Mark D Soucek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9031736/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preparation and Characterization of Monodisperse Cerium Oxide Nanoparticles in Hydrocarbon Solvents. Chemistry of Materials, 2007, 19, 1103-1110.	6.7	162
2	Review of autoxidation and driers. Progress in Organic Coatings, 2012, 73, 435-454.	3.9	146
3	Synthesis and photopolymerization of norbornyl epoxidized linseed oil. Polymer, 2002, 43, 5379-5389.	3.8	102
4	Cure-on-command technology: A review of the current state of the art. Progress in Organic Coatings, 2016, 100, 2-31.	3.9	73
5	Investigation of non-isocyanate urethane dimethacrylate reactive diluents for UV-curable polyurethane coatings. Progress in Organic Coatings, 2013, 76, 1057-1067.	3.9	71
6	Acid-catalyzed moisture-curing polyurea/polysiloxane ceramer coatings. Progress in Organic Coatings, 2000, 40, 175-184.	3.9	69
7	Synthesis of UV-curable tung oil and UV-curable tung oil based alkyd. Progress in Organic Coatings, 2012, 73, 425-434.	3.9	67
8	UV-Curable Organic-Inorganic Hybrid Film Coatings Based on Epoxidized Cyclohexene Derivatized Linseed Oil. Macromolecular Chemistry and Physics, 2004, 205, 2032-2039.	2.2	62
9	Polyurea/polysiloxane ceramer coatings. Progress in Organic Coatings, 2000, 38, 97-110.	3.9	60
10	Effect of catalysts on the reaction of an aliphatic isocyanate and water. Journal of Polymer Science Part A, 2002, 40, 1677-1688.	2.3	58
11	Synthesis of reactive diluents for cationic cycloaliphatic epoxide UV coatings. Polymer, 1999, 40, 5675-5686.	3.8	52
12	Moisture-curing alkoxysilane-functionalized isocyanurate coatings. Macromolecular Chemistry and Physics, 2000, 201, 722-732.	2.2	52
13	UV-curable organic–inorganic hybrid films based on epoxynorbornene linseed oils. Progress in Organic Coatings, 2005, 53, 83-90.	3.9	52
14	Differential scanning calorimetry study of linseed oil cured with metal catalysts. Progress in Organic Coatings, 1996, 28, 251-258.	3.9	50
15	Epoxidized soybean oil-based ceramer coatings. JAOCS, Journal of the American Oil Chemists' Society, 2000, 77, 381-387.	1.9	50
16	Polyurethane/Polysiloxane Ceramer Coatings: Evaluation of Corrosion Protection. Macromolecular Materials and Engineering, 2002, 287, 470.	3.6	48
17	Modified soybean oil-extended SBR compounds and vulcanizates filled with carbon black. Polymer, 2015, 60, 144-156.	3.8	47
18	Inorganic–organic hybrid coatings: common and new approaches. Current Opinion in Chemical Engineering, 2016, 11, 123-127.	7.8	47

#	Article	IF	CITATIONS
19	Cationic photopolymerization of epoxynorbornane linseed oils: The effect of diluents. Journal of Polymer Science Part A, 2003, 41, 3440-3456.	2.3	44
20	Siloxane modified cycloaliphatic epoxide UV coatings. Progress in Organic Coatings, 1999, 36, 89-101.	3.9	42
21	Role of graphene oxide and functionalized graphene oxide in protective hybrid coatings. Progress in Organic Coatings, 2019, 134, 197-208.	3.9	42
22	Viscoelastic and thermal properties of linseed oil-based ceramer coatings. Macromolecular Chemistry and Physics, 2000, 201, 382-392.	2.2	41
23	A photo-curing study of a pigmented UV-curable alkyd. Progress in Organic Coatings, 2012, 73, 392-400.	3.9	41
24	Protective space coatings: a ceramer approach for nanoscale materials. Progress in Organic Coatings, 2003, 47, 448-457.	3.9	40
25	Linseed and sunflower oil alkyd ceramers. Progress in Organic Coatings, 1998, 33, 117-125.	3.9	39
