Daniel Durocher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9030953/publications.pdf

Version: 2024-02-01

126 papers 24,156 citations

14655 66 h-index 19190 118 g-index

143 all docs

143
docs citations

143 times ranked 26896 citing authors

#	Article	IF	CITATIONS
1	Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature, 2002, 415, 180-183.	27.8	3,445
2	The CRAPome: a contaminant repository for affinity purification–mass spectrometry data. Nature Methods, 2013, 10, 730-736.	19.0	1,353
3	High-Resolution CRISPR Screens Reveal Fitness Genes and Genotype-Specific Cancer Liabilities. Cell, 2015, 163, 1515-1526.	28.9	1,339
4	Orchestration of the DNA-Damage Response by the RNF8 Ubiquitin Ligase. Science, 2007, 318, 1637-1640.	12.6	800
5	RNF168 Binds and Amplifies Ubiquitin Conjugates on Damaged Chromosomes to Allow Accumulation of Repair Proteins. Cell, 2009, 136, 435-446.	28.9	784
6	A Cell Cycle-Dependent Regulatory Circuit Composed of 53BP1-RIF1 and BRCA1-CtIP Controls DNA Repair Pathway Choice. Molecular Cell, 2013, 49, 872-883.	9.7	742
7	The RIDDLE Syndrome Protein Mediates a Ubiquitin-Dependent Signaling Cascade at Sites of DNA Damage. Cell, 2009, 136, 420-434.	28.9	673
8	The cardiac transcription factors Nkx2-5 and GATA-4 are mutual cofactors. EMBO Journal, 1997, 16, 5687-5696.	7.8	594
9	53BP1 is a reader of the DNA-damage-induced H2A Lys 15 ubiquitin mark. Nature, 2013, 499, 50-54.	27.8	580
10	The control of DNA repair by the cell cycle. Nature Cell Biology, 2017, 19, 1-9.	10.3	549
11	Regulation of DNA Damage Responses by Ubiquitin and SUMO. Molecular Cell, 2013, 49, 795-807.	9.7	522
12	DNA-PK, ATM and ATR as sensors of DNA damage: variations on a theme?. Current Opinion in Cell Biology, 2001, 13, 225-231.	5.4	457
13	The shieldin complex mediates 53BP1-dependent DNA repair. Nature, 2018, 560, 117-121.	27.8	445
14	A phosphatase complex that dephosphorylates Î ³ H2AX regulates DNA damage checkpoint recovery. Nature, 2006, 439, 497-501.	27.8	439
15	Evaluation and Design of Genome-Wide CRISPR/SpCas9 Knockout Screens. G3: Genes, Genomes, Genetics, 2017, 7, 2719-2727.	1.8	417
16	The Molecular Basis of FHA Domain:Phosphopeptide Binding Specificity and Implications for Phospho-Dependent Signaling Mechanisms. Molecular Cell, 2000, 6, 1169-1182.	9.7	412
17	A mechanism for the suppression of homologous recombination in G1 cells. Nature, 2015, 528, 422-426.	27.8	409
18	The FHA Domain Is a Modular Phosphopeptide Recognition Motif. Molecular Cell, 1999, 4, 387-394.	9.7	368

