Xiong-Li Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/90316/publications.pdf

Version: 2024-02-01

	331670	377865
1,462	21	34
citations	h-index	g-index
/5	/5	998
docs citations	times ranked	citing authors
	1,462 citations 75 docs citations	1,462 21 citations h-index 75 75

#	Article	IF	CITATIONS
1	Design, synthesis and evaluation of structurally diverse <i>ortho</i> -acylphenol-diindolylmethane hybrids as anticancer agents. New Journal of Chemistry, 2022, 46, 1295-1307.	2.8	5
2	Ring opening and skeletal reconstruction of 3-vinyl benzofuranone-chromone synthons: catalyst-free access to skeletally-diverse 2-pyridone and optically active imidazoline derivatives. Organic and Biomolecular Chemistry, 2022, 20, 2227-2232.	2.8	3
3	3-Vinyl oxindole-chromone synthon as a skeletal reconstruction reactant for the synthesis of 2-hydroxy benzoyl pyridones. New Journal of Chemistry, 2022, 46, 5474-5478.	2.8	3
4	Hyperoside suppresses osteoclasts differentiation and function through downregulating TRAF6/p38 MAPK signaling pathway. Journal of Asian Natural Products Research, 2022, , 1-12.	1.4	2
5	Advances in chromone-based reactants in the ring opening and skeletal reconstruction reaction: access to skeletally diverse salicyloylbenzene/heterocycle derivatives. Organic and Biomolecular Chemistry, 2022, 20, 4681-4698.	2.8	10
6	Diastereoselective construction of a library of structural bispiro[butyrolactone/valerolactonea€"pyrrolidinea€"indanedione] hybrids <i>via</i> 1,3-dipolar cycloaddition reactions. New Journal of Chemistry, 2022, 46, 11975-11979.	2.8	1
7	Assembly of functionalized π-extended indolizine polycycles through dearomative [3+2] cycloaddition/oxidative decarbonylation. Chemical Communications, 2021, 57, 359-362.	4.1	28
8	Chromone–indanedione reactant: a bifunctional 3C synthon for diastereoselective construction of skeleton-diversified bispiro-[chromanocyclopentane-oxindole-indanedione]. New Journal of Chemistry, 2021, 45, 12356-12361.	2.8	2
9	Recent advances of chromone-based reactants in the catalytic asymmetric domino annulation reaction. Organic Chemistry Frontiers, 2021, 8, 3968-3989.	4.5	33
10	Decarboxylative, Diastereoselective and exo-Selective 1,3-Dipolar Cycloaddition for Diversity-Oriented Construction of Structural Spiro[Butyrolactoneâ€"Pyrrolidineâ€"Chromanone] Hybrids. Synlett, 2021, 32, 1447-1452.	1.8	3
11	Synthesis and crystal structure of di- <i>tert</i> butyl 1″-acetyl-2,2″,9′-trioxo-4 <i>a</i> ′,9 <i>a</i> aabatyl-2-dihydro-1′ <i>H</i> ,3′ <i>H</i> ,9′ <i>H</i> -dispays and crystal structures, 2021, .	pirg[indoli	ine-3,2′-xar
12	Diastereoselective construction of structurally diverse trifluoromethyl bispiro-[oxindole-pyrrolidine-chromanone]s through [3+2] cycloaddition reactions. Tetrahedron, 2021, 98, 132297.	1.9	4
13	Synthesis of methanesulfone-containing tetrasubstituted carbon stereocenters. Organic and Biomolecular Chemistry, 2021, 19, 2269-2276.	2.8	2
14	Asymmetric construction of six vicinal stereogenic centers on hexahydroxanthones <i>via</i> organocatalytic one-pot reactions. Chemical Communications, 2021, 57, 6764-6767.	4.1	9
15	Recent Advances in the Construction of Bridged Rings through Cycloadditions and Cascade Reactions. Chinese Journal of Organic Chemistry, 2021, 41, 12.	1.3	16
