
## **Albino Martins**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9032952/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Microfluidic-assisted electrospinning, an alternative to coaxial, as a controlled dual drug release<br>system to treat inflammatory arthritic diseases. Materials Science and Engineering C, 2022, 134, 112585. | 7.3  | 6         |
| 2  | Sulfated Seaweed Polysaccharides. , 2022, , 307-340.                                                                                                                                                            |      | 1         |
| 3  | Stimulation of Neurite Outgrowth Using Autologous NGF Bound at the Surface of a Fibrous<br>Substrate. Biomolecules, 2022, 12, 25.                                                                               | 4.0  | 4         |
| 4  | Metronidazole Delivery Nanosystem Able To Reduce the Pathogenicity of Bacteria in Colorectal<br>Infection. Biomacromolecules, 2022, 23, 2415-2427.                                                              | 5.4  | 3         |
| 5  | Biomimetic Surface Topography from the <i>Rubus fruticosus</i> Leaf as a Guidance of Angiogenesis<br>in Tissue Engineering Applications. ACS Biomaterials Science and Engineering, 2022, 8, 2943-2953.          | 5.2  | 4         |
| 6  | Biomedical Applications of Fibers Produced by Electrospinning, Microfluidic Spinning and Combinations of Both. , 2022, , 251-295.                                                                               |      | 1         |
| 7  | Fucoidan/chitosan nanoparticles functionalized with anti-ErbB-2 target breast cancer cells and impair tumor growth in vivo. International Journal of Pharmaceutics, 2021, 600, 120548.                          | 5.2  | 15        |
| 8  | New Vascular Graft Using the Decellularized Human Chorion Membrane. ACS Biomaterials Science and Engineering, 2021, 7, 3423-3433.                                                                               | 5.2  | 8         |
| 9  | Recapitulation of Thymic Function by Tissue Engineering Strategies. Advanced Healthcare Materials, 2021, 10, 2100773.                                                                                           | 7.6  | 5         |
| 10 | Angiogenic potential of airbrushed fucoidan/polycaprolactone nanofibrous meshes. International<br>Journal of Biological Macromolecules, 2021, 183, 695-706.                                                     | 7.5  | 6         |
| 11 | Marine-derived polymeric nanostructures for cancer treatment. Nanomedicine, 2021, 16, 1931-1935.                                                                                                                | 3.3  | 2         |
| 12 | Arteriovenous access in hemodialysis: A multidisciplinary perspective for future solutions.<br>International Journal of Artificial Organs, 2021, 44, 3-16.                                                      | 1.4  | 19        |
| 13 | Chondrogenic differentiation induced by extracellular vesicles bound to a nanofibrous substrate.<br>Npj Regenerative Medicine, 2021, 6, 79.                                                                     | 5.2  | 12        |
| 14 | Tubular Fibrous Scaffolds Functionalized with Tropoelastin as a Small-Diameter Vascular Graft.<br>Biomacromolecules, 2020, 21, 3582-3595.                                                                       | 5.4  | 17        |
| 15 | Fibronectin-Functionalized Fibrous Meshes as a Substrate to Support Cultures of Thymic Epithelial<br>Cells. Biomacromolecules, 2020, 21, 4771-4780.                                                             | 5.4  | 11        |
| 16 | Marine-derived biomaterials for cancer treatment. , 2020, , 551-576.                                                                                                                                            |      | 5         |
| 17 | Fucoidan Immobilized at the Surface of a Fibrous Mesh Presents Toxic Effects over Melanoma Cells,<br>But Not over Noncancer Skin Cells. Biomacromolecules, 2020, 21, 2745-2754.                                 | 5.4  | 13        |
| 18 | Surface biofunctionalization to improve the efficacy of biomaterial substrates to be used in regenerative medicine. Materials Horizons, 2020, 7, 2258-2275.                                                     | 12.2 | 17        |

| #  | Article                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | A review on fucoidan antitumor strategies: From a biological active agent to a structural component of fucoidan-based systems. Carbohydrate Polymers, 2020, 239, 116131.                            | 10.2 | 77        |
| 20 | Spatial immobilization of endogenous growth factors to control vascularization in bone tissue engineering. Biomaterials Science, 2020, 8, 2577-2589.                                                | 5.4  | 38        |
| 21 | Biofunctional nanostructured systems for regenerative medicine. Nanomedicine, 2020, 15, 1545-1549.                                                                                                  | 3.3  | 3         |