26	Cycloaliphatic polyester-based high-solids polyurethane coatings. Progress in Organic Coatings, 2002, 45, 49-58.	3.9	39
27	Acrylate-based fluorinated copolymers for high-solids coatings. Progress in Organic Coatings, 2011, 71, 213-224.	3.9	39
28	Ternary evaluation of UV-curable seed oil inorganic/organic hybrid coatings using experimental design. Progress in Organic Coatings, 2004, 51, 300-311.	3.9	37
29	Effect of functional monomer on the stability and film properties of thermosetting core–shell latexes. Polymer, 2005, 46, 11174-11185.	3.8	37
30	Hierarchical Electrospun and Cooperatively Assembled Nanoporous Ni/NiO/MnO _{<i>x</i>} /Carbon Nanofiber Composites for Lithium Ion Battery Anodes. ACS Applied Materials & Interfaces, 2016, 8, 19484-19493.	8.0	36
31	Oxidizing alkyd ceramers. Progress in Organic Coatings, 1998, 33, 36-43.	3.9	35
32	UV-curable hybrid coatings based on vinylfunctionlized siloxane oligomer and acrylated polyester. Journal of Applied Polymer Science, 2007, 105, 2376-2386.	2.6	35
33	Tung based reactive diluents for alkyd systems: Film properties. Progress in Organic Coatings, 2012, 73, 283-290.	3.9	33
34	The effect of TiO 2 as a pigment in a polyurethane/polysiloxane hybrid coating/aluminum interface based on damage evolution. Progress in Organic Coatings, 2015, 83, 36-46.	3.9	33
35	Corrosion performance of polyurethane hybrid coatings with encapsulated inhibitor. Progress in Organic Coatings, 2019, 130, 235-243.	3.9	33
36	Ultraviolet curing kinetics of cycloaliphatic epoxide with real-time fourier transform infrared spectroscopy. Journal of Applied Polymer Science, 2003, 90, 2485-2499.	2.6	32

#	Article	IF	CITATIONS
37	Effect of introducing a cationic system into a thiolâ€ene photopolymerizable formulation. Journal of Polymer Science Part A, 2007, 45, 4829-4843.	2.3	32
38	Alkoxysilane oligomer modified epoxide primers. Progress in Organic Coatings, 2012, 74, 67-81.	3.9	32
39	Model Reaction Study on the Interaction between the Inorganic and Organic Phases in Drying Oil Based Ceramer Coatings. Chemistry of Materials, 2001, 13, 3032-3037.	6.7	31
40	Epoxidation of partially norbornylized linseed oil. Macromolecular Chemistry and Physics, 2002, 203, 2042-2057.	2.2	31
41	Mixed metal oxide inorganic/organic coatings. Journal of Coatings Technology, 1998, 70, 43-51.	0.7	30
42	Novel inorganic/organic hybrid materials based on blown soybean oil with sol–gel precursors. Progress in Organic Coatings, 2001, 42, 29-37.	3.9	30
43	Photoinitiated cationic polymerization of cycloaliphatic epoxide with siloxane or alkoxysilane functionalized polyol coatings. European Polymer Journal, 2003, 39, 505-520.	5.4	30
44	Outdoor exposure and accelerated weathering of polyurethane/polysiloxane hybrid coatings. Progress in Organic Coatings, 2019, 130, 44-57.	3.9	30
45	Synthesis and properties of acrylate functionalized alkyds via a Diels–Alder reaction. Progress in Organic Coatings, 2012, 73, 382-391.	3.9	29
46	Comparison of Titanium-Oxo-Clusters Derived from Sol-Gel Precursors with TiO2 Nanoparticles in Drying Oil Based Ceramer Coatings. Macromolecular Materials and Engineering, 2001, 286, 204-215.	3.6	28
47	UV-Curable Cycloaliphatic Epoxide Based on Modified Linseed Oil: Synthesis, Characterization and Kinetics. Macromolecular Chemistry and Physics, 2005, 206, 967-975.	2.2	28
48	Oligomerization mechanism of cyclohexene oxide. Polymer, 1998, 39, 3583-3586.	3.8	27
