012, 11, 1380-1391.	9.2	229
115	Slotted Aloha for cognitive radio users and its tagged user analysis. , 2012, , .		11
116	Diversity-Multiplexing Tradeoff in Selective Cooperation for Cognitive Radio. IEEE Transactions on Communications, 2012, 60, 2467-2481.	7.8	25
117	MAC protocol identification approach for implement smart cognitive radio. , 2012, , .		35
118	Cooperative relay techniques for cognitive radio systems: Spectrum sensing and secondary user transmissions. IEEE Communications Magazine, 2012, 50, 98-103.	6.1	224
119	Opportunistic Distributed Space-Time Coding for Decode-and-Forward Cooperation Systems. IEEE Transactions on Signal Processing, 2012, 60, 1766-1781.	5.3	55
120	Social welfare maximization for SRSNs using bio-inspired community cooperation mechanism. Science Bulletin, 2012, 57, 125-131.	1.7	10
121	Cog-PRMA protocol for CR users sharing a common channel with TDMA primary users. , 2011, , .		11
122	A Cooperative Spectrum Sensing Scheme without Dedicated Reporting Channels: Interference Impact on Primary Users. , 2011 , , .		1
123	Tagged user approach for finite-user finite-buffer S-Aloha analysis in AWGN and frequency selective fading channels. , 2011, , .		7
124	A Cooperative Sensing Based Cognitive Relay Transmission Scheme Without a Dedicated Sensing Relay Channel in Cognitive Radio Networks. IEEE Transactions on Signal Processing, 2011, 59, 854-858.	5.3	42
125	Cognitive Transmissions with Multiple Relays in Cognitive Radio Networks. IEEE Transactions on Wireless Communications, 2011, 10, 648-659.	9.2	103
126	Cooperative Spectrum Sensing in Cognitive Radio Networks in the Presence of the Primary User Emulation Attack. IEEE Transactions on Wireless Communications, 2011, 10, 2135-2141.	9.2	115

#	Article	IF	CITATIONS
127	Cognitive-Relay-Based Intercell Interference Cancellation in Cellular Systems. IEEE Transactions on Vehicular Technology, 2010, 59, 1901-1909.	6.3	21
128	Power Adaptation for Multihop Networks With End-to-End BER Requirements. IEEE Transactions on Vehicular Technology, 2010, 59, 3445-3454.	6.3	9
129	An integrated incremental self-organizing map and hierarchical neural network approach for cognitive radio learning. , 2010 , , .		10
130	A Cognitive Transmission Scheme with the Best Relay Selection in Cognitive Radio Networks. , 2010, , .		15
131	An Adaptive Cooperation Diversity Scheme With Best-Relay Selection in Cognitive Radio Networks. IEEE Transactions on Signal Processing, 2010, 58, 5438-5445.	5.3	369
132	A TDMA-based MAC protocol with cooperative diversity. IEEE Communications Letters, 2010, 14, 542-544.	4.1	47
133	Spectrum sensing and data transmission tradeoff in cognitive radio networks. , 2010, , .		18
134	TDMA for primary users and CSMA for secondary users in a cognitive radio network. , 2010, , .		2
135	Random access in a cognitive radio network with slotted Aloha for primary users and CSMA for secondary users. , 2010, , .		3
136	MAC protocol classification in a cognitive radio network. , 2010, , .		9
137	Impacts of different arm structures of reflector IRA: Wire, coplanar plate, and bi-conical arms. , 2009,		0
138	Slotted Aloha in a cognitive radio environment with capture effects. , 2009, , .		1
139	Throughput and delay analysis of two-tier slotted Aloha. , 2009, , .		1
140	Throughput performance evaluation of two-tier TDMA for sensor networks., 2009,,.		14
141	Outage Probability Analysis of Wireless Relay and Cooperative Networks in Rician Fading Channels with Different K-Factors. , 2009, , .		29
142	Performance Evaluation of Multicarrier CDMA Systems in the Presence of Carrier Frequency Offset with Beamforming Techniques. IEEE Vehicular Technology Conference, 2008, , .	0.4	1
143	Two-Tier Slotted Aloha in Mobile Ad Hoc Networks. , 2007, , .		1
144	Outage Probabilities of Wireless Systems with LCMV Beamforming. IEEE Transactions on Wireless Communications, 2007, 6, 3515-3523.	9.2	4