16	Chemical Composition, Antibacterial, Enzyme-Inhibitory, and Anti-Inflammatory Activities of Essential Oil from Hedychium puerense Rhizome. Agronomy, 2021, 11, 2506.	3.0	8
17	Chemical composition, antioxidant, antimicrobial and anticancer activities of the essential oil from the rhizomes of <i>Zingiber striolatum</i> Diels. Natural Product Research, 2020, 34, 2621-2625.	1.8	15
18	DBU-Catalyzed Inter- and Intramolecular Double Michael Addition of Donor–Acceptor Chromone-Pyrazolone/Benzofuranone Synthons: Access to Spiro-Pyrazolone/Benzofuranone-Hexahydroxanthone Hybrids. Synthesis, 2020, 52, 85-97.	2.3	8

#	Article	IF	CITATIONS
19	Highly efficient enantioselective synthesis of bispiro[benzofuran-oxindole/benzofuran-chromanone]s through organocatalytic inter-/intramolecular Michael cycloaddition. Chinese Chemical Letters, 2020, 31, 381-385.	9.0	21
20	Study on antitumor activities of the chrysin-chromene-spirooxindole on Lewis lung carcinoma C57BL/6 mice in vivo. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127410.	2.2	23
21	[1,5]-Proton transfer as a key strategy: Rapid access to natural product-inspired library of 3-pyrazolyl isoflavones. Tetrahedron, 2020, 76, 131436.	1.9	4
22	Transition-metal-free cascade benzannulations for synthesizing 2-hydroxybenzophenones. Organic and Biomolecular Chemistry, 2020, 18, 9039-9043.	2.8	6
23	Dienolateâ€Mediated, Regioselective C2â€Polarity Reversal of Chromoneâ€Based Reactants and Their Application in Nucleophilic Strategies. Advanced Synthesis and Catalysis, 2020, 362, 5352-5357.	4.3	10
24	Regioselective synthesis and evaluation of 2-amino 3-cyano chromene-chrysin hybrids as potential anticancer agents. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127087.	2.2	11
25	Ammonium hydroxide as the ultimate amino source for the synthesis of <i>N</i> -unprotected 3-tetrasubstituted aminooxindoles <i>via</i> catalyst-free direct amination. Green Chemistry, 2020, 22, 1837-1841.	9.0	14
26	One-pot multicomponent construction of chromanone-fused pyrrolidinyl spirooxindole collections through a decarboxylative 1,3-dipolar [3 + 2] cycloaddition reaction. Synthetic Communications, 2019, 49, 2425-2435.	2.1	11
27	Design, synthesis and evaluation of structurally diverse chrysin-chromene-spirooxindole hybrids as anticancer agents. Bioorganic and Medicinal Chemistry, 2019, 27, 115109.	3.0	14
28	Oxindoleâ€chromones C3 Synthons Directed Stereocontrolled Construction of Five Contiguous Stereocenters on Spiro[tetrahydrocyclopenta[b]chromanoneâ€oxindole]s. Advanced Synthesis and Catalysis, 2019, 361, 5328-5333.	4.3	22
29	An asymmetric iminium ion catalysis-enabled cascade cycloaddition reaction of chromone-oxindole synthons with enals: construction of a spirooxindole–hexahydroxanthone framework. Organic and Biomolecular Chemistry, 2019, 17, 8369-8373.	2.8	10
30	Thermal-mediated catalyst-free heterolytic cleavage of 3-halooxindoles: rapid access to 3-functionalized-2-oxindoles. Organic Chemistry Frontiers, 2019, 6, 256-262.	4.5	19
31	Regio- and stereoselective [3 + 2] cycloaddition reaction: access to isoxazole-dispirobisoxindoles featuring three contiguous stereocenters. Organic and Biomolecular Chemistry, 2019, 17, 6551-6556.	2.8	21