#	Article	IF	Citations
19	The FHA domain. FEBS Letters, 2002, 513, 58-66.	2.8	358
20	A Genetic Map of the Response to DNA Damage in Human Cells. Cell, 2020, 182, 481-496.e21.	28.9	324
21	Non-canonical inhibition of DNA damage-dependent ubiquitination by OTUB1. Nature, 2010, 466, 941-946.	27.8	316
22	53BP1–RIF1–shieldin counteracts DSB resection through CST- and Polα-dependent fill-in. Nature, 2018, 560, 112-116.	27.8	313
23	CRISPR screens identify genomic ribonucleotides as a source of PARP-trapping lesions. Nature, 2018, 559, 285-289.	27.8	297
24	Mitosis Inhibits DNA Double-Strand Break Repair to Guard Against Telomere Fusions. Science, 2014, 344, 189-193.	12.6	280
25	A Strategy for Modulation of Enzymes in the Ubiquitin System. Science, 2013, 339, 590-595.	12.6	257
26	MAD2L2 controls DNA repair at telomeres and DNA breaks by inhibiting 5′ end resection. Nature, 2015, 521, 537-540.	27.8	253
27	Association of Distinct Mutational Signatures With Correlates of Increased Immune Activity in Pancreatic Ductal Adenocarcinoma. JAMA Oncology, 2017, 3, 774.	7.1	221
28	Xrcc4 physically links DNA end processing by polynucleotide kinase to DNA ligation by DNA ligase IV. EMBO Journal, 2004, 23, 3874-3885.	7.8	218
29	Structural and Functional Versatility of the FHA Domain in DNA-Damage Signaling by the Tumor Suppressor Kinase Chk2. Molecular Cell, 2002, 9, 1045-1054.	9.7	207
30	Saccharomyces cerevisiae Rad9 Acts as a Mec1 Adaptor to Allow Rad53 Activation. Current Biology, 2005, 15, 1364-1375.	3.9	207
31	Inhibition of 53BP1 favors homology-dependent DNA repair and increases CRISPR–Cas9 genome-editing efficiency. Nature Biotechnology, 2018, 36, 95-102.	17.5	206
32	An Allosteric Inhibitor of the Human Cdc34ÂUbiquitin-Conjugating Enzyme. Cell, 2011, 145, 1075-1087.	28.9	203
33	The structural basis of modified nucleosome recognition by 53BP1. Nature, 2016, 536, 100-103.	27.8	201
34	The TIP60 Complex Regulates Bivalent Chromatin Recognition by 53BP1 through Direct H4K20me Binding and H2AK15 Acetylation. Molecular Cell, 2016, 62, 409-421.	9.7	198
35	The Molecular Architecture of the Mammalian DNA Repair Enzyme, Polynucleotide Kinase. Molecular Cell, 2005, 17, 657-670.	9.7	191
36	Potent and Selective Inhibitors of the Inositol-requiring Enzyme 1 Endoribonuclease. Journal of Biological Chemistry, 2011, 286, 12743-12755.	3.4	190

#	Article	IF	Citations
37	The ubiquitous role of ubiquitin in the DNA damage response. DNA Repair, 2010, 9, 1229-1240.	2.8	188
38	PP4 is a \hat{I}^3 H2AX phosphatase required for recovery from the DNA damage checkpoint. EMBO Reports, 2008, 9, 1019-1026.	4.5	179
39	OTUB1 Co-opts Lys48-Linked Ubiquitin Recognition to Suppress E2 Enzyme Function. Molecular Cell, 2012, 45, 384-397.	9.7	174
40	Regulatory ubiquitylation in response to DNA double-strand breaks. DNA Repair, 2009, 8, 436-443.	2.8	173
41	Shieldin – the protector of <scp>DNA</scp> ends. EMBO Reports, 2019, 20, .	4.5	169
42	Systematic identification of fragile sites via genome-wide location analysis of \hat{l}^3 -H2AX. Nature Structural and Molecular Biology, 2010, 17, 299-305.	8.2	167
43	Significant conservation of synthetic lethal genetic interaction networks between distantly related eukaryotes. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16653-16658.	7.1	165
44	A viral E3 ligase targets RNF8 and RNF168 to control histone ubiquitination and DNA damage responses. EMBO Journal, 2010, 29, 943-955.	7.8	162
45	A Genome-Wide Screen Identifies the Evolutionarily Conserved KEOPS Complex as a Telomere Regulator. Cell, 2006, 124, 1155-1168.	28.9	158
46	Elg1 Forms an Alternative PCNA-Interacting RFC Complex Required to Maintain Genome Stability. Current Biology, 2003, 13, 1583-1595.	3.9	154
47	Push back to respond better: regulatory inhibition of the DNA double-strand break response. Nature Reviews Molecular Cell Biology, 2013, 14, 661-672.	37.0	154
48	Identifying chemogenetic interactions from CRISPR screens with drugZ. Genome Medicine, 2019, 11, 52.	8.2	127
49	Tandem Protein Interaction Modules Organize the Ubiquitin-Dependent Response to DNA Double-Strand Breaks. Molecular Cell, 2012, 47, 383-395.	9.7	124
50	HELB Is a Feedback Inhibitor of DNA End Resection. Molecular Cell, 2016, 61, 405-418.	9.7	119
51	Rnf8 deficiency impairs class switch recombination, spermatogenesis, and genomic integrity and predisposes for cancer. Journal of Experimental Medicine, 2010, 207, 983-997.	8.5	112
52	MRE11 promotes AKT phosphorylation in direct response to DNA double-strand breaks. Cell Cycle, 2011, 10, 2218-2232.	2.6	111
53	Structure and mechanism of action of the hydroxy–aryl–aldehyde class of IRE1 endoribonuclease inhibitors. Nature Communications, 2014, 5, 4202.	12.8	108
54	The MMS22L-TONSL Complex Mediates Recovery from Replication Stress and Homologous Recombination. Molecular Cell, 2010, 40, 619-631.	9.7	106