| 22 | Electrospun colourimetric sensors for detecting volatile amines. Sensors and Actuators B: Chemical, 2020, 322, 128570.                                                                              | 7.8  | 23        |
| 23 | Fibronectin Bound to a Fibrous Substrate Has Chondrogenic Induction Properties.<br>Biomacromolecules, 2020, 21, 1368-1378.                                                                          | 5.4  | 10        |
| 24 | Fucoidan from Fucus vesiculosus inhibits new blood vessel formation and breast tumor growth in vivo. Carbohydrate Polymers, 2019, 223, 115034.                                                      | 10.2 | 51        |
| 25 | Chondrogenesis-inductive nanofibrous substrate using both biological fluids and mesenchymal stem cells from an autologous source. Materials Science and Engineering C, 2019, 98, 1169-1178.         | 7.3  | 18        |
| 26 | Biofunctional Nanofibrous Substrate for Local TNF-Capturing as a Strategy to Control Inflammation in Arthritic Joints. Nanomaterials, 2019, 9, 567.                                                 | 4.1  | 9         |
| 27 | Influence of PDLA nanoparticles size on drug release and interaction with cells. Journal of<br>Biomedical Materials Research - Part A, 2019, 107, 482-493.                                          | 4.0  | 12        |
| 28 | Micro/Nano Scaffolds for Osteochondral Tissue Engineering. Advances in Experimental Medicine and<br>Biology, 2018, 1058, 125-139.                                                                   | 1.6  | 11        |
| 29 | Fish sarcoplasmic proteins as a high value marine material for wound dressing applications. Colloids and Surfaces B: Biointerfaces, 2018, 167, 310-317.                                             | 5.0  | 12        |
| 30 | The Use of Electrospinning Technique on Osteochondral Tissue Engineering. Advances in Experimental<br>Medicine and Biology, 2018, 1058, 247-263.                                                    | 1.6  | 19        |
| 31 | The functionalization of natural polymer-coated gold nanoparticles to carry bFGF to promote tissue regeneration. Journal of Materials Chemistry B, 2018, 6, 2104-2115.                              | 5.8  | 10        |
| 32 | P3 UNDERSTANDING THE ENDOTHELIAL – SMOOTH MUSCLE – FIBROBLASTIC CELLS INTERACTIONS ON A<br>TISSUE-ENGINEERED VASCULAR GRAFT. Artery Research, 2018, 24, 80.                                         | 0.6  | 0         |
| 33 | Gemcitabine delivered by fucoidan/chitosan nanoparticles presents increased toxicity over human breast cancer cells. Nanomedicine, 2018, 13, 2037-2050.                                             | 3.3  | 47        |
| 34 | Chondroitin sulfate immobilization at the surface of electrospun nanofiber meshes for cartilage tissue regeneration approaches. Applied Surface Science, 2017, 403, 112-125.                        | 6.1  | 39        |
| 35 | The Key Role of Sulfation and Branching on Fucoidan Antitumor Activity. Macromolecular Bioscience, 2017, 17, 1600340.                                                                               | 4.1  | 76        |
| 36 | Electrospun Nanofibrous Meshes Cultured With Wharton's Jelly Stem Cell: An Alternative for<br>Cartilage Regeneration, Without the Need of Growth Factors. Biotechnology Journal, 2017, 12, 1700073. | 3.5  | 16        |

| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Dual release of a hydrophilic and a hydrophobic osteogenic factor from a single liposome. RSC<br>Advances, 2016, 6, 114599-114612.                                                                                 | 3.6  | 6         |
| 38 | Advanced polymer composites and structures for bone and cartilage tissue engineering. , 2016, , 123-142.                                                                                                           |      | 2         |
| 39 | Extracellular Vesicles Derived from Osteogenically Induced Human Bone Marrow Mesenchymal Stem<br>Cells Can Modulate Lineage Commitment. Stem Cell Reports, 2016, 6, 284-291.                                       | 4.8  | 81        |
| 40 | On the use of dexamethasone-loaded liposomes to induce the osteogenic differentiation of human<br>mesenchymal stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 1056-1066.             | 2.7  | 33        |
| 41 | Hierarchical scaffolds enhance osteogenic differentiation of human Wharton's jelly derived stem cells. Biofabrication, 2015, 7, 035009.                                                                            | 7.1  | 17        |
| 42 | Antibacterial activity of chitosan nanofiber meshes with liposomes immobilized releasing gentamicin.<br>Acta Biomaterialia, 2015, 18, 196-205.                                                                     | 8.3  | 154       |
| 43 | Nanoparticle-based bioactive agent release systems for bone and cartilage tissue engineering.<br>Regenerative Therapy, 2015, 1, 109-118.                                                                           | 3.0  | 50        |