49	Kinetic modelling of crosslinking reactions for cycloaliphatic epoxides with hydroxyl- and carboxyl-functionalized acrylic copolymers: 1. pH and temperature effects. Polymer, 1998, 39, 5747-5759.	3.8	27
50	Influence of the Thiol Structure on the Kinetics of Thiolâ€ene Photopolymerization with Timeâ€Resolved Infrared Spectroscopy. Macromolecular Materials and Engineering, 2008, 293, 45-56.	3.6	27
51	Synthesis of telechelic methacrylic siloxanes with cycloaliphatic substituents groups for UV-curable applications. European Polymer Journal, 2008, 44, 3326-3334.	5.4	27
52	A new class of silicone resins for coatings. Journal of Coatings Technology Research, 2007, 4, 263-274.	2.5	26
53	Unusual inorganic phase formation in ultraviolet-curable organic-inorganic hybrid films. Journal of Polymer Science Part A, 2005, 43, 1607-1623.	2.3	25
54	Evaluation of Protective Silicone/Siloxane Coatings in Simulated Low-Earth-Orbit Environment. Journal of Spacecraft and Rockets, 2006, 43, 393-401.	1.9	25

#	Article	IF	CITATIONS
55	Preparation of nano-sized UV-absorbing titanium-oxo-clusters via a photo-curing ceramer process. Polymers for Advanced Technologies, 2005, 16, 257-261.	3.2	24
56	Role of Amphiphilic Block Copolymer Composition on Pore Characteristics of Micelle-Templated Mesoporous Cobalt Oxide Films. Langmuir, 2016, 32, 4077-4085.	3.5	24
57	High rate sodium ion battery anodes from block copolymer templated mesoporous nickel–cobalt carbonates and oxides. Journal of Materials Chemistry A, 2015, 3, 21060-21069.	10.3	23
58	TOWARD REPLACEMENT OF PETROLEUM OILS BY MODIFIED SOYBEAN OILS IN ELASTOMERS. Rubber Chemistry and Technology, 2016, 89, 608-630.	1.2	22
59	Working Mechanisms and Design Principles of Comb-like Polycarboxylate Ether Superplasticizers in Cement Hydration: Quantitative Insights for a Series of Well-Defined Copolymers. ACS Sustainable Chemistry and Engineering, 2021, 9, 8354-8371.	6.7	22
60	Nanostructured polyurethane ceramer coatings for aircraft. Journal of Coatings Technology, 2002, 74, 125-134.	0.7	21
61	Preparation of a Siloxane Acrylic Functional Siloxane Colloid for UV-Curable Organic-Inorganic Hybrid Films. Macromolecular Chemistry and Physics, 2005, 206, 732-743.	2.2	21
62	Fully flexible lithium ion battery based on a flame retardant, solid-state polymer electrolyte membrane. Solid State Ionics, 2018, 320, 310-315.	2.7	21
63	Plastic deformation mechanisms in polyimide resins and their semi-interpenetrating networks. Journal of Polymer Science, Part B: Polymer Physics, 1992, 30, 643-654.	2.1	20
64	Effects of sulphonic and phosphonic acrylic monomers on the crosslinking of acrylic latexes with cycloaliphatic epoxide. Progress in Organic Coatings, 1999, 36, 21-33.	3.9	20
65	Reaction kinetics and network characterization of UV-curing polyester acrylate inorganic/organic hybrids. European Polymer Journal, 2007, 43, 3325-3336.	5.4	20
66	Effect of introduction mode of hydroxyl functionality on morphology and film properties of cycloaliphatic diepoxide crosslinkable core-shell latex. Journal of Polymer Science Part A, 2002, 40, 4256-4265.	2.3	19
67	Reaction kinetics and microgel particle size characterization of ultraviolet-curing unsaturated polyester acrylates. Journal of Polymer Science Part A, 2006, 44, 6544-6557.	2.3	19
68	Synthesis of Amine and Epoxide Telechelic Siloxanes. Macromolecular Chemistry and Physics, 2008, 209, 604-614.	2.2	19
69	Synthesis of Tungâ€Oilâ€Based Reactive Diluents. Macromolecular Materials and Engineering, 2010, 295, 1097-1106.	3.6	19
