Charles E Murry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9030403/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Amino acid primed mTOR activity is essential for heart regeneration. IScience, 2022, 25, 103574.	4.1	15
2	Flexing Their Muscles: Maturation of Stem Cell–Derived Cardiomyocytes on Elastomeric Substrates to Enhance Cardiac Repair. Circulation, 2022, 145, 1427-1430.	1.6	0
3	SARS-CoV-2 Infects Human Pluripotent Stem Cell-Derived Cardiomyocytes, Impairing Electrical and Mechanical Function. Stem Cell Reports, 2021, 16, 478-492.	4.8	75
4	Engrafted Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes Undergo Clonal Expansion In Vivo. Circulation, 2021, 143, 1635-1638.	1.6	9
5	High-resolution 3D fluorescent imaging of intact tissues. , 2021, 1, 1-14.		0
6	Sarcomere function activates a p53-dependent DNA damage response that promotes polyploidization and limits inÂvivo cell engraftment. Cell Reports, 2021, 35, 109088.	6.4	11
7	Tunable electroconductive decellularized extracellular matrix hydrogels for engineering human cardiac microphysiological systems. Biomaterials, 2021, 272, 120764.	11.4	60
8	Quantitative Analyses of the Left Ventricle Volume and Cardiac Function in Normal and Infarcted Yucatan Minipigs. Journal of Imaging, 2021, 7, 107.	3.0	1
9	Pharmacologic therapy for engraftment arrhythmia induced by transplantation of human cardiomyocytes. Stem Cell Reports, 2021, 16, 2473-2487.	4.8	42
10	Gain-of-function cardiomyopathic mutations in RBM20 rewire splicing regulation and re-distribute ribonucleoprotein granules within processing bodies. Nature Communications, 2021, 12, 6324.	12.8	23
11	Rescuing human fetal tissue research in the United States: A call for additional regulatory reform. Stem Cell Reports, 2021, 16, 2839-2843.	4.8	6
12	Polarization sensitive optical coherence tomography with single input for imaging depth-resolved collagen organizations. Light: Science and Applications, 2021, 10, 237.	16.6	24
13	Absence of full-length dystrophin impairs normal maturation and contraction of cardiomyocytes derived from human-induced pluripotent stem cells. Cardiovascular Research, 2020, 116, 368-382.	3.8	47
14	NanoMEA: A Tool for High-Throughput, Electrophysiological Phenotyping of Patterned Excitable Cells. Nano Letters, 2020, 20, 1561-1570.	9.1	32
15	Delta-1 Functionalized Hydrogel Promotes hESC-Cardiomyocyte Graft Proliferation and Maintains Heart Function Post-Injury. Molecular Therapy - Methods and Clinical Development, 2020, 17, 986-998.	4.1	11
16	A Rainbow Reporter Tracks Single Cells and Reveals Heterogeneous Cellular Dynamics among Pluripotent Stem Cells and Their Differentiated Derivatives. Stem Cell Reports, 2020, 15, 226-241.	4.8	16
17	Stem cells and the heartâ \in "the road ahead. Science, 2020, 367, 854-855.	12.6	38
18	Engineering anisotropic 3D tubular tissues with flexible thermoresponsive nanofabricated substrates. Biomaterials, 2020, 240, 119856.	11.4	28

#	Article	IF	CITATIONS
19	Sonic Hedgehog upregulation does not enhance the survival and engraftment of stem cell-derived cardiomyocytes in infarcted hearts. PLoS ONE, 2020, 15, e0227780.	2.5	4
20	Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nature Reviews Cardiology, 2020, 17, 341-359.	13.7	417
21	Cell Therapy Strategies With No Safety Concerns and Demonstrated Benefits Warrant Study ― Reply ―. Circulation Journal, 2020, 84, 2122.	1.6	0