| 44 | Conditioned medium as a strategy for human stem cells chondrogenic differentiation. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 714-723.                                                     | 2.7  | 34        |
| 45 | Size Also Matters in Biodegradable Composite Microfiber Reinforced by Chitosan Nanofibers.<br>Materials Research Society Symposia Proceedings, 2014, 1621, 59-69.                                                  | 0.1  | 1         |
| 46 | Immobilization of bioactive factor-loaded liposomes on the surface of electrospun nanofibers targeting tissue engineering. Biomaterials Science, 2014, 2, 1195-1209.                                               | 5.4  | 54        |
| 47 | Liposomes in tissue engineering and regenerative medicine. Journal of the Royal Society Interface, 2014, 11, 20140459.                                                                                             | 3.4  | 269       |
| 48 | Biofunctional Nanofibrous Substrate Comprising Immobilized Antibodies and Selective Binding of Autologous Growth Factors. Biomacromolecules, 2014, 15, 2196-2205.                                                  | 5.4  | 33        |
| 49 | Instructive Nanofibrous Scaffold Comprising Runt-Related Transcription Factor 2 Gene Delivery for<br>Bone Tissue Engineering. ACS Nano, 2014, 8, 8082-8094.                                                        | 14.6 | 81        |
| 50 | Hyaluronic acid/poly- <scp>l</scp> -lysine bilayered silica nanoparticles enhance the osteogenic<br>differentiation of human mesenchymal stem cells. Journal of Materials Chemistry B, 2014, 2, 6939-6946.         | 5.8  | 41        |
| 51 | Automating the Processing Steps for Obtaining Bone Tissue-Engineered Substitutes: From Imaging<br>Tools to Bioreactors. Tissue Engineering - Part B: Reviews, 2014, 20, 567-577.                                   | 4.8  | 15        |
| 52 | Tissue Engineering and Regenerative Medicine. International Review of Neurobiology, 2013, 108, 1-33.                                                                                                               | 2.0  | 107       |
| 53 | Synergistic effect of scaffold composition and dynamic culturing environment in multilayered<br>systems for bone tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6,<br>e24-e30. | 2.7  | 17        |
| 54 | Endothelial Differentiation of Human Stem Cells Seeded onto Electrospun<br>Polyhydroxybutyrate/Polyhydroxybutyrate-Co-Hydroxyvalerate Fiber Mesh. PLoS ONE, 2012, 7, e35422.                                       | 2.5  | 73        |

| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Optimized electro- and wet-spinning techniques for the production of polymeric fibrous scaffolds<br>loaded with bisphosphonate and hydroxyapatite. Journal of Tissue Engineering and Regenerative<br>Medicine, 2011, 5, 253-263. | 2.7  | 77        |
| 56 | Chondrogenic differentiation of human bone marrow mesenchymal stem cells in chitosan-based scaffolds using a flow-perfusion bioreactor. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 722-732.               | 2.7  | 78        |
| 57 | The Influence of Patterned Nanofiber Meshes on Human Mesenchymal Stem Cell Osteogenesis.<br>Macromolecular Bioscience, 2011, 11, 978-987.                                                                                        | 4.1  | 46        |
| 58 | Improvement of electrospun polymer fiber meshes pore size by femtosecond laser irradiation. Applied Surface Science, 2011, 257, 4091-4095.                                                                                       | 6.1  | 27        |
| 59 | Osteogenic induction of hBMSCs by electrospun scaffolds with dexamethasone release functionality.<br>Biomaterials, 2010, 31, 5875-5885.                                                                                          | 11.4 | 160       |
| 60 | Surface modification of a biodegradable composite by UV laser ablation: <i>in vitro</i> biological performance. Journal of Tissue Engineering and Regenerative Medicine, 2010, 4, n/a-n/a.                                       | 2.7  | 4         |
| 61 | Impact of Biological Agents and Tissue Engineering Approaches on the Treatment of Rheumatic<br>Diseases. Tissue Engineering - Part B: Reviews, 2010, 16, 331-339.                                                                | 4.8  | 12        |
| 62 | Piezoresponse force microscopy studies of the triglycine sulfate-based nanofibers. Journal of Applied<br>Physics, 2010, 108, .                                                                                                   | 2.5  | 15        |
| 63 | Cartilage Tissue Engineering Using Electrospun PCL Nanofiber Meshes and MSCs. Biomacromolecules, 2010, 11, 3228-3236.                                                                                                            | 5.4  | 155       |
| 64 | High nonlinear optical anisotropy of urea nanofibers. Europhysics Letters, 2010, 91, 28007.                                                                                                                                      | 2.0  | 15        |