32	Organocatalytic Reaction of Chromone-Oxindole Synthon: Access to Chromanone-Based Spirocyclohexaneoxindoles with Five Adjacent Stereocenters. Journal of Organic Chemistry, 2019, 84, 6679-6688.	3.2	29
33	Organocatalytic Michael/Michael Cycloaddition Enabled Asymmetric Construction of Hexahydroxanthones with Skeletal Diversity. Advanced Synthesis and Catalysis, 2019, 361, 2836-2843.	4.3	35
34	A bifunctional pyrazolone–chromone synthon directed organocatalytic double Michael cascade reaction: forging five stereocenters in structurally diverse hexahydroxanthones. Organic Chemistry Frontiers, 2019, 6, 1485-1490.	4.5	35
35	Stereocontrolled Synthesis of Bispirooxindole-Based Hexahydroxanthones with Five Contiguous Stereocenters. Organic Letters, 2019, 21, 2528-2531.	4.6	47
36	Highly Efficient, Catalyst-Free, Diastereoselective, Diversity-Oriented Synthesis of Dihydrocoumarin–Pyrrolidine–Spirooxindoles Bearing Three Contiguous Stereocenters. Synthesis, 2019, 51, 2339-2350.	2.3	4

#	Article	IF	CITATIONS
37	Bifunctional oxindole-chromone 4C building block directed asymmetric synthesis of bispirocyclic hexahydroxanthones featuring five contiguous stereocenters and two side-by-side oxindoles. Organic Chemistry Frontiers, 2019, 6, 1603-1607.	4.5	45
38	Stereocontrolled construction of six vicinal stereogenic centers on a hexahydroxanthone framework through a formal [2+1+3] annulation. Chemical Communications, 2019, 55, 14003-14006.	4.1	30
39	Thermal-mediated [1,3]-hydrogen transfer as the key step: access to oxindole–chromone hybrid collection with structural diversity. Organic and Biomolecular Chemistry, 2019, 17, 9567-9572.	2.8	7
40	Diversity-oriented one-pot multicomponent synthesis of chromanone-based 3,3′-pyrrolidinyl-spirooxindoles via a 1,3-dipolar cycloaddition reaction. Tetrahedron Letters, 2019, 60, 137-141.	1.4	18
41	Highly Diastereo-, α-Regioselective Catalyst-Free Construction of Adjacent Dispirobisoxindoles with Three Contiguous Quaternary Carbon Centers. Synthesis, 2019, 51, 683-692.	2.3	13
42	Molecular hybridization-guided annulation reactions of isatins with 4-methylpent-3-en-2-one: A direct access to spirooxindole tetrahydropyranones. Synthetic Communications, 2018, 48, 1033-1039.	2.1	3
43	Molecular hybridization-guided one-pot multicomponent synthesis of chromanone-fused 3,3′-pyrrolidinyl-dispirooxindoles through a 1,3-dipolar cycloaddition reaction. Synthetic Communications, 2018, 48, 1016-1024.	2.1	8
44	Diversityâ€oriented Construction of Chromanoneâ€fused Polycyclic Pyrrolidinylâ€dispirooxindoles. Journal of Heterocyclic Chemistry, 2018, 55, 1136-1146.	2.6	9
45	Molecular Hybridizationâ€Guided Construction of Convolutamydine Aâ€fused ⟨i⟩β⟨/i⟩â€lonone Scaffolds and their Biological Evaluation for Anticancer Activities. Journal of Heterocyclic Chemistry, 2018, 55, 351-359.	2.6	4
46	Efficient 1,6-addition reactions of 3-substituted oxindoles: Access to isoxazole-fused 3,3′-disubstituted oxindole scaffolds and hexahydro-1 <i>h</i> -pyrido[2,3- <i>b</i>]indol-2-one scaffolds. Synthetic Communications, 2018, 48, 1454-1464.	2.1	8