22	Chromatin compartment dynamics in a haploinsufficient model of cardiac laminopathy. Journal of Cell Biology, 2019, 218, 2919-2944.	5.2	46
23	Epicardial cells derived from human embryonic stem cells augment cardiomyocyte-driven heart regeneration. Nature Biotechnology, 2019, 37, 895-906.	17.5	139
24	Learn from Your Elders: Developmental Biology Lessons to Guide Maturation of Stem Cell-Derived Cardiomyocytes. Pediatric Cardiology, 2019, 40, 1367-1387.	1.3	47
25	TFPa/HADHA is required for fatty acid beta-oxidation and cardiolipin re-modeling in human cardiomyocytes. Nature Communications, 2019, 10, 4671.	12.8	77
26	Cronos Titin Is Expressed in Human Cardiomyocytes and Necessary for Normal Sarcomere Function. Circulation, 2019, 140, 1647-1660.	1.6	50
27	A Proteomic Perspective on Cardiomyocyte Maturation. Circulation Research, 2019, 125, 954-956.	4.5	0
28	Fatty Acids Enhance the Maturation of Cardiomyocytes Derived from Human Pluripotent Stem Cells. Stem Cell Reports, 2019, 13, 657-668.	4.8	187
29	The K219T-Lamin mutation induces conduction defects through epigenetic inhibition of SCN5A in human cardiac laminopathy. Nature Communications, 2019, 10, 2267.	12.8	79
30	Dynamics of genome reorganization during human cardiogenesis reveal an RBM20-dependent splicing factory. Nature Communications, 2019, 10, 1538.	12.8	104
31	Patterned human microvascular grafts enable rapid vascularization and increase perfusion in in infarcted rat hearts. Nature Communications, 2019, 10, 584.	12.8	100
32	Substrate Stiffness, Cell Anisotropy, and Cell–Cell Contact Contribute to Enhanced Structural and Calcium Handling Properties of Human Embryonic Stem Cell-Derived Cardiomyocytes. ACS Biomaterials Science and Engineering, 2019, 5, 3876-3888.	5.2	26
33	Regenerating the field of cardiovascular cell therapy. Nature Biotechnology, 2019, 37, 232-237.	17.5	140
34	Function Follows Form ― A Review of Cardiac Cell Therapy ―. Circulation Journal, 2019, 83, 2399-2412.	1.6	40
35	Lost in the fire. Science, 2019, 364, 123-124.	12.6	3
36	Human Stem Cell Derived Cardiomyocyte Maturation is Regulated by Glucose Levels and Metabolic	0.5	1

Human Stem Cell Derived Cardiomyocyte Maturation is Regulated by Glucose Levels and Metabolic Hormone Supplementation. FASEB Journal, 2019, 33, . 36

#	Article	IF	CITATIONS
37	Inducible CRISPR genome editing platform in naive human embryonic stem cells reveals JARID2 function in self-renewal. Cell Cycle, 2018, 17, 00-00.	2.6	13
38	Human Pluripotent Stem Cell-Derived Engineered Tissues: Clinical Considerations. Cell Stem Cell, 2018, 22, 294-297.	11.1	44
39	Regulation of skeletal myotube formation and alignment by nanotopographically controlled cellâ€secreted extracellular matrix. Journal of Biomedical Materials Research - Part A, 2018, 106, 1543-1551.	4.0	26
40	Afterload promotes maturation of human induced pluripotent stem cell derived cardiomyocytes in engineered heart tissues. Journal of Molecular and Cellular Cardiology, 2018, 118, 147-158.	1.9	127
41	Novel Adult-Onset Systolic Cardiomyopathy Due to MYH7 E848G Mutation in Patient-Derived Induced Pluripotent Stem Cells. JACC Basic To Translational Science, 2018, 3, 728-740.	4.1	63
42	Evidence for Minimal Cardiogenic Potential of Stem Cell Antigen 1–Positive Cells in the Adult Mouse Heart. Circulation, 2018, 138, 2960-2962.	1.6	35
43	Single-Cell Transcriptomic Analysis of Cardiac Differentiation from Human PSCs Reveals HOPX-Dependent Cardiomyocyte Maturation. Cell Stem Cell, 2018, 23, 586-598.e8.	11.1	215
