List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9031820/publications.pdf Version: 2024-02-01

KEN NATSUCA

#	Article	IF	CITATIONS
1	Autoantibody Profile Differentiates between Inflammatory and Noninflammatory Bullous Pemphigoid. Journal of Investigative Dermatology, 2016, 136, 2201-2210.	0.7	191
2	Bullous Pemphigoid Autoantibodies Directly Induce Blister Formation without Complement Activation. Journal of Immunology, 2014, 193, 4415-4428.	0.8	90
3	Type XVII collagen coordinates proliferation in the interfollicular epidermis. ELife, 2017, 6, .	6.0	85
4	Human IgG1 Monoclonal Antibody against Human Collagen 17 Noncollagenous 16A Domain Induces Blisters via Complement Activation in Experimental Bullous Pemphigoid Model. Journal of Immunology, 2010, 185, 7746-7755.	0.8	55
5	Epidermal Barriers. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a018218-a018218.	6.2	55
6	Epidermal barrier defects link atopic dermatitis with altered skin cancer susceptibility. ELife, 2014, 3, e01888.	6.0	51
7	Plectin deficiency leads to both muscular dystrophy and pyloric atresia in epidermolysis bullosa simplex. Human Mutation, 2010, 31, E1687-E1698.	2.5	50
8	Bone marrow transplantation restores epidermal basement membrane protein expression and rescues epidermolysis bullosa model mice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14345-14350.	7.1	50
9	BLIMP1 Is Required for Postnatal Epidermal Homeostasis but Does Not Define a Sebaceous Gland Progenitor under Steady-State Conditions. Stem Cell Reports, 2014, 3, 620-633.	4.8	49
10	Plectin expression patterns determine two distinct subtypes of epidermolysis bullosa simplex. Human Mutation, 2010, 31, 308-316.	2.5	43
11	Novel ABCA12 Mutations Identified in Two Cases of Non-Bullous Congenital Ichthyosiform Erythroderma Associated with Multiple Skin Malignant Neoplasia. Journal of Investigative Dermatology, 2007, 127, 2669-2673.	0.7	42
12	Life before and beyond blistering: The role of collagen <scp>XVII</scp> in epidermal physiology. Experimental Dermatology, 2019, 28, 1135-1141.	2.9	42
13	Efficient Gene Reframing Therapy for Recessive Dystrophic Epidermolysis Bullosa with CRISPR/Cas9. Journal of Investigative Dermatology, 2019, 139, 1711-1721.e4.	0.7	39
14	Circulating IgA and IgE autoantibodies in antilaminin-332 mucous membrane pemphigoid. British Journal of Dermatology, 2010, 162, 513-517.	1.5	36
15	Contribution of GATA6 to homeostasis of the human upper pilosebaceous unit and acne pathogenesis. Nature Communications, 2020, 11, 5067.	12.8	35
16	Extracellular cleavage of collagen XVII is essential for correct cutaneous basement membrane formation. Human Molecular Genetics, 2016, 25, 328-339.	2.9	34
17	Plectin-related skin diseases. Journal of Dermatological Science, 2015, 77, 139-145.	1.9	32
18	Epitope-Dependent Pathogenicity of Antibodies Targeting a Major Bullous Pemphigoid Autoantigen Collagen XVII/BP180. Journal of Investigative Dermatology, 2016, 136, 938-946.	0.7	29