#	Article	IF	Citations
55	Combinatorial interactions regulating cardiac transcription. , 1998, 22, 250-262.		91
56	Synthetic Lethality in Cancer Therapeutics: The Next Generation. Cancer Discovery, 2021, 11, 1626-1635.	9.4	91
57	Atomic Structure of the KEOPS Complex: An Ancient Protein Kinase-Containing Molecular Machine. Molecular Cell, 2008, 32, 259-275.	9.7	87
58	APLF (C2orf13) facilitates nonhomologous end-joining and undergoes ATM-dependent hyperphosphorylation following ionizing radiation. DNA Repair, 2008, 7, 292-302.	2.8	83
59	Nucleosome Acidic Patch Promotes RNF168- and RING1B/BMI1-Dependent H2AX and H2A Ubiquitination and DNA Damage Signaling. PLoS Genetics, 2014, 10, e1004178.	3.5	83
60	DNA damage signalling targets the kinetochore to promote chromatin mobility. Nature Cell Biology, 2016, 18, 281-290.	10.3	82
61	A consensus set of genetic vulnerabilities to ATR inhibition. Open Biology, 2019, 9, 190156.	3.6	81
62	Functional characterization of a PROTAC directed against BRAF mutant V600E. Nature Chemical Biology, 2020, 16, 1170-1178.	8.0	80
63	BRCA1 Haploinsufficiency Is Masked by RNF168-Mediated Chromatin Ubiquitylation. Molecular Cell, 2019, 73, 1267-1281.e7.	9.7	78
64	Perinuclear tethers license telomeric DSBs for a broad kinesin- and NPC-dependent DNA repair process. Nature Communications, 2015, 6, 7742.	12.8	76
65	De novo telomere formation is suppressed by the Mec1-dependent inhibition of Cdc13 accumulation at DNA breaks. Genes and Development, 2010, 24, 502-515.	5.9	73
66	Genomic Instability, Defective Spermatogenesis, Immunodeficiency, and Cancer in a Mouse Model of the RIDDLE Syndrome. PLoS Genetics, 2011, 7, e1001381.	3.5	73
67	Rad6-Rad18 Mediates a Eukaryotic SOS Response by Ubiquitinating the 9-1-1 Checkpoint Clamp. Cell, 2008, 133, 601-611.	28.9	72
68	A Genomewide Suppressor and Enhancer Analysis of <i>cdc13-1</i> Reveals Varied Cellular Processes Influencing Telomere Capping in <i>Saccharomyces cerevisiae</i> Genetics, 2008, 180, 2251-2266.	2.9	70
69	The RNF8/RNF168 ubiquitin ligase cascade facilitates class switch recombination. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 809-814.	7.1	70
70	Endogenous DNA 3′ Blocks Are Vulnerabilities for BRCA1 and BRCA2 Deficiency and Are Reversed by the APE2 Nuclease. Molecular Cell, 2020, 78, 1152-1165.e8.	9.7	69
71	Reconstitution and characterization of eukaryotic N6-threonylcarbamoylation of tRNA using a minimal enzyme system. Nucleic Acids Research, 2013, 41, 6332-6346.	14.5	68
72	ZMYM3 regulates BRCA1 localization at damaged chromatin to promote DNA repair. Genes and Development, 2017, 31, 260-274.	5.9	65