44	Hallmarks of cardiac regeneration. Nature Reviews Cardiology, 2018, 15, 579-580.	13.7	39
45	Human Organ-Specific Endothelial Cell Heterogeneity. IScience, 2018, 4, 20-35.	4.1	181
46	Human embryonic stem cell–derived cardiomyocytes restore function in infarcted hearts of non-human primates. Nature Biotechnology, 2018, 36, 597-605.	17.5	466
47	Genetic Lineage Tracing of Sca-1 ⁺ Cells Reveals Endothelial but Not Myogenic Contribution to the Murine Heart. Circulation, 2018, 138, 2931-2939.	1.6	83
48	The Challenges of First-in-Human Stem Cell Clinical Trials: What Does This Mean for Ethics and Institutional Review Boards?. Stem Cell Reports, 2018, 10, 1429-1431.	4.8	22
49	ALPK2 Promotes Cardiogenesis in Zebrafish and Human Pluripotent Stem Cells. IScience, 2018, 2, 88-100.	4.1	23
50	InÂVivo Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes in Neonatal and Adult Rat Hearts. Stem Cell Reports, 2017, 8, 278-289.	4.8	138
51	One Stride Forward. Circulation, 2017, 135, 1848-1850.	1.6	5
52	Generating high-purity cardiac and endothelial derivatives from patterned mesoderm using human pluripotent stem cells. Nature Protocols, 2017, 12, 15-31.	12.0	158
53	Micro- and nano-patterned conductive graphene–PEG hybrid scaffolds for cardiac tissue engineering. Chemical Communications, 2017, 53, 7412-7415.	4.1	90
54	Chromatin and Transcriptional Analysis of Mesoderm Progenitor Cells Identifies HOPX as a Regulator of Primitive Hematopoiesis. Cell Reports, 2017, 20, 1597-1608.	6.4	50

#	Article	IF	CITATIONS
55	Cardiomyocyte Regeneration. Circulation, 2017, 136, 680-686.	1.6	417
56	Sustained miRNA release regenerates the heart. Nature Biomedical Engineering, 2017, 1, 931-933.	22.5	1
57	Translation of Cardiac Myosin Activation With 2-Deoxy-ATP to Treat Heart Failure Via an Experimental Ribonucleotide Reductase-Based Gene Therapy. JACC Basic To Translational Science, 2016, 1, 666-679.	4.1	7
58	Isolation and Mechanical Measurements of Myofibrils from Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Stem Cell Reports, 2016, 6, 885-896.	4.8	75
59	Imprecision Medicine: A One-Size-Fits-Many Approach for Muscle Dystrophy. Cell Stem Cell, 2016, 18, 423-424.	11.1	4
60	Confronting stem cell hype. Science, 2016, 352, 776-777.	12.6	109
61	Setting Global Standards for Stem Cell Research and Clinical Translation: TheÂ2016 ISSCR Guidelines. Stem Cell Reports, 2016, 6, 787-797.	4.8	172
62	Mechanical Stress Conditioning and Electrical Stimulation Promote Contractility and Force Maturation of Induced Pluripotent Stem Cell-Derived Human Cardiac Tissue. Circulation, 2016, 134, 1557-1567.	1.6	356
63	Depth-resolved 3D visualization of coronary microvasculature with optical microangiography. Physics in Medicine and Biology, 2016, 61, 7536-7550.	3.0	11
64	Prosurvival Factors Improve Functional Engraftment of Myogenically Converted Dermal Cells into Dystrophic Skeletal Muscle. Stem Cells and Development, 2016, 25, 1559-1569.	2.1	20
65	Distilling complexity to advance cardiac tissue engineering. Science Translational Medicine, 2016, 8, 342ps13.	12.4	138
66	AAV6-mediated Cardiac-specific Overexpression of Ribonucleotide Reductase Enhances Myocardial Contractility. Molecular Therapy, 2016, 24, 240-250.	8.2	32
67	Nanotopography-Induced Structural Anisotropy and Sarcomere Development in Human Cardiomyocytes Derived from Induced Pluripotent Stem Cells. ACS Applied Materials & Interfaces, 2016, 8, 21923-21932.	8.0	155
