
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9030005/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tire wear particles: An emerging threat to soil health. Critical Reviews in Environmental Science and Technology, 2023, 53, 239-257.	6.6	37
2	Soil metaphenomics: a step forward in metagenomics. Archives of Agronomy and Soil Science, 2022, 68, 1645-1663.	1.3	5
3	The enigma of environmental organoarsenicals: Insights and implications. Critical Reviews in Environmental Science and Technology, 2022, 52, 3835-3862.	6.6	20
4	Soil plastispheres as hotspots of antibiotic resistance genes and potential pathogens. ISME Journal, 2022, 16, 521-532.	4.4	148
5	Profiling the antibiotic resistome in soils between pristine and human-affected sites on the Tibetan Plateau. Journal of Environmental Sciences, 2022, 111, 442-451.	3.2	16
6	The chemical-microbial release and transformation of arsenic induced by citric acid in paddy soil. Journal of Hazardous Materials, 2022, 421, 126731.	6.5	14
7	Metabolic responses of indigenous bacteria in chicken faeces and maggots to multiple antibiotics via heavy water labeled single-cell Raman spectroscopy. Journal of Environmental Sciences, 2022, 113, 394-402.	3.2	5
8	Variations of earthworm gut bacterial community composition and metabolic functions in coastal upland soil along a 700-year reclamation chronosequence. Science of the Total Environment, 2022, 804, 149994.	3.9	27
9	Fluoroquinolone antibiotics disturb the defense system, gut microbiome, and antibiotic resistance genes of Enchytraeus crypticus. Journal of Hazardous Materials, 2022, 424, 127509.	6.5	24
10	Similar heterotrophic communities but distinct interactions supported by red and greenâ€snow algae in the Antarctic Peninsula. New Phytologist, 2022, 233, 1358-1368.	3.5	7
11	Distribution, transfer, ecological and human health risks of antibiotics in bay ecosystems. Environment International, 2022, 158, 106949.	4.8	24
12	Host age increased conjugal plasmid transfer in gut microbiota of the soil invertebrate Caenorhabditis elegans. Journal of Hazardous Materials, 2022, 424, 127525.	6.5	6
13	Long-term combined application of chemical fertilizers and organic manure shapes the gut microbial diversity and functional community structures of earthworms. Applied Soil Ecology, 2022, 170, 104250.	2.1	10
14	Landscape of genes in hospital wastewater breaking through the defense line of last-resort antibiotics. Water Research, 2022, 209, 117907.	5.3	13
15	Discarded masks as hotspots of antibiotic resistance genes during COVID-19 pandemic. Journal of Hazardous Materials, 2022, 425, 127774.	6.5	22
16	Powering biological nitrogen removal from the environment by geobatteries. Trends in Biotechnology, 2022, 40, 377-380.	4.9	10
17	Microbial communities on biodegradable plastics under different fertilization practices in farmland soil microcosms. Science of the Total Environment, 2022, 809, 152184.	3.9	22
18	Antibiotic resistance genes and antibiotic sensitivity in bacterial aerosols and their comparisons with known respiratory pathogens. Journal of Aerosol Science, 2022, 161, 105931.	1.8	11

#	Article	IF	CITATIONS
19	How to build Urbanome, the genome of the city?. Science of the Total Environment, 2022, 810, 152310.	3.9	2
20	Removal of potentially toxic elements from contaminated soil and water using bone char compared to plant- and bone-derived biochars: A review. Journal of Hazardous Materials, 2022, 427, 128131.	6.5	31
21	Organochlorine contamination enriches virus-encoded metabolism and pesticide degradation associated auxiliary genes in soil microbiomes. ISME Journal, 2022, 16, 1397-1408.	4.4	45
22	Biosafety of human environments can be supported by effective use of renewable biomass. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	5
23	Impacts of global change on the phyllosphere microbiome. New Phytologist, 2022, 234, 1977-1986.	3.5	75
24	Identification of the rhizosphere microbes that actively consume plant-derived carbon. Soil Biology and Biochemistry, 2022, 166, 108577.	4.2	14
25	Nanopore sequencing analysis of integron gene cassettes in sewages and soils. Science of the Total Environment, 2022, 817, 152766.	3.9	9