#	Article	IF	CITATIONS
73	Analysis of the Histone H3.1 Interactome: A Suitable Chaperone for the Right Event. Molecular Cell, 2015, 60, 697-709.	9.7	61
74	CCNE1 amplification is synthetic lethal with PKMYT1 kinase inhibition. Nature, 2022, 604, 749-756.	27.8	60
75	Ccr4 contributes to tolerance of replication stress through control of CRT1 mRNA poly(A) tail length. Journal of Cell Science, 2006, 119, 5178-5192.	2.0	57
76	Interaction Proteomics Identify NEURL4 and the HECT E3 Ligase HERC2 as Novel Modulators of Centrosome Architecture. Molecular and Cellular Proteomics, 2012, 11, M111.014233.	3.8	57
77	A Screen for Suppressors of Gross Chromosomal Rearrangements Identifies a Conserved Role for PLP in Preventing DNA Lesions. PLoS Genetics, 2007, 3, e134.	3.5	55
78	Control of homologous recombination by the HROB–MCM8–MCM9 pathway. Genes and Development, 2019, 33, 1397-1415.	5.9	55
79	The CIP2A–TOPBP1 axis safeguards chromosome stability and is a synthetic lethal target for BRCA-mutated cancer. Nature Cancer, 2021, 2, 1357-1371.	13.2	55
80	The F-Box Protein Dia2 Overcomes Replication Impedance to Promote Genome Stability in Saccharomyces cerevisiae. Genetics, 2006, 174, 1709-1727.	2.9	53
81	ATM and CDK2 control chromatin remodeler CSB to inhibit RIF1 in DSB repair pathway choice. Nature Communications, 2017, 8, 1921.	12.8	51
82	γH2AX as a Checkpoint Maintenance Signal. Cell Cycle, 2006, 5, 1376-1381.	2.6	50
83	CDC5 Inhibits the Hyperphosphorylation of the Checkpoint Kinase Rad53, Leading to Checkpoint Adaptation. PLoS Biology, 2010, 8, e1000286.	5. 6	50
84	Reading chromatin signatures after DNA double-strand breaks. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160280.	4.0	49
85	Proteomic analysis of the human KEOPS complex identifies C14ORF142 as a core subunit homologous to yeast Gon7. Nucleic Acids Research, 2017, 45, 805-817.	14.5	49
86	The RNF168 paralog RNF169 defines a new class of ubiquitylated histone reader involved in the response to DNA damage. ELife, 2017, 6, .	6.0	44
87	Chromatin and DNA repair: the benefits of relaxation. Nature Cell Biology, 2006, 8, 9-10.	10.3	39
88	Uroporphyrinogen Decarboxylase Is a Radiosensitizing Target for Head and Neck Cancer. Science Translational Medicine, 2011, 3, 67ra7.	12.4	32
89	DNA repair pathway choice—a PTIP of the hat to 53BP1. EMBO Reports, 2013, 14, 665-666.	4.5	31
90	The FHA Domain in DNA Repair and Checkpoint Signaling. Cold Spring Harbor Symposia on Quantitative Biology, 2000, 65, 423-432.	1,1	31

