Carole Bourquin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9030289/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mesoporous Silica Nanoparticles as pH-Responsive Carrier for the Immune-Activating Drug Resiquimod Enhance the Local Immune Response in Mice. ACS Nano, 2021, 15, 4450-4466.	14.6	94
2	HMGB1 promotes CXCL12â€dependent egress of murine B cells from Peyer's patches in homeostasis. European Journal of Immunology, 2021, 51, 1980-1991.	2.9	5
3	The interleukin-1 cytokine family members: Role in cancer pathogenesis and potential therapeutic applications in cancer immunotherapy. Cytokine and Growth Factor Reviews, 2021, 62, 1-14.	7.2	21
4	Harnessing the immune system to fight cancer with Toll-like receptor and RIG-I-like receptor agonists. Pharmacological Research, 2020, 154, 104192.	7.1	45
5	<p>Silver-Containing Titanium Dioxide Nanocapsules for Combating Multidrug-Resistant Bacteria</p> . International Journal of Nanomedicine, 2020, Volume 15, 1267-1281.	6.7	19
6	Bionanomaterials for the Delivery of Cancer Immunotherapy. Chimia, 2019, 73, 69.	0.6	4
7	Polymer-Coated Gold Nanospheres Do Not Impair the Innate Immune Function of Human B Lymphocytes <i>in Vitro</i> . ACS Nano, 2019, 13, 6790-6800.	14.6	23
8	CCL22 controls immunity by promoting regulatory T cell communication with dendritic cells in lymph nodes. Journal of Experimental Medicine, 2019, 216, 1170-1181.	8.5	145
9	Development of resiquimod-loaded modified PLA-based nanoparticles for cancer immunotherapy: A kinetic study. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 139, 253-261.	4.3	28
10	Amphiphilic nanoparticle delivery enhances the anticancer efficacy of a TLR7 ligand via local immune activation. Biomaterials, 2019, 190-191, 111-120.	11.4	43
11	Engineered hybrid spider silk particles as delivery system for peptide vaccines. Biomaterials, 2018, 172, 105-115.	11.4	44
12	Polymer-based nanoparticles loaded with a TLR7 ligand to target the lymph node for immunostimulation. International Journal of Pharmaceutics, 2018, 535, 444-451.	5.2	48
13	Hook length of the bacterial flagellum is optimized for maximal stability of the flagellar bundle. PLoS Biology, 2018, 16, e2006989.	5.6	31
14	NAB2 is a novel immune stimulator of MDA-5 that promotes a strong type I interferon response. Oncotarget, 2018, 9, 5641-5651.	1.8	7
15	A rapid screening method to evaluate the impact of nanoparticles on macrophages. Nanoscale, 2017, 9, 2492-2504.	5.6	16
16	Arginase inhibition suppresses lung metastasis in the 4T1 breast cancer model independently of the immunomodulatory and anti-metastatic effects of VEGFR-2 blockade. OncoImmunology, 2017, 6, e1316437.	4.6	40
17	Antimicrobial silver-filled silica nanorattles with low immunotoxicity in dendritic cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 11-22.	3.3	23
18	Reprogramming of TLR7 signaling enhances antitumor NK and cytotoxic T cell responses. Oncolmmunology, 2016, 5, e1232219.	4.6	31