26	The ecological clusters of soil organisms drive the ecosystem multifunctionality under long-term fertilization. Environment International, 2022, 161, 107133.	4.8	53
27	噬èŒä½"微生æ€ç−—法ä,Žä,€ä½"åŒ−å¥åºï¼šçŽ°çŠ¶ã€æŒ'æ~ä,Žæœºé‡. Scientia Sinica Vitae, 2022, ,	. 0.1	0
28	Viral diversity and potential environmental risk in microplastic at watershed scale: Evidence from metagenomic analysis of plastisphere. Environment International, 2022, 161, 107146.	4.8	23
29	Cross-biome antibiotic resistance decays after millions of years of soil development. ISME Journal, 2022, 16, 1864-1867.	4.4	8
30	Calling for comprehensive explorations between soil invertebrates and arbuscular mycorrhizas. Trends in Plant Science, 2022, 27, 793-801.	4.3	10
31	Abundance cannot represent antibiotic resistance risk. Soil Ecology Letters, 2022, 4, 291-292.	2.4	5
32	Soil inorganic carbon sequestration through alkalinity regeneration using biologically induced weathering of rock powder and biochar. Soil Ecology Letters, 2022, 4, 293-306.	2.4	9
33	Patterns and drivers of the degradability of dissolved organic matter in dryland soils on the Tibetan Plateau. Journal of Applied Ecology, 2022, 59, 884-894.	1.9	5
34	Widespread of Potential Pathogen-Derived Extracellular Vesicles Carrying Antibiotic Resistance Genes in Indoor Dust. Environmental Science & Technology, 2022, 56, 5653-5663.	4.6	12
35	Influences of arsenate and/or phosphate adsorption to ferrihydrite on iron-reducing and arsenic-reducing microbial communities in paddy soil revealed by rRNA-13C-acetate probing. Soil Biology and Biochemistry, 2022, 169, 108679.	4.2	5
36	Continentalâ€scale plant invasions reshuffle the soil microbiome of blue carbon ecosystems. Global Change Biology, 2022, 28, 4423-4438.	4.2	14

#	Article	IF	CITATIONS
37	Speciation Evolution of Phosphorus and Sulfur Derived from Sewage Sludge Biochar in Soil: Ageing Effects. Environmental Science & Technology, 2022, 56, 6639-6646.	4.6	13
38	Effects of Trophic Level and Land Use on the Variation of Animal Antibiotic Resistome in the Soil Food Web. Environmental Science & amp; Technology, 2022, 56, 14937-14947.	4.6	19
39	How different nitrogen fertilizers affect arsenic mobility in paddy soil after straw incorporation?. Journal of Hazardous Materials, 2022, 436, 129135.	6.5	10
40	Embedded Health Risk from Arsenic in Globally Traded Rice. Environmental Science & Technology, 2022, 56, 6415-6425.	4.6	10
41	Unveiling the role of dissolved organic matter on phosphorus sorption and availability in a 5-year manure amended paddy soil. Science of the Total Environment, 2022, 838, 155892.	3.9	8
42	Organic fertilizer potentiates the transfer of typical antibiotic resistance gene among special bacterial species. Journal of Hazardous Materials, 2022, 435, 128985.	6.5	15
43	Globally distributed mining-impacted environments are underexplored hotspots of multidrug resistance genes. ISME Journal, 2022, 16, 2099-2113.	4.4	35
44	Root stoichiometry explains wheat endophytes and their link with crop production after four decades of fertilization. Science of the Total Environment, 2022, 846, 157407.	3.9	4
45	Estuarine plastisphere as an overlooked source of N2O production. Nature Communications, 2022, 13, .	5.8	63
46	Sustainable removal of soil arsenic by naturally-formed iron oxides on plastic tubes. Journal of Hazardous Materials, 2022, 439, 129626.	6.5	3
47	A critical review of microplastic pollution in urban freshwater environments and legislative progress in China: Recommendations and insights. Critical Reviews in Environmental Science and Technology, 2021, 51, 2637-2680.	6.6	34
48	The co-evolution of life and organics on earth: Expansions of energy harnessing. Critical Reviews in Environmental Science and Technology, 2021, 51, 603-625.	6.6	2
49	Antibiotic resistome in the livestock and aquaculture industries: Status and solutions. Critical Reviews in Environmental Science and Technology, 2021, 51, 2159-2196.	6.6	109
50	Earthworm gut: An overlooked niche for anaerobic ammonium oxidation in agricultural soil. Science of the Total Environment, 2021, 752, 141874.	3.9	6