68	Stromal Cells in Dense Collagen Promote Cardiomyocyte and Microvascular Patterning in Engineered Human Heart Tissue. Tissue Engineering - Part A, 2016, 22, 633-644.	3.1	39
69	Quantitative proteomics identify DAB2 as a cardiac developmental regulator that inhibits WNT/β-catenin signaling. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1002-1007.	7.1	53
70	Policy: Clobal standards for stem-cell research. Nature, 2016, 533, 311-313.	27.8	41
71	Ribonucleotide reductaseâ€mediated increase in dATP improves cardiac performance via myosin activation in a large animal model of heart failure. European Journal of Heart Failure, 2015, 17, 772-781.	7.1	32
72	Cardiac Development in Zebrafish and Human Embryonic Stem Cells Is Inhibited by Exposure to Tobacco Cigarettes and E-Cigarettes. PLoS ONE, 2015, 10, e0126259.	2.5	92

#	Article	IF	CITATIONS
73	Enhanced Electrical Integration of Engineered Human Myocardium via Intramyocardial versus Epicardial Delivery in Infarcted Rat Hearts. PLoS ONE, 2015, 10, e0131446.	2.5	97
74	Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development. Genome Biology, 2015, 16, 126.	8.8	507
75	Comparison of Human Embryonic Stem Cell-Derived Cardiomyocytes, Cardiovascular Progenitors, and Bone Marrow Mononuclear Cells for Cardiac Repair. Stem Cell Reports, 2015, 5, 753-762.	4.8	98
76	Response to Cardiac regeneration validated. Nature Biotechnology, 2015, 33, 587-587.	17.5	2
77	The winding road to regenerating the human heart. Cardiovascular Pathology, 2015, 24, 133-140.	1.6	95
78	Mechanical Stress Promotes Maturation of Human Myocardium From Pluripotent Stem Cell-Derived Progenitors. Stem Cells, 2015, 33, 2148-2157.	3.2	105
79	Let-7 family of microRNA is required for maturation and adult-like metabolism in stem cell-derived cardiomyocytes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2785-94.	7.1	223
80	Functional analysis of a chromosomal deletion associated with myelodysplastic syndromes using isogenic human induced pluripotent stem cells. Nature Biotechnology, 2015, 33, 646-655.	17.5	130
81	Inhibition of β-catenin signaling respecifies anterior-like endothelium into beating human cardiomyocytes. Development (Cambridge), 2015, 142, 3198-209.	2.5	64
82	Defined MicroRNAs Induce Aspects of Maturation in Mouse and Human Embryonic-Stem-Cell-Derived Cardiomyocytes. Cell Reports, 2015, 12, 1960-1967.	6.4	77
83	The advancement of human pluripotent stem cell-derived therapies into the clinic. Development (Cambridge), 2015, 142, 3077-3084.	2.5	18
84	Magnetic Resonance Imaging Tracking of Graft Survival in the Infarcted Heart. Journal of Cardiovascular Pharmacology and Therapeutics, 2014, 19, 358-367.	2.0	25
85	Vascular perfusion of implanted human engineered cardiac tissue. , 2014, 2014, .		3
86	Cardiac regeneration using pluripotent stem cells—Progression to large animal models. Stem Cell Research, 2014, 13, 654-665.	0.7	87
87	Capillary Force Lithography for Cardiac Tissue Engineering. Journal of Visualized Experiments, 2014, , .	0.3	22
88	Letter by Murry et al Regarding Article, "Embryonic Stem Cell–Derived Cardiac Myocytes Are Not Ready for Human Trials― Circulation Research, 2014, 115, e28-9.	4.5	9
89	Thin filament incorporation of an engineered cardiac troponin C variant (L48Q) enhances contractility in intact cardiomyocytes from healthy and infarcted hearts. Journal of Molecular and Cellular Cardiology, 2014, 72, 219-227.	1.9	24