#	Article	IF	Citations
145	Investigations of cross-layer designs for mobile ad hoc networks. , 2007, , .		1
146	Reduced-rate retransmissions for spread-spectrum packet radio multimedia networks. IEEE Transactions on Wireless Communications, 2006, 5, 779-788.	9.2	0
147	Modeling and Performance Evaluation of 3G CDMA Networks with Beamforming. Wireless Personal Communications, 2006, 39, 1-13.	2.7	0
148	Performance Evaluation of CDMA Reverse Links With Imperfect Beamforming in a Multicell Environment Using a SimplifiedBeamforming Model. IEEE Transactions on Vehicular Technology, 2006, 55, 1019-1031.	6. 3	21
149	Outage performance of a hybrid DS/FH spread-spectrum signal in an ISM band. International Journal of Network Management, 2006, 16, 115-129.	2.2	2
150	Discrete-time analysis of a CPCH access scheme in W-CDMA. IEEE Transactions on Wireless Communications, 2006, 5, 1575-1578.	9.2	0
151	Detection performance of chaotic spreading LPI waveforms. IEEE Transactions on Wireless Communications, 2005, 4, 390-396.	9.2	60
152	Performance evaluation of 3G CDMA networks with antenna arrays. , 2004, , .		0
153	Reverse-Link Capacity of Power-Controlled CDMA Systems With Beamforming. IEEE Transactions on Vehicular Technology, 2004, 53, 1423-1433.	6.3	10
154	Deterministic Multiuser Carrier-Frequency Offset Estimation for Interleaved OFDMA Uplink. IEEE Transactions on Communications, 2004, 52, 1585-1594.	7.8	268
155	A CPCH Access Method for Prioritized Services in W-CDMA. IEEE Communications Letters, 2004, 8, 9-11.	4.1	3
156	Transmit diversity and linear and decision-feedback equalizations for frequency-selective fading channels. IEEE Transactions on Vehicular Technology, 2003, 52, 1217-1231.	6.3	8
157	Investigation of slotted aloha under nakagami fading with synchronized and asynchronous cochannel cells. IEEE Transactions on Vehicular Technology, 2003, 52, 1642-1651.	6.3	7
158	Reverse link capacity of SIR-based power-controlled CDMA systems with antenna arrays. Wireless Communications and Mobile Computing, 2003, 3, 759-772.	1.2	13
159	CDMA reverse link capacity with antenna arrays in a multipath fading environment. , 2003, , .		0
160	Joint channel estimation and co-channel interference suppression for space-time block coded systems. , 2001, , .		1
161	Definition and drivation of level crossing rate and average fade duration in an interference-limited environment. , 0 , , .		13
162	Adaptive resource allocation with prioritized handoff in cellular mobile networks under QoS provisioning. , 0, , .		7

#	Article	IF	CITATIONS
163	Performance analysis of NAK-based ARQ in correlated-error channels. , 0, , .		O
164	Channel estimation and equalization for space-time block coded systems in frequency selective fading channels. , 0 , , .		2
165	Throughput analysis of a class of selective repeat ARQ with multi-copy retransmissions. , 0, , .		2
166	Intersymbol/cochannel interference cancellation for transmit diversity systems in frequency selective fading channels. , 0 , , .		0
167	Linear and decision feedback equalizations for space-time block coded systems in frequency selective fading channels. , 0 , , .		2
168	Performance analysis of CPCH-type packet channels for variable-bit-rate applications. , 0, , .		0
169	A model-based Q-learning scheme for wireless channel allocation with prioritized handoff. , 0, , .		6
170	Analysis of two receiver schemes for interleaved OFDMA uplink. , 0, , .		9
171	An adaptive data transmission scheme for OFDM systems. , 0, , .		2
172	A CPCH access method for prioritized services. , 0, , .		1
173	User separation and frequency-time synchronization for the uplink of interleaved OFDMA., 0,,.		13
174	Fade statistics in an interference-limited environment with Nakagami fading. , 0, , .		0
175	Efficient structure-based carrier frequency offset estimation for interleaved OFDMA uplink., 0,,.		21
176	Slotted ALOHA in multicell and Nakagami fading environment. , 0, , .		0
177	Performance evaluation of CPCH with a geometrically-distributed message length in W-CDMA. , 0, , .		1
178	Error probabilities of CDMA systems with beamforming under different power control schemes. , 0, , .		0
179	Utilizing beamforming for random access - a cross-layer paradigm. , 0, , .		1
180	Performance analysis of deploying antenna array in 3G CDMA networks. , 0, , .		0

#	Article	lF	CITATIONS
181	Multipath routing in ad hoc networks using directional antennas. , 0, , .		8
182	Detection performance of LPI waveforms of chaotic spread-spectrum systems with antenna arrays. , 0, , .		0
183	Frequency synchronization for generalized OFDMA uplink. , 0, , .		51
184	Evaluation of reverse link performance of a CDMA system with imperfect beamforming. , 0, , .		6
185	Reverse Link Capacity of CDMA Systems with Imperfect Beamforming Using Different Types of Antenna Arrays. , 0, , .		0
186	Outage probabilities of wireless systems with beamforming. , 0, , .		0
187	Outage probability of wireless systems with linear and circular antenna arrays in correlated nakagami fading channels. , 0, , .		O
188	Detection performance of time-hopping ultra-wideband LPI waveforms. , 0, , .		4
189	Secure chaotic spread-spectrum communication systems. , 0, , .		0
190	Finger vein image inpainting using neighbor binary-wasserstein generative adversarial networks (NB-WGAN). Applied Intelligence, $0, 1$.	5.3	1