51	Co-selection of antibiotic resistance genes, and mobile genetic elements in the presence of heavy metals in poultry farm environments. Science of the Total Environment, 2021, 755, 142702.	3.9	122
52	Air pollution could drive global dissemination of antibiotic resistance genes. ISME Journal, 2021, 15, 270-281.	4.4	95
53	Rare taxa maintain the stability of crop mycobiomes and ecosystem functions. Environmental Microbiology, 2021, 23, 1907-1924.	1.8	132
54	Biodiversity of key-stone phylotypes determines crop production in a 4-decade fertilization experiment. ISME Journal, 2021, 15, 550-561.	4.4	208

#	Article	IF	CITATIONS
55	Lessons learned from COVID-19 on potentially pathogenic soil microorganisms. Soil Ecology Letters, 2021, 3, 1-5.	2.4	18
56	Deterministic selection dominates microbial community assembly in termite mounds. Soil Biology and Biochemistry, 2021, 152, 108073.	4.2	60
57	Fates of Antibiotic Resistance Genes in the Gut Microbiome from Different Soil Fauna under Long-Term Fertilization. Environmental Science & Technology, 2021, 55, 423-432.	4.6	26
58	Metagenomic and <scp> ¹⁴ C</scp> tracing evidence for autotrophic microbial <scp> CO₂ </scp> fixation in paddy soils. Environmental Microbiology, 2021, 23, 924-933.	1.8	13
59	Host selection shapes crop microbiome assembly and network complexity. New Phytologist, 2021, 229, 1091-1104.	3.5	349
60	Evaluation of Microbe-Driven Soil Organic Matter Quantity and Quality by Thermodynamic Theory. MBio, 2021, 12, .	1.8	7
61	Herbicide Selection Promotes Antibiotic Resistance in Soil Microbiomes. Molecular Biology and Evolution, 2021, 38, 2337-2350.	3.5	68
62	Long-Term Fertilization Shapes the Putative Electrotrophic Microbial Community in Paddy Soils Revealed by Microbial Electrosynthesis Systems. Environmental Science & Technology, 2021, 55, 3430-3441.	4.6	17
63	Bacterial communities are more sensitive to ocean acidification than fungal communities in estuarine sediments. FEMS Microbiology Ecology, 2021, 97, .	1.3	7
64	Termite mounds reduce soil microbial diversity by filtering rare microbial taxa. Environmental Microbiology, 2021, 23, 2659-2668.	1.8	8
65	Potential of indigenous crop microbiomes for sustainable agriculture. Nature Food, 2021, 2, 233-240.	6.2	51
66	Biotic and abiotic factors distinctly drive contrasting biogeographic patterns between phyllosphere and soil resistomes in natural ecosystems. ISME Communications, 2021, 1, .	1.7	23
67	Soil-Food-Environment-Health Nexus for Sustainable Development. Research, 2021, 2021, 9804807.	2.8	15
68	Antibiotic resistance in the soil ecosystem: A One Health perspective. Current Opinion in Environmental Science and Health, 2021, 20, 100230.	2.1	43
69	Deciphering Potential Roles of Earthworms in Mitigation of Antibiotic Resistance in the Soils from Diverse Ecosystems. Environmental Science & amp; Technology, 2021, 55, 7445-7455.	4.6	49
70	Developing Surrogate Markers for Predicting Antibiotic Resistance "Hot Spots―in Rivers Where Limited Data Are Available. Environmental Science & Technology, 2021, 55, 7466-7478.	4.6	21
71	Seasonal change is a major driver of soil resistomes at a watershed scale. ISME Communications, 2021, 1, .	1.7	20
72	Termite mound formation reduces the abundance and diversity of soil resistomes. Environmental Microbiology, 2021, 23, 7661-7670.	1.8	7

#	Article	IF	CITATIONS
73	Impact of Urbanization on Antibiotic Resistome in Different Microplastics: Evidence from a Large-Scale Whole River Analysis. Environmental Science & Technology, 2021, 55, 8760-8770.	4.6	57
74	Super pathogens from environmental biotechnologies threaten global health. National Science Review, 2021, 8, nwab110.	4.6	4
75	Novel clades of soil biphenyl degraders revealed by integrating isotope probing, multi-omics, and single-cell analyses. ISME Journal, 2021, 15, 3508-3521.	4.4	14
76	Antibiotic exposure decreases soil arsenic oral bioavailability in mice by disrupting ileal microbiota and metabolic profile. Environment International, 2021, 151, 106444.	4.8	26