70	Synthesis, characterization and properties of amphiphilic block copolymers of 2-hydroxyethyl methacrylate and polydimethylsiloxane prepared by atom transfer radical polymerization. Polymer Journal, 2012, 44, 1087-1097.	2.7	19
71	Grafting sites of acrylic mixed monomers onto unsaturated fatty acids: Part 2. Progress in Organic Coatings, 2012, 73, 308-320.	3.9	19
72	Modified soybean oil as a reactive diluent: Synthesis and characterization. Journal of Polymer Science Part A 2014 52 3045-3059	2.3	19

5

#	Article	IF	CITATIONS
73	Model for the effects of water on the cationic UV-curing of cyclohexyl epoxides. Journal of Coatings Technology, 2003, 75, 49-58.	0.7	18
74	Norbornylized soybean oil as a sustainable new plasticizer for rubbers with hybrid fillers. Polymer International, 2017, 66, 820-829.	3.1	18
75	A new class of non-isocyanate urethane methacrylates for the urethane latexes. Polymer, 2017, 109, 146-159.	3.8	18
76	Cycloaliphatic polyester based high solids polyurethane coatings: I. The effect of difunctional alcohols. Journal of Coatings Technology, 2002, 74, 49-56.	0.7	17
77	Factors influencing the stability and film properties of acrylic/alkyd water-reducible hybrid systems using a response surface technique. Progress in Organic Coatings, 2012, 73, 330-343.	3.9	17
78	Comparison of film properties for crosslinked core–shell latexes. Reactive and Functional Polymers, 2013, 73, 291-302.	4.1	17
79	Investigation of a non-isocyanate urethane functional monomer in latexes by emulsion polymerization. Polymer, 2017, 119, 83-97.	3.8	17
80	Dual-curable unsaturated polyester inorganic/organic hybrid films. Journal of Applied Polymer Science, 2006, 99, 115-126.	2.6	16
81	Development of Hybrid Polymeric Materials Based on Thiolâ€Ene/Cationic Formulations. Macromolecular Materials and Engineering, 2008, 293, 731-739.	3.6	16
82	Modified soybean oil as a reactive diluent: coating performance. Journal of Coatings Technology Research, 2015, 12, 1005-1021.	2.5	16
83	Effect of norbornyl modified soybean oil on CBâ€filled chloroprene rubber. Journal of Applied Polymer Science, 2016, 133, .	2.6	16
84	Investigation of the properties of UV-curing acrylate-terminated unsaturated polyester coatings by utilizing an experimental design methodology. Journal of Coatings Technology Research, 2007, 4, 425-433.	2.5	15
85	Development and Study of a Coupling Agent for Photocurable Hybrid Thiol/Ene/Cationic Formulations. Macromolecular Chemistry and Physics, 2008, 209, 2157-2168.	2.2	15
86	Microgel formation and thermoâ€mechanical properties of UVâ€curing unsaturated polyester acrylates. Journal of Applied Polymer Science, 2008, 107, 2364-2374.	2.6	15
87	A new class of acrylated alkyds. Journal of Coatings Technology Research, 2010, 7, 587-602.	2.5	14
88	Preparation and characterization of castor oilâ€based waterborne polyurethane crosslinked with 2â€aminoâ€2â€(hydroxymethyl)â€1,3â€propanediol. Journal of Applied Polymer Science, 2017, 134, 45532.	2.6	14
89	Blown Soybean Oil Ceramer Coatings for Corrosion Protection. Macromolecular Materials and Engineering, 2003, 288, 844-851.	3.6	13
90	Route to co-acrylic modified alkyd resins via a controlled polymerization technique. Progress in Organic Coatings, 2012, 73, 355-365.	3.9	13

#	Article	IF	CITATIONS
91	Comparison of new bio-based epoxide-amine coatings with their nanocomposite coating derivatives (graphene, CNT, and fullerene) as replacements for BPA. Progress in Organic Coatings, 2022, 165, 106714.	3.9	13