#	Article	IF	Citations
91	FAM72A antagonizes UNG2 to promote mutagenic repair during antibody maturation. Nature, 2021, 600, 324-328.	27.8	29
92	Lineage-defined leiomyosarcoma subtypes emerge years before diagnosis and determine patient survival. Nature Communications, 2021, 12, 4496.	12.8	28
93	Srs2 enables checkpoint recovery by promoting disassembly of DNA damage foci from chromatin. DNA Repair, 2011, 10, 1213-1222.	2.8	26
94	Structural and functional characterization of KEOPS dimerization by Pcc1 and its role in t ⁶ A biosynthesis. Nucleic Acids Research, 2016, 44, 6971-6980.	14.5	26
95	Mapping <scp>DNA</scp> damageâ€dependent genetic interactions in yeast via party mating and barcode fusion genetics. Molecular Systems Biology, 2018, 14, e7985.	7.2	25
96	RMI1 Promotes DNA Replication Fork Progression and Recovery from Replication Fork Stress. Molecular and Cellular Biology, 2012, 32, 3054-3064.	2.3	24
97	Excess Poll, functions in response to replicative stress in homologous recombination-proficient cancer cells. Biology Open, 2016, 5, 1485-1492.	1.2	22
98	Genome-scale chemogenomic CRISPR screens in human cells using the TKOv3 library. STAR Protocols, 2021, 2, 100321.	1.2	22
99	A sharp Pif1-dependent threshold separates DNA double-strand breaks from critically short telomeres. ELife, 2017, 6, .	6.0	22
100	A substrate binding model for the KEOPS tRNA modifying complex. Nature Communications, 2020, 11, 6233.	12.8	21
101	<scp>SHLD</scp> 2 promotes class switch recombination by preventing inactivating deletions within the <i>lgh</i> locus. EMBO Reports, 2020, 21, e49823.	4.5	20
102	The CIP2A-TOPBP1 complex safeguards chromosomal stability during mitosis. Nature Communications, 2022, 13, .	12.8	20
103	Structural basis of Rad53 kinase activation by dimerization and activation segment exchange. Cellular Signalling, 2014, 26, 1825-1836.	3.6	16
104	DNA Repair Has a New FAN1 Club. Molecular Cell, 2010, 39, 167-169.	9.7	14
105	RIF1 acts in DNA repair through phosphopeptide recognition of 53BP1. Molecular Cell, 2022, 82, 1359-1371.e9.	9.7	14
106	Localization of the Catf1 transcription factor gene to mouse Chromosome 19. Mammalian Genome, 1995, 6, 147-148.	2.2	13
107	A siRNA-Based Screen for Genes Involved in Chromosome End Protection. PLoS ONE, 2011, 6, e21407.	2.5	12
108	Two redundant ubiquitinâ€dependent pathways of BRCA1 localization to DNA damage sites. EMBO Reports, 2021, 22, e53679.	4.5	11

#	Article	IF	Citations
109	DNA Repair: DNA Polymerase ζ and Rev1 Break in. Current Biology, 2006, 16, R296-R299.	3.9	9
110	Dun1 Counts on Rad53 to Be Turned On. Molecular Cell, 2008, 31, 1-2.	9.7	9
111	Bacterial signal transduction: a FHAscinating glimpse at the origins of phospho-dependent signal transduction. Trends in Microbiology, 2003, 11, 67-68.	7.7	6
112	Problems with Co-Funding in Canada. Science, 2005, 308, 1867b-1867b.	12.6	6
113	Telomere Protection: An Act of God. Current Biology, 2006, 16, R544-R546.	3.9	6
114	53BP1 Goes Back to Its p53 Roots. Molecular Cell, 2016, 64, 3-4.	9.7	5
115	Combinatorial interactions regulating cardiac transcription. Genesis, 1998, 22, 250-262.	2.1	4
116	OTUB1 Co-opts Lys48-Linked Ubiquitin Recognition to Suppress E2 Enzyme Function. Molecular Cell, 2012, 46, 549.	9.7	3
117	Global cellular response to chemical perturbation of PLK4 activity and abnormal centrosome number. ELife, 0, 11 , .	6.0	2
118	Engineering a DNA damage response without DNA damage. Genome Biology, 2008, 9, 227.	9.6	1
119	DNA Damage Sensing and Signaling. , 2009, , 1-24.		1
120	RNF8-Independent Lys63 Poly-Ubiquitylation Prevents Genomic Instability in Response to Replication-Associated DNA Damage. PLoS ONE, 2014, 9, e89997.	2.5	1
121	The FHA Domain. , 2005, , 143-162.		0
122	PP4 is a \hat{I}^3 H2AX phosphatase required for recovery from the DNA damage checkpoint. EMBO Reports, 2008, 9, 1251-1251.	4.5	0
123	Rnf8 deficiency impairs class switch recombination, spermatogenesis, and genomic integrity and predisposes for cancer. Journal of Cell Biology, 2010, 189, i6-i6.	5.2	0
124	Regulatory ubiquitylation during the response to DNA doubleâ€strand breaks. FASEB Journal, 2013, 27, 334.3.	0.5	0
125	$R\tilde{A}$ ©tino \tilde{A} des et bases mol \tilde{A} ©culaires des malformations cardiaques cong \tilde{A} ©nitales. Medecine/Sciences, 1995, 11, 132.	0.2	O
126	Abstract PL03-03: Navigating gene-gene and drug-gene interaction landscapes underpinning the DNA damage response. , 2019 , , .		0