| 65 | Solving cell infiltration limitations of electrospun nanofiber meshes for tissue engineering applications. Nanomedicine, 2010, 5, 539-554.                                                                                       | 3.3  | 71        |
| 66 | Biodegradable Nanofibers-Reinforced Microfibrous Composite Scaffolds for Bone Tissue Engineering.<br>Tissue Engineering - Part A, 2010, 16, 3599-3609.                                                                           | 3.1  | 42        |
| 67 | Expression, mutation and copy number analysis of platelet-derived growth factor receptor A (PDGFRA) and its ligand PDGFA in gliomas. British Journal of Cancer, 2009, 101, 973-982.                                              | 6.4  | 104       |
| 68 | Synthesis of polymer-based triglycine sulfate nanofibres by electrospinning. Journal Physics D: Applied<br>Physics, 2009, 42, 205403.                                                                                            | 2.8  | 3         |
| 69 | Hierarchical starch-based fibrous scaffold for bone tissue engineering applications. Journal of Tissue<br>Engineering and Regenerative Medicine, 2009, 3, 37-42.                                                                 | 2.7  | 191       |
| 70 | Surface Modification of Electrospun Polycaprolactone Nanofiber Meshes by Plasma Treatment to Enhance Biological Performance. Small, 2009, 5, 1195-1206.                                                                          | 10.0 | 244       |
| 71 | Degradable particulate composite reinforced with nanofibres for biomedical applications. Acta<br>Biomaterialia, 2009, 5, 1104-1114.                                                                                              | 8.3  | 43        |
| 72 | Evaluation of Extracellular Matrix Formation in Polycaprolactone and Starch-Compounded<br>Polycaprolactone Nanofiber Meshes When Seeded with Bovine Articular Chondrocytes. Tissue<br>Engineering - Part A, 2009, 15, 377-385.   | 3.1  | 60        |

| #  | Article                                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Surface controlled biomimetic coating of polycaprolactone nanofiber meshes to be used as bone extracellular matrix analogues. Journal of Biomaterials Science, Polymer Edition, 2008, 19, 1261-1278.                                                                | 3.5  | 91        |
| 74 | Electrospinning: processing technique for tissue engineering scaffolding. International Materials<br>Reviews, 2008, 53, 257-274.                                                                                                                                    | 19.3 | 147       |
| 75 | Electrospun nanostructured scaffolds for tissue engineering applications. Nanomedicine, 2007, 2, 929-942.                                                                                                                                                           | 3.3  | 173       |
| 76 | Molecular Alterations of KIT Oncogene in Gliomas. Analytical Cellular Pathology, 2007, 29, 399-408.                                                                                                                                                                 | 1.4  | 22        |
| 77 | VEGFR-3 expression in breast cancer tissue is not restricted to lymphatic vessels. Pathology Research and Practice, 2005, 201, 93-99.                                                                                                                               | 2.3  | 29        |
| 78 | Mutation analysis of B-RAF gene in human gliomas. Acta Neuropathologica, 2005, 109, 207-210.                                                                                                                                                                        | 7.7  | 85        |
| 79 | Overexpression of platelet-derived growth factor receptor α in breast cancer is associated with tumour progression. Breast Cancer Research, 2005, 7, R788-95.                                                                                                       | 5.0  | 178       |
| 80 | p63-driven Nuclear Accumulation of β-Catenin is Not a Frequent Event in Human Neoplasms. Pathology<br>Research and Practice, 2003, 199, 785-793.                                                                                                                    | 2.3  | 15        |
| 81 | Distribution of p63, cytokeratins 5/6 and cytokeratin 14 in 51 normal and 400 neoplastic human tissue samples using TARP-4 multi-tumor tissue microarray. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2003, 443, 122-132. | 2.8  | 220       |
| 82 | Spatial Immobilization of Autologous Growth Factors to Control Vascularization in Bone Tissue<br>Engineering. SSRN Electronic Journal, 0, , .                                                                                                                       | 0.4  | 0         |