92	Model compound study for acrylic latex crosslinking reactions with cycloaliphatic epoxides. Journal of Coatings Technology, 1997, 69, 43-49.	0.7	12
93	Viscoelastic properties of alkyd ceramers. Journal of Applied Polymer Science, 1999, 73, 2017-2028.	2.6	12
94	Investigation of cobalt drier retardation. European Polymer Journal, 2000, 36, 803-811.	5.4	12
95	Synergistic effect of driers on soybean oil-based ceramer coatings. Journal of Coatings Technology, 2001, 73, 95-104.	0.7	12
96	Effect of Mixed Sol-Gel Precursors on the Metal-Oxo Phase Within a UV-Curable Silicone Hybrid Material. Macromolecular Chemistry and Physics, 2006, 207, 1220-1232.	2.2	12
97	Isoprene Soya Diels–Alder Adduct and Epoxidation for Photopolymerization. Macromolecular Chemistry and Physics, 2021, 222, 2100054.	2.2	12
98	Investigation of grafting sites of acrylic monomers onto alkyd resins via gHMQC two-dimensional NMR: Part 1. Progress in Organic Coatings, 2012, 73, 294-307.	3.9	11
99	Soya-Based Coatings and Adhesives. ACS Symposium Series, 2014, , 207-254.	0.5	11
100	Comparison of Particle Size Techniques to Investigate Secondary Nucleation in HEMAâ€Rich Latexes. Macromolecular Chemistry and Physics, 2015, 216, 400-416.	2.2	11
101	Cooperative Assembly of Metal Nitrate and Citric Acid with Block Copolymers: Role of Carbonate Conversion Temperature on the Mesostructure of Ordered Porous Oxides. Journal of Physical Chemistry C, 2015, 119, 12138-12148.	3.1	11
102	Sustainable plasticizer for butyl rubber cured by phenolic resin. Journal of Applied Polymer Science, 2018, 135, 45500.	2.6	11
103	Proximity to Graphene Dramatically Alters Polymer Dynamics. Macromolecules, 2019, 52, 5074-5085.	4.8	11
104	Synthesis and properties of a high solids triethoxysilane-modified alkyd coatings. Progress in Organic Coatings, 2019, 133, 340-349.	3.9	11
105	Optimization of UV curable acrylated polyester-polyurethane/polysiloxane ceramer coatings using a response surface methodology. Journal of Coatings Technology Research, 2006, 3, 61-68.	2.5	10
106	Synthesis, Characterization, and Evaluation of Amine-Terminated Cycloaliphatic-Substituted Polysiloxanes. Macromolecular Chemistry and Physics, 2007, 208, 2502-2509.	2.2	10
107	Polyester/Poly(meth)acrylate Block Copolymers by Combined Polycondensation/ATRP: Characterization and Properties. Macromolecular Chemistry and Physics, 2011, 212, 1879-1890.	2.2	10
108	Moderate Temperature Curing of Plant Oils with Bismaleimides via the Ene Reaction. Industrial & Engineering Chemistry Research, 2016, 55, 11727-11735.	3.7	10

#	Article	IF	CITATIONS
109	(Meth)acrylated poly(ethylene glycol)s as precursors for rheology modifiers, superplasticizers and electrolyte membranes: a review. Polymer International, 2017, 66, 1765-1786.	3.1	10
110	Comparison of the carbon additives on the conductivity, thermomechanical, and corrosion properties for TEOS oligomer modified epoxy-amine coating systems. Progress in Organic Coatings, 2019, 130, 168-181.	3.9	10
111	Linked bis(î¼-phosphido) and related ligands for metallic clusters. Journal of Organometallic Chemistry, 1993, 456, 255-262.	1.8	9
112	Linked Bis(.muPhosphido) and Related Ligands for Metallic Clusters. 10. Synthesis and X-ray Crystal Structure of the First Tetraphosphido-Stabilized 48-e Triruthenium Cluster: Ru3(CO)6[1,2-(.muPPh)2C6H4]2. Organometallics, 1994, 13, 1120-1128.	2.3	9
113	Effect of siloxane functionalized caprolactone polyols on photocurable epoxy coatings. Journal of Coatings Technology, 1998, 70, 53-62.	0.7	9