47	Diversity-oriented regioselective domino Michael/Aldol reaction of 3-ylideneoxindoles: A direct access to indanol-fused 3-oxindoles. Synthetic Communications, 2018, 48, 1346-1353.	2.1	1
48	Et ₂ NH catalysis-enabled construction of convolutamydine A-fused morusignin L-scaffolds and their biological evaluation for anticancer activities. Synthetic Communications, 2017, 47, 609-617.	2.1	1
49	Rapid, microwave-accelerated synthesis and anti-osteoporosis activities evaluation of Morusin scaffolds and Morusignin L scaffolds. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2389-2396.	2.2	5
50	Diversity-oriented TsOH catalysis-enabled construction of tanshinone-substituted bis(indolyl/pyrrolyl)methanes and their biological evaluation for anticancer activities. Synthetic Communications, 2017, 47, 2378-2386.	2.1	6
51	3-Methyl-4-nitro-5-isatylidenyl-isoxazoles as 1,3-dipolarophiles for synthesis of polycyclic 3,3â \in 2-pyrrolidinyl-dispirooxindoles and their biological evaluation for anticancer activities. Tetrahedron, 2017, 73, 5176-5188.	1.9	22
52	Molecular Hybridization-Guided One-Pot Multicomponent Synthesis of Turmerone Motif-Fused 3,3′-Pyrrolidinyl-dispirooxindoles via a 1,3-Dipolar Cycloaddition Reaction. Molecules, 2017, 22, 645.	3.8	9
53	Alcohols as Substrates and Solvents for the Construction of 3-Alkoxylated-2-Oxindoles by Direct Alkoxylation of 3-Halooxindoles. Molecules, 2017, 22, 801.	3.8	5
54	Molecular hybridization-guided 1,3-dipolar cycloaddition reaction enabled pyrimidine-fused spiropyrrolidine oxindoles synthesis as potential anticancer agents. Tetrahedron Letters, 2016, 57, 4411-4416.	1.4	18

#	Article	IF	Citations
55	Synthesis and in vitro evaluation of pyrimidine-fused 3-alkenyloxindoles as potential anticancer agents. Tetrahedron Letters, 2016, 57, 4113-4118.	1.4	11
56	Diversity-oriented one-pot multicomponent synthesis of spirooxindole derivatives and their biological evaluation for anticancer activities. Tetrahedron, 2016, 72, 8523-8536.	1.9	31
57	1,3-Dipolar cycloaddition enabled isoxazole-fused spiropyrrolidine oxindoles syntheses from 3-methyl-4-nitro-5-alkenyl-isoxazoles and azomethine ylides. Tetrahedron, 2016, 72, 1364-1374.	1.9	36
58	Construction of turmerone motif-fused spiropyrrolidine oxindoles and their biological evaluation for anticancer activities. Tetrahedron Letters, 2016, 57, 1385-1389.	1.4	13
59	DABCO-catalyzed sp3 C–H activation: rapid access to isoxazole or coumarin-fused 3-quaternary carbon oxindoles and isoxazole-fused pyrrolidinones. Tetrahedron Letters, 2015, 56, 5637-5645.	1.4	25
60	A facile and efficient synthesis of polycyclic spiropyrrolidine oxindoles bearing mesityl oxide unit via a three-component 1,3-dipolar cycloaddition reaction. Tetrahedron, 2015, 71, 8131-8139.	1.9	27
61	A facile and efficient synthesis of hexahydro-1H-pyrido [2,3-b] indol-2-one scaffolds via a sequential Michael addition/amidation/reductive cyclization process. Tetrahedron, 2015, 71, 9483-9495.	1.9	14
62	Synthesis of Novel Chiral Phosphoric Acidâ€Bearing Two Acidic Phenolic Hydroxyl Groups and its Catalytic Evaluation for Enantioselective Friedelâ€Crafts Alkylation of Indoles and Enones. Journal of Heterocyclic Chemistry, 2015, 52, 628-634.	2.6	14