90	Engineered Biomaterials Control Differentiation and Proliferation of Human-Embryonic-Stem-Cell-Derived Cardiomyocytes via Timed Notch Activation. Stem Cell Reports, 2014, 2, 271-281.	4.8	38

#	Article	IF	CITATIONS
91	Measuring the Contractile Forces of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes With Arrays of Microposts. Journal of Biomechanical Engineering, 2014, 136, 051005.	1.3	136
92	Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature, 2014, 510, 273-277.	27.8	1,194
93	Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nature Medicine, 2014, 20, 616-623.	30.7	733
94	Heart Regeneration with Engineered Myocardial Tissue. Annual Review of Biomedical Engineering, 2014, 16, 1-28.	12.3	69
95	Proliferation at the Heart of Preadolescence. Cell, 2014, 157, 765-767.	28.9	4
96	Engineering Adolescence. Circulation Research, 2014, 114, 511-523.	4.5	822
97	Clinical imaging in regenerative medicine. Nature Biotechnology, 2014, 32, 804-818.	17.5	207
98	Dystrophin-deficient cardiomyocytes derived from human urine: New biologic reagents for drug discovery. Stem Cell Research, 2014, 12, 467-480.	0.7	116
99	Cell-based delivery of dATP via gap junctions enhances cardiac contractility. Journal of Molecular and Cellular Cardiology, 2014, 72, 350-359.	1.9	21
100	Tri-iodo-l-thyronine promotes the maturation of human cardiomyocytes-derived from induced pluripotent stem cells. Journal of Molecular and Cellular Cardiology, 2014, 72, 296-304.	1.9	357
101	Developmental Fate and Cellular Maturity Encoded in Human Regulatory DNA Landscapes. Cell, 2013, 154, 888-903.	28.9	329
102	SLIT3–ROBO4 activation promotes vascular network formation in human engineered tissue and angiogenesis in vivo. Journal of Molecular and Cellular Cardiology, 2013, 64, 124-131.	1.9	62
103	Cardiopoietry in Motion. Journal of the American College of Cardiology, 2013, 61, 2339-2340.	2.8	14
104	Human myocardial grafts: do they meet all the criteria for true heart regeneration?. Future Cardiology, 2013, 9, 151-154.	1.2	1
105	Lack of thrombospondin-2 reduces fibrosis and increases vascularity around cardiac cell grafts. Cardiovascular Pathology, 2013, 22, 91-95.	1.6	34
106	Transmembrane protein 88: a Wnt regulatory protein that specifies cardiomyocyte development. Development (Cambridge), 2013, 140, 3799-3808.	2.5	56
107	Improving survival and efficacy of pluripotent stem cell–derived cardiac grafts. Journal of Cellular and Molecular Medicine, 2013, 17, 1355-1362.	3.6	68
108	Transgenic overexpression of ribonucleotide reductase improves cardiac performance. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6187-6192.	7.1	40

#	Article	IF	CITATIONS
109	Truncations of Titin Causing Dilated Cardiomyopathy. New England Journal of Medicine, 2012, 366, 619-628.	27.0	1,147
110	A Temporal Chromatin Signature in Human Embryonic Stem Cells Identifies Regulators of Cardiac Development. Cell, 2012, 151, 221-232.	28.9	306
111	Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature, 2012, 489, 322-325.	27.8	668
112	Human Embryonic Stem Cells Differentiated to Lung Lineage-Specific Cells Ameliorate Pulmonary Fibrosis in a Xenograft Transplant Mouse Model. PLoS ONE, 2012, 7, e33165.	2.5	86
113	Targeted Genomic Integration of a Selectable Floxed Dual Fluorescence Reporter in Human Embryonic Stem Cells. PLoS ONE, 2012, 7, e46971.	2.5	29