CAROLE BOURQUIN

#	Article	IF	CITATIONS
19	TLR7-based cancer immunotherapy decreases intratumoral myeloid-derived suppressor cells and blocks their immunosuppressive function. Oncolmmunology, 2016, 5, e1230578.	4.6	65
20	Neonatal Immune Tolerance Induction to Allow Long-Term Studies With an Immunogenic Therapeutic Monoclonal Antibody in Mice. AAPS Journal, 2016, 18, 354-361.	4.4	5
21	Immune response to functionalized mesoporous silica nanoparticles for targeted drug delivery. Nanoscale, 2016, 8, 938-948.	5.6	93
22	Mycoplasma hyorhinis-Contaminated Cell Lines Activate Primary Innate Immune Cells via a Protease-Sensitive Factor. PLoS ONE, 2015, 10, e0142523.	2.5	3
23	TLR and RLR Signaling Are Reprogrammed in Opposite Directions after Detection of Viral Infection. Journal of Immunology, 2015, 195, 4387-4395.	0.8	31
24	Suppression of Intratumoral CCL22 by Type I Interferon Inhibits Migration of Regulatory T Cells and Blocks Cancer Progression. Cancer Research, 2015, 75, 4483-4493.	0.9	59
25	Selective Bispecific T Cell Recruiting Antibody and Antitumor Activity of Adoptive T Cell Transfer. Journal of the National Cancer Institute, 2015, 107, 364.	6.3	34
26	The dipeptidylpeptidaseâ€ŀV inhibitors sitagliptin, vildagliptin and saxagliptin do not impair innate and adaptive immune responses. Diabetes, Obesity and Metabolism, 2014, 16, 569-572.	4.4	19
27	Phage idiotype vaccination: first phase I/II clinical trial in patients with multiple myeloma. Journal of Translational Medicine, 2014, 12, 119.	4.4	24
28	Chemically linked phage idiotype vaccination in the murine B cell lymphoma 1 model. Journal of Translational Medicine, 2013, 11, 267.	4.4	14
29	Virus-associated activation of innate immunity induces rapid disruption of Peyer's patches in mice. Blood, 2013, 122, 2591-2599.	1.4	6
30	Omega-3 Fatty Acids Prevent Inflammation and Metabolic Disorder through Inhibition of NLRP3 Inflammasome Activation. Immunity, 2013, 38, 1154-1163.	14.3	597
31	TLR Activation Excludes Circulating Naive CD8+ T Cells from Gut-Associated Lymphoid Organs in Mice. Journal of Immunology, 2013, 190, 5313-5320.	0.8	4
32	Systemic cancer immunotherapy with Toll-like receptor 7 agonists. Oncolmmunology, 2012, 1, 227-228.	4.6	20
33	Recruitment of Natural Killer Cells in Advanced Stages of Endogenously Arising B-cell Lymphoma. Journal of Immunotherapy, 2012, 35, 217-222.	2.4	24
34	Chronic progressive HIV-1 infection is associated with elevated levels of myeloid-derived suppressor cells. Aids, 2012, 26, F31-F37.	2.2	137
35	Antibodies and IL-3 support helminth-induced basophil expansion. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14954-14959.	7.1	42
36	PS2-023. Following TLR Activation Naive CD8 T Cells Are Excluded From Gut-Associated Lymphoid Tissue In An IL-6-Dependent Manner. Cytokine, 2011, 56, 69.	3.2	0