77	Agricultural land-use change and rotation system exert considerable influences on the soil antibiotic resistome in Lake Tai Basin. Science of the Total Environment, 2021, 771, 144848.	3.9	27
78	Vertical distribution of antibiotic resistance genes in an urban green facade. Environment International, 2021, 152, 106502.	4.8	24
79	Mycorrhiza and Iron Tailings Synergistically Enhance Maize Resistance to Arsenic on Medium Arsenic-Polluted Soils Through Increasing Phosphorus and Iron Uptake. Bulletin of Environmental Contamination and Toxicology, 2021, 107, 1155-1160.	1.3	5
80	Arbuscular mycorrhizal fungi and plant diversity drive restoration of nitrogen ycling microbial communities. Molecular Ecology, 2021, 30, 4133-4146.	2.0	12
81	Spatial patterns of urban green space and its actual utilization status in China based on big data analysis. Big Earth Data, 2021, 5, 391-409.	2.0	11
82	Arsenic transformation and volatilization by arbuscular mycorrhizal symbiosis under axenic conditions. Journal of Hazardous Materials, 2021, 413, 125390.	6.5	14
83	High-Throughput Single-Cell Technology Reveals the Contribution of Horizontal Gene Transfer to Typical Antibiotic Resistance Gene Dissemination in Wastewater Treatment Plants. Environmental Science & Technology, 2021, 55, 11824-11834.	4.6	33
84	Paper-Based Devices As a New Tool for Rapid and on-Site Monitoring of "Superbugs― Environmental Science & Technology, 2021, 55, 12133-12135.	4.6	2
85	Environmental antimicrobial resistance is associated with faecal pollution in Central Thailand's coastal aquaculture region. Journal of Hazardous Materials, 2021, 416, 125718.	6.5	25
86	Longitudinal study on the effects of growth-promoting and therapeutic antibiotics on the dynamics of chicken cloacal and litter microbiomes and resistomes. Microbiome, 2021, 9, 178.	4.9	30
87	Precipitation increases the abundance of fungal plant pathogens in <i>Eucalyptus</i> phyllosphere. Environmental Microbiology, 2021, 23, 7688-7700.	1.8	20
88	Stimulation of N ₂ O emission via bacterial denitrification driven by acidification in estuarine sediments. Global Change Biology, 2021, 27, 5564-5579.	4.2	34
89	High Arsenic Levels Increase Activity Rather than Diversity or Abundance of Arsenic Metabolism Genes in Paddy Soils. Applied and Environmental Microbiology, 2021, 87, e0138321.	1.4	9
90	Continental-Scale Paddy Soil Bacterial Community Structure, Function, and Biotic Interaction. MSystems, 2021, 6, e0136820.	1.7	6

#	Article	IF	CITATIONS
91	Future research needs for environmental science in China. Geography and Sustainability, 2021, , .	1.9	3
92	Gammaproteobacteria, a core taxon in the guts of soil fauna, are potential responders to environmental concentrations of soil pollutants. Microbiome, 2021, 9, 196.	4.9	46
93	MoS ₂ Nanosheets–Cyanobacteria Interaction: Reprogrammed Carbon and Nitrogen Metabolism. ACS Nano, 2021, 15, 16344-16356.	7.3	28
94	Trophic level drives the host microbiome of soil invertebrates at a continental scale. Microbiome, 2021, 9, 189.	4.9	18
95	Raman biosensor and molecular tools for integrated monitoring of pathogens and antimicrobial resistance in wastewater. TrAC - Trends in Analytical Chemistry, 2021, 143, 116415.	5.8	13
96	Insights into the roles of fungi and protist in the giant panda gut microbiome and antibiotic resistome. Environment International, 2021, 155, 106703.	4.8	26
97	Characterization of tetracycline-resistant microbiome in soil-plant systems by combination of H218O-based DNA-Stable isotope probing and metagenomics. Journal of Hazardous Materials, 2021, 420, 126440.	6.5	10
98	Viral Community and Virus-Associated Antibiotic Resistance Genes in Soils Amended with Organic Fertilizers. Environmental Science & Technology, 2021, 55, 13881-13890.	4.6	49
99	Warming-driven migration of core microbiota indicates soil property changes at continental scale. Science Bulletin, 2021, 66, 2025-2035.	4.3	12
100	How can fertilization regimes and durations shape earthworm gut microbiota in a long-term field experiment?. Ecotoxicology and Environmental Safety, 2021, 224, 112643.	2.9	9