114	Growth of Engineered Human Myocardium With Mechanical Loading and Vascular Coculture. Circulation Research, 2011, 109, 47-59.	4.5	590
115	Reprogramming Fibroblasts into Cardiomyocytes. New England Journal of Medicine, 2011, 364, 177-178.	27.0	18
116	Upregulation of cardiomyocyte ribonucleotide reductase increases intracellular 2 deoxy-ATP, contractility, and relaxation. Journal of Molecular and Cellular Cardiology, 2011, 51, 894-901.	1.9	44
117	Heart regeneration. Nature, 2011, 473, 326-335.	27.8	1,112
118	Engineered Human Cardiac Tissue. Pediatric Cardiology, 2011, 32, 334-341.	1.3	23
119	Delivery of basic fibroblast growth factor with a pH-responsive, injectable hydrogel to improve angiogenesis in infarcted myocardium. Biomaterials, 2011, 32, 2407-2416.	11.4	235
120	Ferritin Overexpression for Noninvasive Magnetic Resonance Imaging–Based Tracking of Stem Cells Transplanted into the Heart. Molecular Imaging, 2010, 9, 7290.2010.00020.	1.4	68
121	VEGF Induces Differentiation of Functional Endothelium From Human Embryonic Stem Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 80-89.	2.4	146
122	Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15211-15216.	7.1	575
123	Endogenous Wnt/β-Catenin Signaling Is Required for Cardiac Differentiation in Human Embryonic Stem Cells. PLoS ONE, 2010, 5, e11134.	2.5	247
124	Scaffold-Free Human Cardiac Tissue Patch Created from Embryonic Stem Cells. Tissue Engineering - Part A, 2009, 15, 1211-1222.	3.1	149
125	Turnover After the Fallout. Science, 2009, 324, 47-48.	12.6	22
126	Systems approaches to preventing transplanted cell death in cardiac repair. Journal of Molecular and Cellular Cardiology, 2008, 45, 567-581.	1.9	364

#	Article	IF	CITATIONS
127	A Hierarchical Network Controls Protein Translation during Murine Embryonic Stem Cell Self-Renewal and Differentiation. Cell Stem Cell, 2008, 2, 448-460.	11.1	253
128	Absence of regeneration in the MRL/MpJ mouse heart following infarction or cryoinjury. Cardiovascular Pathology, 2008, 17, 6-13.	1.6	43
129	Differentiation of Embryonic Stem Cells toÂClinically Relevant Populations: Lessons from Embryonic Development. Cell, 2008, 132, 661-680.	28.9	1,567
130	Get With the (Re)Program. Circulation, 2008, 118, 472-475.	1.6	15
131	Response to "Comment on †Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response'― FASEB Journal, 2007, 21, 1291-1291.	0.5	3
132	Chemical Dimerization of Fibroblast Growth Factor Receptor-1 Induces Myoblast Proliferation, Increases Intracardiac Graft Size, and Reduces Ventricular Dilation in Infarcted Hearts. Human Gene Therapy, 2007, 18, 401-412.	2.7	18
133	Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB Journal, 2007, 21, 1345-1357.	0.5	564
134	Biphasic role for Wnt/beta-catenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9685-9690.	7.1	579
135	Fibroblast Growth Factor-2 Regulates Myocardial Infarct Repair. American Journal of Pathology, 2007, 171, 1431-1440.	3.8	155
136	Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotechnology, 2007, 25, 1015-1024.	17.5	2,050
137	Regeneration Gaps. Journal of the American College of Cardiology, 2006, 47, 1777-1785.	2.8	336
138	rAAV6-microdystrophin preserves muscle function and extends lifespan in severely dystrophic mice. Nature Medicine, 2006, 12, 787-789.	30.7	274
139	Response to Letter Regarding Article "Extracardiac Progenitor Cells Repopulate Most Major Cell Types in the Transplanted Human Heart― Circulation, 2006, 113, .	1.6	Ο