114	Effect of the addition mode of cycloaliphatic diepoxide on the morphology and film properties of crosslinkable core-shell latex. Journal of Applied Polymer Science, 2003, 88, 245-257.	2.6	9
115	Synthesis and Characterization of Water Soluble Carboxymethyl Chitosan Grafted with Glycidyl Methacrylate. Journal of Macromolecular Science - Pure and Applied Chemistry, 2011, 48, 562-568.	2.2	9
116	Optimization and comparison of polysiloxane acrylic hybrid latex synthesis methods. Journal of Polymer Research, 2012, 19, 1.	2.4	9
117	Cycloaliphatic epoxide crosslinkable core-shell latexes: A new strategy for waterborne epoxide coatings. Journal of Coatings Technology, 2001, 73, 117-125.	0.7	8
118	Evaluation of new 3-mercaptopropionate thiols for thiol-ene photopolymerization coatings using experimental design. Journal of Applied Polymer Science, 2009, 113, 2173-2185.	2.6	8
119	A new approach to graft siloxanes to alkyds. Journal of Coatings Technology Research, 2009, 6, 471-481.	2.5	8
120	Photopolymerization of biocompatible films containing poly(lactic acid). European Polymer Journal, 2012, 48, 2107-2116.	5.4	8
121	Comparison of Approaches to Prepare Polysiloxane-Functionalized Acrylic Latexes. Silicon, 2013, 5, 139-159.	3.3	8
122	The effect of multifunctional monomers/oligomers Additives on electron beam radiation crosslinking of poly (styrene-block-isoprene/butadiene-block-styrene) (SIBS). Radiation Physics and Chemistry, 2016, 119, 55-63.	2.8	8
123	Selfâ€Healing Latex Containing Polyelectrolyte Multilayers. Macromolecular Materials and Engineering, 2018, 303, 1700596.	3.6	8
124	Gas permeability analysis of photo-cured cyclohexyl-substituted polysiloxane films. Journal of Applied Polymer Science, 2006, 102, 2343-2351.	2.6	7
125	Mechanical and Film Properties of Telechelic Methacrylic Polysiloxanes with Cycloaliphatic Substituents Groups for UV-Curable Applications. Silicon, 2010, 2, 61-69.	3.3	7
126	Interface-driven phase-separated coatings. Journal of Coatings Technology Research, 2014, 11, 665-683.	2.5	7

#	Article	IF	CITATIONS
127	Linking of oligoesters hydrolysis to polyurethane coatings. Journal of Applied Polymer Science, 2014, 131, .	2.6	7
128	Corrosion Assessment of Zinc-Rich Primers Containing Polyaniline and the Effect of Acid as a Dopant. Corrosion, 2018, 74, 1141-1157.	1.1	7
129	Inhibition of acid undercutting of inorganic/organic hybrid polyurethane coatings. Progress in Organic Coatings, 2019, 134, 169-176.	3.9	7
130	Alkyd Resin Synthesis. , 2014, , 1-6.		7
131	Effect of Additional Hydroxyl Functionalities on the Hydrolytic Stability of Oligoesters. Macromolecular Chemistry and Physics, 2004, 205, 35-41.	2.2	6
132	Synthesis of amphiphilic triblock copolymers for the formation of magnesium fluoride (MgF ₂) nanoparticles. Journal of Applied Polymer Science, 2012, 126, 998-1007.	2.6	6
133	Structure characterization of UV-curing PEC-b-PPC-b-PEG dimethacrylate cross-linked network. Polymer, 2018, 153, 241-249.	3.8	6
134	Investigation of Methyl Methacrylate Grafting on Model Single Fatty Acid Alkyds. Industrial & Engineering Chemistry Research, 2018, 57, 12018-12028.	3.7	6
135	Effect of mixed sol-gel precursors on inorganic-organic polyurethane hybrid thermosets: DOE study. Progress in Organic Coatings, 2019, 133, 237-248.	3.9	6
136	New bio based glycidal epoxides. Progress in Organic Coatings, 2020, 142, 105580.	3.9	6
137	Ultraviolet-Curable Cycloaliphatic Polyesters Containing Spiroacetal Moieties for Application as Powder Coatings. ACS Applied Polymer Materials, 2022, 4, 2294-2305.	4.4	6