#	Article	IF	CITATIONS
19	Increased Bacterial Load and Expression of Antimicrobial Peptides in Skin of Barrier-Deficient Mice with Reduced Cancer Susceptibility. Journal of Investigative Dermatology, 2016, 136, 99-106.	0.7	26
20	Intravenous allogeneic multilineageâ€differentiating stressâ€enduring cells in adults with dystrophic epidermolysis bullosa: a phase 1/2 openâ€label study. Journal of the European Academy of Dermatology and Venereology, 2021, 35, e528-e531.	2.4	25
21	Keratinocyte-/Fibroblast-Targeted Rescue of Col7a1-Disrupted Mice and Generation of an Exact Dystrophic Epidermolysis Bullosa Model Using a Human COL7A1 Mutation. American Journal of Pathology, 2009, 175, 2508-2517.	3.8	24
22	Response of Intractable Skin Ulcers in Recessive Dystrophic Epidermolysis Bullosa Patients to an Allogeneic Cultured Dermal Substitute. Acta Dermato-Venereologica, 2010, 90, 165-169.	1.3	21
23	C-Terminal Processing of Collagen XVII Induces Neoepitopes for Linear IgA Dermatosis Autoantibodies. Journal of Investigative Dermatology, 2017, 137, 2552-2559.	0.7	21
24	Epidermolysis Bullosa in Japan. Dermatologic Clinics, 2010, 28, 431-432.	1.7	20
25	Context-Dependent Regulation of Collagen XVII Ectodomain Shedding in Skin. American Journal of Pathology, 2015, 185, 1361-1371.	3.8	19
26	Epidermal aspects of type VII collagen: Implications for dystrophic epidermolysis bullosa and epidermolysis bullosa acquisita. Journal of Dermatology, 2018, 45, 515-521.	1.2	18
27	The CD44/COL17A1 pathway promotes the formation of multilayered, transformed epithelia. Current Biology, 2021, 31, 3086-3097.e7.	3.9	18
28	Two cases of atypical melanocytic lesions in recessive dystrophic epidermolysis bullosa infants. Clinical and Experimental Dermatology, 2005, 30, 636-639.	1.3	17
29	Loss of interaction between plectin and type XVII collagen results in epidermolysis bullosa simplex. Human Mutation, 2017, 38, 1666-1670.	2.5	16
30	The direct binding of collagen XVII and collagen IV is disrupted by pemphigoid autoantibodies. Laboratory Investigation, 2019, 99, 48-57.	3.7	16
31	Mutant Lef1 controls Gata6 in sebaceous gland development and cancer. EMBO Journal, 2019, 38, .	7.8	16
32	High Expression of Collagen XVII Compensates for its Depletion Induced by Pemphigoid IgG in the Oral Mucosa. Journal of Investigative Dermatology, 2018, 138, 1707-1715.	0.7	14
33	Interplay between epidermal stem cell dynamics and dermal deformation. Npj Computational Materials, 2018, 4, .	8.7	14
34	Ultrastructural Features of Trafficking Defects Are Pronounced in Melanocytic Nevus in Hermansky–Pudlak Syndrome Type 1. Journal of Investigative Dermatology, 2005, 125, 154-158.	0.7	13
35	Autoantibodies of nonâ€inflammatory bullous pemphigoid hardly deplete type <scp>XVII</scp> collagen of keratinocytes. Experimental Dermatology, 2017, 26, 1171-1174.	2.9	12
36	Type XVII collagen interacts with the aPKCâ€PAR complex and maintains epidermal cell polarity. Experimental Dermatology, 2021, 30, 62-67.	2.9	11

#	Article	IF	CITATIONS
37	Immune Reaction to Type XVII Collagen Induces Intramolecular and Intermolecular Epitope Spreading in Experimental Bullous Pemphigoid Models. Frontiers in Immunology, 2019, 10, 1410.	4.8	10
38	A computational model of the epidermis with the deformable dermis and its application to skin diseases. Scientific Reports, 2021, 11, 13234.	3.3	10
39	Hair follicle stem cell progeny heal blisters while pausing skin development. EMBO Reports, 2021, 22, e50882.	4.5	10
40	Current topics in Epidermolysis bullosa: Pathophysiology and therapeutic challenges. Journal of Dermatological Science, 2021, 104, 164-176.	1.9	10
41	Five novel mutations in SASH1 contribute to lentiginous phenotypes in Japanese families. Pigment Cell and Melanoma Research, 2021, 34, 174-178.	3.3	9
42	Linear IgA/IgG bullous dermatosis with autoantibodies directing the native and processed forms of BP180. British Journal of Dermatology, 2020, 182, 1061-1062.	1.5	8
43	Epidermolysis Bullosa Acquisita Develops in Dominant Dystrophic Epidermolysis Bullosa. Journal of Investigative Dermatology, 2016, 136, 320-323.	0.7	7
44	Bullous Pemphigoid IgG Induces Cell Dysfunction and Enhances the Motility of Epidermal Keratinocytes via Rac1/Proteasome Activation. Frontiers in Immunology, 2019, 10, 200.	4.8	7
45	Two Cases of Interleukin-7–Deficient Generalized Verrucosis. Clinical Infectious Diseases, 2020, 71, 1561-1563.	5.8	7
46	Collagen XVII deficiency alters epidermal patterning. Laboratory Investigation, 2022, 102, 581-588.	3.7	6
47	Novel <i><scp>COL</scp>7A1</i> mutation in a family with bullous dermolysis of the newborn: Phenotypic variability associated with a <i><scp>COL</scp>7A1</i> mutation within the same family. Journal of Dermatology, 2018, 45, e260-e261.	1.2	5
48	Successful kidney transplantation in a patient with neonatalâ€onset ILNEB. Pediatric Transplantation, 2021, 25, e13971.	1.0	5
49	Zonula occludens-1 demonstrates a unique appearance in buccal mucosa over several layers. Cell and Tissue Research, 2021, 384, 691-702.	2.9	5
50	Wnt/β-Catenin Signaling Stabilizes Hemidesmosomes in Keratinocytes. Journal of Investigative Dermatology, 2022, 142, 1576-1586.e2.	0.7	5
51	Detection of revertant mosaicism in epidermolysis bullosa through Cas9â€ŧargeted longâ€read sequencing. Human Mutation, 2022, 43, 529-536.	2.5	5
52	New insight of itch mediators and proinflammatory cytokines in epidermolysis bullosa. Journal of Cutaneous Immunology and Allergy, 2022, 5, 78-87.	0.3	5
53	A recurrent â€~hot spot' glycine substitution mutation, G2O43R in COL7A1, induces dominant dystrophic epidermolysis bullosa associated with intracytoplasmic accumulation of pro-collagen VII. Journal of Dermatological Science, 2014, 75, 69-71.	1.9	4
54	Early severe pachyonychia congenita subtype <scp>PC</scp> â€K6a with a novel mutation in the <i><scp>KRT</scp>6A</i> gene. Journal of the European Academy of Dermatology and Venereology, 2017, 31, e94-e96.	2.4	4