140	Regenerating the heart. Nature Biotechnology, 2005, 23, 845-856.	17.5	906
141	Extracardiac Progenitor Cells Repopulate Most Major Cell Types in the Transplanted Human Heart. Circulation, 2005, 112, 2951-2958.	1.6	143
142	Cell-Based Cardiac Repair. Circulation, 2005, 112, 3174-3183.	1.6	349
143	Formation of Human Myocardium in the Rat Heart from Human Embryonic Stem Cells. American Journal of Pathology, 2005, 167, 663-671.	3.8	418
144	Proliferation of cardiomyocytes derived from human embryonic stem cells is mediated via the IGF/PI 3-kinase/Akt signaling pathway. Journal of Molecular and Cellular Cardiology, 2005, 39, 865-873.	1.9	173

#	Article	IF	CITATIONS
145	Evidence for Fusion Between Cardiac and Skeletal Muscle Cells. Circulation Research, 2004, 94, e56-60.	4.5	125
146	NFATc3-Induced Reductions in Voltage-Gated K + Currents After Myocardial Infarction. Circulation Research, 2004, 94, 1340-1350.	4.5	90
147	Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature, 2004, 428, 664-668.	27.8	2,050
148	Myofibroblast and Endothelial Cell Proliferation during Murine Myocardial Infarct Repair. American Journal of Pathology, 2003, 163, 2433-2440.	3.8	251
149	Evidence for Cardiomyocyte Repopulation by Extracardiac Progenitors in Transplanted Human Hearts. Circulation Research, 2002, 90, 634-640.	4.5	423
150	Taking the Death Toll After Cardiomyocyte Grafting: A Reminder of the Importance of Quantitative Biology. Journal of Molecular and Cellular Cardiology, 2002, 34, 251-253.	1.9	97
151	Skeletal Muscle Stem Cells Do Not Transdifferentiate Into Cardiomyocytes After Cardiac Grafting. Journal of Molecular and Cellular Cardiology, 2002, 34, 241-249.	1.9	362
152	Muscle cell grafting for the treatment and prevention of heart failure. Journal of Cardiac Failure, 2002, 8, S532-S541.	1.7	40
153	In vitro generation of differentiated cardiac myofibers on micropatterned laminin surfaces. Journal of Biomedical Materials Research Part B, 2002, 60, 472-479.	3.1	174
154	Cardiomyocyte Grafting for Cardiac Repair: Graft Cell Death and Anti-Death Strategies. Journal of Molecular and Cellular Cardiology, 2001, 33, 907-921.	1.9	823
155	Electromechanical Coupling between Skeletal and Cardiac Muscle. Journal of Cell Biology, 2000, 149, 731-740.	5.2	330
156	Transmural Replacement of Myocardium after Skeletal Myoblast Grafting into the Heart. Cardiovascular Pathology, 2000, 9, 337-344.	1.6	79
157	Survival, Integration, and Differentiation of Cardiomyocyte Grafts. Circulation, 1999, 100, 193-202.	1.6	500
158	Shear Stress Stimulation of p130 Tyrosine Phosphorylation Requires Calcium-dependent c-Src Activation. Journal of Biological Chemistry, 1999, 274, 26803-26809.	3.4	106
159	Platelet-Derived Growth Factor–A mRNA Expression in Fetal, Normal Adult, and Atherosclerotic Human Aortas. Circulation, 1996, 93, 1095-1106.	1.6	15
160	Osteopontin Expression in Cardiovascular Diseases ^a . Annals of the New York Academy of Sciences, 1995, 760, 109-126.	3.8	173
161	Healing of Myocardial Infarcts in Dogs. Circulation, 1995, 92, 1891-1901.	1.6	78
162	Electrophysiological Effects of Monophasic and Biphasic Stimuli in Normal and Infarcted Dogs. PACE - Pacing and Clinical Electrophysiology, 1990, 13, 1158-1172.	1.2	51

0

#	Article	IF	CITATIONS
163	Evaluation of Free Radical Injury in Myocardium. Toxicologic Pathology, 1990, 18, 470-480.	1.8	23

164 Pitfalls Associated with cDNA Microarrays– A Cautionary Tale. , 0, , 113-125.