138	Synthesis, Characterization, and Evaluation of Siloxane-Containing Modifiers for Photocurable Epoxy Coating Formulations. ACS Symposium Series, 2000, , 516-532.	0.5	5
139	Mechanical and film properties of thermally curable polysiloxane. Journal of Applied Polymer Science, 2010, 115, 358-369.	2.6	5
140	Alkyd Resin Synthesis. , 2015, , 12-17.		5
141	Effect of pigmentation on polyurethane/polysiloxane hybrid coatings. Journal of Applied Polymer Science, 2016, 133, .	2.6	5
142	Investigation of Electron Beam Initiated Reactions of Styrenic Block Copolymers. Progress in Organic Coatings, 2016, 100, 141-152.	3.9	5
143	Influence of hydrophobic monomers on secondary nucleation of hydroxyl-functionalized latexes. Journal of Polymer Science Part A, 2017, 55, 2190-2202.	2.3	5
144	Corrosion resistance of alkoxysilane modified bisphenol A-epoxide coatings. Progress in Organic Coatings, 2019, 134, 209-218.	3.9	5

#	Article	IF	CITATIONS
145	Corrosion resistance of self-stratifying coatings using fluorovinyl ether/BPA epoxide. Progress in Organic Coatings, 2019, 133, 145-153.	3.9	5
146	Commercial waterborne coatings. , 2020, , 303-344.		5
147	The influence of a non-isocyanate urethane monomer in the film formation and mechanical properties of homogeneous and core-shell latexes. Polymer, 2021, 214, 123253.	3.8	5
148	Urethane methacrylate reactive diluents for UV-curable polyester powder coatings. Journal of Coatings Technology Research, 2021, 18, 333-348.	2.5	5
149	Environment-friendly UV-curable alkyd-based non-isocyanate urethanes. Journal of Coatings Technology Research, 2022, 19, 1507-1522.	2.5	5
150	Cycloaliphatic diepoxide crosslinkable core-shell latexes: the effect of addition mode. Macromolecular Symposia, 2000, 155, 105-116.	0.7	4
151	New intramolecular effect observed for polyesters: An anomeric effect. Journal of Coatings Technology Research, 2004, 1, 111-116.	2.5	4
152	Influence of acid–base pairs on film formation and catalysis for acidic acrylic latexes. Progress in Organic Coatings, 2008, 62, 417-424.	3.9	4
153	Influences of feeding strategies on <scp>AA</scp> and <scp>MAA</scp> carboxylated latexes. Journal of Applied Polymer Science, 2015, 132, .	2.6	4
154	Visible light cure packages for improved drying kinetics in alkyd coatings. Progress in Organic Coatings, 2020, 144, 105672.	3.9	4
155	UV-curable polyurethane inorganic–organic hybrid coatings. Journal of Coatings Technology Research, 2021, 18, 1461-1479.	2.5	4
156	Inorganic/Organic Hybrid Coatings. , 0, , 433-476.		3
157	The Preparation of Copolymers Derived from Thiol-ene/Cationic Systems by Using a Coupling Agent. Macromolecular Symposia, 2009, 283-284, 1-6.	0.7	3
158	UV-Absorption and Silica/Titania Colloids Using a Core–Shell Approach. Silicon, 2010, 2, 95-104.	3.3	3
159	Dual ure Thermoset Amide―and Acrylateâ€Functionalized Latexes. Macromolecular Materials and Engineering, 2012, 297, 1081-1090.	3.6	3
160	Degradation kinetics of photopolymerizable poly(lactic acid) films. Journal of Applied Polymer Science, 2014, 131, .	2.6	3
161	Phenyl carbamate end-capped oligoesters: a model for hydrolytic stability of ester-based urethanes. Journal of Coatings Technology Research, 2016, 13, 781-793.	2.5	3
162	Synthesis and characterization of UV-curable maleimide-terminated imide oligomers. Progress in Organic Coatings, 2016, 100, 129-140.	3.9	3