101	Combined pollution of arsenic and Polymyxin B enhanced arsenic toxicity and enriched ARG abundance in soil and earthworm gut microbiotas. Journal of Environmental Sciences, 2021, 109, 171-180.	3.2	17
102	Will a Non-antibiotic Metalloid Enhance the Spread of Antibiotic Resistance Genes: The Selenate Story. Environmental Science & Technology, 2021, 55, 1004-1014.	4.6	42
103	Influence of Legacy Mercury on Antibiotic Resistomes: Evidence from Agricultural Soils with Different Cropping Systems. Environmental Science & Technology, 2021, 55, 13913-13922.	4.6	19
104	Does biological rhythm transmit from plants to rhizosphere microbes?. Environmental Microbiology, 2021, 23, 6895-6906.	1.8	8
105	Technologies and perspectives for achieving carbon neutrality. Innovation(China), 2021, 2, 100180.	5.2	306
106	Global meta-analysis of microplastic contamination in reservoirs with a novel framework. Water Research, 2021, 207, 117828.	5.3	68
107	Build in prevention and preparedness to improve climate resilience in coastal cities: Lessons from China's GBA. One Earth, 2021, 4, 1356-1360.	3.6	13
108	Controlling pathogenic risks of water treatment biotechnologies at the source by genetic editing means. Environmental Microbiology, 2021, 23, 7578-7590.	1.8	9

#	Article	IF	CITATIONS
109	Spatial and temporal dynamics of microbiomes and resistomes in broiler litter stockpiles. Computational and Structural Biotechnology Journal, 2021, 19, 6201-6211.	1.9	5
110	Bioavailable arsenic and amorphous iron oxides provide reliable predictions for arsenic transfer in soil-wheat system. Journal of Hazardous Materials, 2020, 383, 121160.	6.5	34
111	Identification of potential electrotrophic microbial community in paddy soils by enrichment of microbial electrolysis cell biocathodes. Journal of Environmental Sciences, 2020, 87, 411-420.	3.2	7
112	Phosphorus fractions and oxygen isotope composition of inorganic phosphate in typical agricultural soils. Chemosphere, 2020, 239, 124622.	4.2	25
113	Partial replacement of inorganic phosphorus (P) by organic manure reshapes phosphate mobilizing bacterial community and promotes P bioavailability in a paddy soil. Science of the Total Environment, 2020, 703, 134977.	3.9	95
114	Large-scale patterns of soil antibiotic resistome in Chinese croplands. Science of the Total Environment, 2020, 712, 136418.	3.9	53
115	Chronic kidney disease of unknown etiology (CKDu): Using a system dynamics model to conceptualize the multiple environmental causative pathways of the epidemic. Science of the Total Environment, 2020, 705, 135766.	3.9	11
116	Microbial resistance promotes plant production in a four-decade nutrient fertilization experiment. Soil Biology and Biochemistry, 2020, 141, 107679.	4.2	59
117	Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils. Soil Biology and Biochemistry, 2020, 141, 107686.	4.2	247
118	Host identity determines plant associated resistomes. Environmental Pollution, 2020, 258, 113709.	3.7	23
119	Restoring Abandoned Farmland to Mitigate Climate Change on a Full Earth. One Earth, 2020, 3, 176-186.	3.6	60
120	Integrating Biomedical, Ecological, and Sustainability Sciences to Manage Emerging Infectious Diseases. One Earth, 2020, 3, 23-26.	3.6	22
121	Mediated electrochemical analysis as emerging tool to unravel links between microbial redox cycling of natural organic matter and anoxic nitrogen cycling. Earth-Science Reviews, 2020, 208, 103281.	4.0	10
122	Meteorological impact on the COVID-19 pandemic: A study across eight severely affected regions in South America. Science of the Total Environment, 2020, 744, 140881.	3.9	56
123	Coupled anaerobic methane oxidation and reductive arsenic mobilization in wetland soils. Nature Geoscience, 2020, 13, 799-805.	5.4	71
124	Could Global Intensification of Nitrogen Fertilisation Increase Immunogenic Proteins and Favour the Spread of Coeliac Pathology?. Foods, 2020, 9, 1602.	1.9	9
125	Transboundary Environmental Footprints of the Urban Food Supply Chain and Mitigation Strategies. Environmental Science & Technology, 2020, 54, 10460-10471.	4.6	28
126	Crop production correlates with soil multitrophic communities at the large spatial scale. Soil Biology and Biochemistry, 2020, 151, 108047.	4.2	43