63	A highly efficient and eco-friendly method for the synthesis of 1,3-indandione ring-fused 3-oxindoles bearing two contiguous quaternary stereocenters via an aldol reaction in aqueous media. Organic and Biomolecular Chemistry, 2015, 13, 601-611.	2.8	22
64	Highly regioselective synthesis of 3-alkenyl-oxindole ring-fused 3,3′-disubstituted oxindoles via direct gamma-substitution of Morita–Baylis–Hillman carbonates of isatins with 3-substituted oxindoles. Organic and Biomolecular Chemistry, 2014, 12, 9366-9374.	2.8	23
65	A convenient method for synthesis of polyfunctional dihydropyrrole spiro-fused oxindole-2-ones via an organocatalytic tandem Michael/cyclization sequence. Tetrahedron Letters, 2014, 55, 7110-7113.	1.4	16
66	Highly regioselective synthesis of 3-alkylthio-2-oxindoles via DABCO-catalyzed allylic α-substitution of Morita–Baylis–Hillman carbonates of isatins with various thiols. Tetrahedron, 2014, 70, 9191-9197.	1.9	26
67	Construction of Pyrrolidinyl Spirooxindoles via a 1,3-Dipolar Cycloaddition Reaction of $(\langle i\rangle E\langle i\rangle)-\langle i\rangle N\langle i\rangle$ -Boc-3-Alkylidene-Indolin-2(3 $\langle i\rangle H\langle i\rangle$)ones with Azomethine Ylides. Synthetic Communications, 2014, 44, 530-539.	2.1	19
68	Highly Efficient and Stereocontrolled Construction of 3,3′-Pyrrolidonyl Spirooxindoles via Organocatalytic Domino Michael/Cyclization Reaction. Organic Letters, 2013, 15, 1246-1249.	4.6	156
69	Organocatalytic Asymmetric Conjugate Addition of 3â€Monosubstituted Oxindoles to (<i>E</i>)â€1,4â€Diarylâ€2â€butenâ€1,4â€diones: A Strategy for the Indirect Enantioselective Furanylation and Pyrrolylation of 3â€Alkyloxindoles. Chemistry - A European Journal, 2012, 18, 6679-6687.	3.3	58
70	Amino-Indanol-Catalyzed Asymmetric Michael Additions of Oxindoles to Protected 2-Amino-1-nitroethenes for the Synthesis of 3,3â \in 2-Disubstituted Oxindoles Bearing α,Î2-Diamino Functionality. Journal of Organic Chemistry, 2011, 76, 4008-4017.	3.2	84
71	Thioureaâ€Catalyzed Highly Diastereo―and Enantioselective Conjugate Additions of αâ€Substituted Cyanoacetates to Maleimides: Efficient Construction of Vicinal Quaternary―Tertiary Stereocenters. Advanced Synthesis and Catalysis, 2011, 353, 1720-1728.	4.3	38
72	Highly Diastereo- and Enantioselective Michael Additions of 3-Substituted Oxindoles to Maleimides Catalyzed by Chiral Bifunctional Thioureaâ°'Tertiary Amine. Organic Letters, 2010, 12, 2896-2899.	4.6	119

XIONG-LI LIU

#	Article	IF	CITATION
73	Catalytic Asymmetric Domino Michael/Annulation Reaction of Bifunctional Chromone Synthons with \hat{l}^2 , \hat{l}^3 -Unsaturated \hat{l}_2 -Keto Esters: Rapid Access to Polysubstituted Spirocyclic Hexahydroxanthones. Synthesis, 0, 52, .	2.3	2
74	Catalytic asymmetric dearomative $[4+2]$ annulation of 2-nitrobenzofurans and 5H-thiazol-4-ones: stereoselective construction of dihydrobenzofuran-bridged polycyclic skeletons. Organic Chemistry Frontiers, $0, , .$	4.5	28
75	Catalytic asymmetric Michael/cyclization reaction of 3-isothiocyanato thiobutyrolactone: an approach to the construction of a library of bispiro[pyrazolone-thiobutyrolactone] skeletons. Organic and Biomolecular Chemistry, 0, , .	2.8	0