#	Article	IF	CITATIONS
163	Migration of fluorinated alkyd and fluorinated tung oil additives for partially self-stratifying coatings. Progress in Organic Coatings, 2019, 133, 406-417.	3.9	3
164	The investigation of butyl acrylate grafting using model alkyds. Journal of Coatings Technology Research, 2019, 16, 221-233.	2.5	3
165	Following the Morphological Disruption by an Electrolyte of a Buried Interface. ACS Applied Materials & amp; Interfaces, 2019, 11, 3555-3564.	8.0	3
166	Toughening of silane modified <scp>bisâ€phenolâ€A</scp> epoxides. Journal of Applied Polymer Science, 2022, 139, .	2.6	3
167	Synthesis, characterization, and film properties of crosslinked chitosan with pentaerythritol tris[3â€(1â€aziridinyl) propionate]. Journal of Applied Polymer Science, 2013, 128, 169-174.	2.6	2
168	Antireflective coatings using organically modified silica and polyimide via solution casting method. Polymer Engineering and Science, 2013, 53, 2228-2241.	3.1	2
169	UV-Curable Coating Technologies. RSC Smart Materials, 2014, , 15-48.	0.1	2
170	Effect of electron beam radiation on tensile and viscoelastic properties of styrenic block copolymers. Polymer Engineering and Science, 2014, 54, 2979-2988.	3.1	2
171	UV-Curable bismaleimides part I: Synthesis and photo-cure kinetics. Progress in Organic Coatings, 2016, 100, 118-128.	3.9	2
172	Waterborne acrylic hybrid adhesives based on a methacrylate-functionalized porous clay heterostructure for potential lamination application. Journal of Materials Research, 2017, 32, 3689-3698.	2.6	2
173	Influence of <scp>RAFT</scp> endâ€groups on the water swelling of poly(<scp>N</scp> â€propyl) Tj ETQq1 1 (0.784314 2.1	rgBT /Overloc
174	Polyimide–polyester hybrid UV-curable powder coating. Journal of Coatings Technology Research, 0, , 1.	2.5	2
175	Secondary nucleation of styrenated hydroxylâ€functionalized latexes. Journal of Applied Polymer Science, 2021, 138, 50473.	2.6	2
176	Low temperature fracture toughness of polysulfide modified BPA-epoxide primers. Progress in Organic Coatings, 2021, 163, 106626.	3.9	2
177	Polyurethane-Polysiloxane Ceramer Coatings. ACS Symposium Series, 2007, , 135-144.	0.5	1
178	Synthesis and Characterization of Cycloaliphatic Siloxanes Copolymers. ACS Symposium Series, 2010, , 27-46.	0.5	1
179	Acrylated Alkyds Synthesized via Quasiâ€Living Radical Polymerization: ATRP and RAFT. Macromolecular Chemistry and Physics, 2017, 218, 1700234.	2.2	1
180	Effect of Incorporating a Diurethane Monomethacrylate Monomer into Acrylic Latexes. Industrial & Engineering Chemistry Research, 2021, 60, 4860-4872.	3.7	1

#	Article	IF	CITATIONS
181	Effect of humidity on curing of alkoxysilane-functionalized alkyd coatings. Journal of Coatings Technology Research, 2021, 18, 1543-1555.	2.5	1
182	The influence of methacrylic acid and urethane methacrylate on the film properties of hybrid urethane–acrylic latexes. Journal of Coatings Technology Research, 0, , 1.	2.5	1
183	Maleated soybean oil derivatives as versatile reactive diluents: Synthesis, characterization, and evaluation. Journal of Applied Polymer Science, 2022, 139, 51814.	2.6	1
184	Synthesis of a dinuclear, phosphido-bridged complex of rhenium, X-ray crystal structure of Re2 (μ-H) [Ĩ¼-(t-Bu)PC6H4P(H)t-Bu](CO)7. Inorganica Chimica Acta, 1998, 277, 253-256.	2.4	0
185	Hydrolytic stability of ternary and quaternary urethane end-capped oligoesters. Journal of Coatings Technology Research, 2019, 16, 1181-1192.	2.5	0
186	Molecular Design of Polyesters with Controlled Hydrolytic Stability. , 2020, , 411-444.		0