CAROLE BOURQUIN

#	Article	IF	CITATIONS
37	In breast cancer, a high ratio of tumourâ€infiltrating intraepithelial CD8+ to FoxP3+ cells is characteristic for the medullary subtype. Histopathology, 2011, 59, 965-974.	2.9	19
38	Cellular Immunostimulation by CpG-Sequence-Coated DNA Origami Structures. ACS Nano, 2011, 5, 9696-9702.	14.6	433
39	CD103 is a hallmark of tumorâ€infiltrating regulatory T cells. International Journal of Cancer, 2011, 129, 2417-2426.	5.1	104
40	ISCOMATRIX Adjuvant Combines Immune Activation with Antigen Delivery to Dendritic Cells In Vivo Leading to Effective Cross-Priming of CD8+ T Cells. Journal of Immunology, 2011, 187, 55-63.	0.8	105
41	Systemic Cancer Therapy with a Small Molecule Agonist of Toll-like Receptor 7 Can Be Improved by Circumventing TLR Tolerance. Cancer Research, 2011, 71, 5123-5133.	0.9	73
42	Antigen Delivery to Plasmacytoid Dendritic Cells via BST2 Induces Protective T Cell-Mediated Immunity. Journal of Immunology, 2011, 186, 6718-6725.	0.8	71
43	CpG Blocks Immunosuppression by Myeloid-Derived Suppressor Cells in Tumor-Bearing Mice. Clinical Cancer Research, 2011, 17, 1765-1775.	7.0	218
44	Delivery of Immunostimulatory RNA Oligonucleotides by Gelatin Nanoparticles Triggers an Efficient Antitumoral Response. Journal of Immunotherapy, 2010, 33, 935-944.	2.4	26
45	Immunostimulatory RNA Blocks Suppression by Regulatory T Cells. Journal of Immunology, 2010, 184, 939-946.	0.8	55
46	Efficient Eradication of Subcutaneous but Not of Autochthonous Gastric Tumors by Adoptive T Cell Transfer in an SV40 T Antigen Mouse Model. Journal of Immunology, 2010, 185, 2580-2588.	0.8	23
47	Superior Protective Immunity against Murine Listeriosis by Combined Vaccination with CpG DNA and Recombinant <i>Salmonella enterica</i> Serovar Typhimurium. Infection and Immunity, 2009, 77, 5501-5508.	2.2	11
48	Immunostimulatory RNA Oligonucleotides Induce an Effective Antitumoral NK Cell Response through the TLR7. Journal of Immunology, 2009, 183, 6078-6086.	0.8	42
49	Activation of Melanoma Differentiation-Associated Gene 5 Causes Rapid Involution of the Thymus. Journal of Immunology, 2009, 182, 6044-6050.	0.8	34
50	Short-term activation induces multifunctional dendritic cells that generate potent antitumor T-cell responses in vivo. Cancer Immunology, Immunotherapy, 2009, 58, 901-913.	4.2	15
51	Morphological and immunocytochemical characteristics indicate the yield of early progenitors and represent a quality control for human mesenchymal stem cell culturing. Journal of Anatomy, 2009, 214, 759-767.	1.5	117
52	Selection of Molecular Structure and Delivery of RNA Oligonucleotides to Activate TLR7 versus TLR8 and to Induce High Amounts of IL-12p70 in Primary Human Monocytes. Journal of Immunology, 2009, 182, 6824-6833.	0.8	90
53	Delivery by Cationic Gelatin Nanoparticles Strongly Increases the Immunostimulatory Effects of CpG Oligonucleotides. Pharmaceutical Research, 2008, 25, 551-562.	3.5	117
54	5′-triphosphate-siRNA: turning gene silencing and Rig-I activation against melanoma. Nature Medicine, 2008, 14, 1256-1263.	30.7	353

CAROLE BOURQUIN

#	Article	IF	CITATIONS
55	DNA vaccination efficiently induces antibodies to Nogo-A and does not exacerbate experimental autoimmune encephalomyelitis. European Journal of Pharmacology, 2008, 588, 99-105.	3.5	7
56	Targeting CpG Oligonucleotides to the Lymph Node by Nanoparticles Elicits Efficient Antitumoral Immunity. Journal of Immunology, 2008, 181, 2990-2998.	0.8	150
57	Immunostimulatory RNA oligonucleotides trigger an antigen-specific cytotoxic T-cell and IgG2a response. Blood, 2007, 109, 2953-2960.	1.4	54
58	Immunotherapy with dendritic cells and CpG oligonucleotides can be combined with chemotherapy without loss of efficacy in a mouse model of colon cancer. International Journal of Cancer, 2006, 118, 2790-2795.	5.1	39
59	Sequence-specific potent induction of IFN-α by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nature Medicine, 2005, 11, 263-270.	30.7	1,153
60	Genetic variation in myelin oligodendrocyte glycoprotein expression and susceptibility to experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2003, 139, 1-8.	2.3	20
61	Selective Unresponsiveness to Conformational B Cell Epitopes of the Myelin Oligodendrocyte Glycoprotein in H-2b Mice. Journal of Immunology, 2003, 171, 455-461.	0.8	41
62	Fc Receptors are Critical for Autoimmune Inflammatory Damage to the Central Nervous System in Experimental Autoimmune Encephalomyelitis. Scandinavian Journal of Immunology, 2002, 55, 70-81.	2.7	82
63	Myelin oligodendrocyte glycoprotein-DNA vaccination induces antibody-mediated autoaggression in experimental autoimmune encephalomyelitis. European Journal of Immunology, 2000, 30, 3663-3671.	2.9	52
64	Myelin oligodendrocyte glycoprotein-DNA vaccination induces antibody-mediated autoaggression in experimental autoimmune encephalomyelitis. European Journal of Immunology, 2000, 30, 3663-3671.	2.9	1