#	Article	IF	CITATIONS
55	Altered replication stress response due to CARD14 mutations promotes recombination-induced revertant mosaicism. American Journal of Human Genetics, 2021, 108, 1026-1039.	6.2	4
56	A case of nonâ€bullous pemphigoid induced by IgG4 autoantibodies targeting BP230. Journal of the European Academy of Dermatology and Venereology, 2021, 35, e282-e285.	2.4	3
57	A case of recessive dystrophic epidermolysis bullosa with a novel c.6885_6898del14 mutation in the COL7A1 gene. Journal of Dermatological Science, 2017, 88, 139-141.	1.9	2
58	Acute vascular reaction due to lipoâ€prostaglandin E1. Journal of the European Academy of Dermatology and Venereology, 2018, 32, e273-e274.	2.4	2
59	Calcinosis cutis in selfâ€healing dominant dystrophic epidermolysis bullosa. Journal of Dermatology, 2020, 47, e457-e458.	1.2	2
60	A case of mucous membrane pemphigoid with antiâ€BP230 autoantibodies alone. International Journal of Dermatology, 2021, 60, e92-e94.	1.0	2
61	Acquired perforating dermatosis induced by necitumumab. Journal of the European Academy of Dermatology and Venereology, 2022, 36, .	2.4	2
62	Image Gallery: Multiple localized lipoatrophy in recessive dystrophic epidermolysis bullosa. British Journal of Dermatology, 2019, 180, e64.	1.5	1
63	Speckled lentiginous nevus in a patient with Hermansky–Pudlak syndrome type 1. Journal of Dermatology, 2020, 47, e20-e21.	1.2	1
64	Case of inherited epidermolysis bullosa simplex with <i>KLHL24</i> gene mutation in Japan. Journal of Dermatology, 2022, 49, .	1.2	1
65	Multiple cutaneous reticulohistiocytomas after haematopoietic cell transplantation: contribution of donor―and hostâ€derived cells. British Journal of Dermatology, 2019, 180, 680-681.	1.5	0
66	Unilateral Naevoid Telangiectasia Associated with Oral Contraceptive. Acta Dermato-Venereologica, 2021, 101, adv00595.	1.3	0
67	Prevention of chemotherapyâ€induced hair loss by peroxisome proliferatorâ€activated receptorâ€Î³ modulation. British Journal of Dermatology, 2021, , .	1.5	0
68	Cas9â€guided haplotyping of three truncation variants in autosomal recessive disease. Human Mutation, 2022, , .	2.5	0
69	IgA nephropathy preceded by erythroderma with eosinophilia. European Journal of Dermatology, 2022, 32, 127-129.	0.6	0