#	Article	IF	CITATIONS
127	COVID-19 reveals the systemic nature of urban health globally. Cities and Health, 2020, , 1-5.	1.6	12
128	Temporal Dynamics of Antibiotic Resistome in the Plastisphere during Microbial Colonization. Environmental Science & Technology, 2020, 54, 11322-11332.	4.6	135
129	Antibiotic Resistance in the Collembolan Gut Microbiome Accelerated by the Nonantibiotic Drug Carbamazepine. Environmental Science & Technology, 2020, 54, 10754-10762.	4.6	25
130	Cyanobacterial blooms contribute to the diversity of antibiotic-resistance genes in aquatic ecosystems. Communications Biology, 2020, 3, 737.	2.0	66
131	Soil bacterial taxonomic diversity is critical to maintaining the plant productivity. Environment International, 2020, 140, 105766.	4.8	114
132	High starter phosphorus fertilization facilitates soil phosphorus turnover by promoting microbial functional interaction in an arable soil. Journal of Environmental Sciences, 2020, 94, 179-185.	3.2	14
133	Space Is More Important than Season when Shaping Soil Microbial Communities at a Large Spatial Scale. MSystems, 2020, 5, .	1.7	71
134	Dysbiosis in the Gut Microbiota of Soil Fauna Explains the Toxicity of Tire Tread Particles. Environmental Science & Technology, 2020, 54, 7450-7460.	4.6	71
135	Response to the commentary by M.W.C. Dharma-wardana on †Chronic kidney disease of unknown etiology (CKDu): Using a system dynamics model to conceptualize the multiple environmental causative pathways of the epidemic'. Science of the Total Environment, 2020, 721, 137591.	3.9	Ο
136	Dam Construction as an Important Anthropogenic Activity Disturbing Soil Organic Carbon in Affected Watersheds. Environmental Science & Technology, 2020, 54, 7932-7941.	4.6	6
137	Microbial functional traits in phyllosphere are more sensitive to anthropogenic disturbance than in soil. Environmental Pollution, 2020, 265, 114954.	3.7	34
138	Abundance, diversity, and structure of Geobacteraceae community in paddy soil under long-term fertilization practices. Applied Soil Ecology, 2020, 153, 103577.	2.1	16
139	Changes in the environmental microbiome in the Anthropocene. Global Change Biology, 2020, 26, 3175-3177.	4.2	30
140	The driving factors of nematode gut microbiota under long-term fertilization. FEMS Microbiology Ecology, 2020, 96, .	1.3	12
141	Abundance of kinless hubs within soil microbial networks are associated with high functional potential in agricultural ecosystems. Environment International, 2020, 142, 105869.	4.8	158
142	Economic Valuation of Earth's Critical Zone: A Pilot Study of the Zhangxi Catchment, China. Sustainability, 2020, 12, 1699.	1.6	3
143	Rice Grain Cadmium Concentrations in the Global Supply-Chain. Exposure and Health, 2020, 12, 869-876.	2.8	63
144	The Lancet Infectious Diseases Commission on antimicrobial resistance: 6 years later. Lancet Infectious Diseases, The, 2020, 20, e51-e60.	4.6	161

#	Article	IF	CITATIONS
145	Characterization of antibiotic resistance genes and bacterial community in selected municipal and industrial sewage treatment plants beside Poyang Lake. Water Research, 2020, 174, 115603.	5.3	45
146	Arsenic transformation mediated by gut microbiota affects the fecundity of Caenorhabditis elegans. Environmental Pollution, 2020, 260, 113991.	3.7	8
147	The characterization of arsenic biotransformation microbes in paddy soil after straw biochar and straw amendments. Journal of Hazardous Materials, 2020, 391, 122200.	6.5	29
148	The Great Oxidation Event expanded the genetic repertoire of arsenic metabolism and cycling. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10414-10421.	3.3	96
149	Effects of Earthworms on the Microbiomes and Antibiotic Resistomes of Detritus Fauna and Phyllospheres. Environmental Science & Technology, 2020, 54, 6000-6008.	4.6	41
150	Microbiome and antibiotic resistome in household dust from Beijing, China. Environment International, 2020, 139, 105702.	4.8	32
151	Prevalence of Antibiotic Resistome in Ready-to-Eat Salad. Frontiers in Public Health, 2020, 8, 92.	1.3	23
152	Antimicrobial Resistance is a Health Risk in Chinese Cities—Now it Has Been Mapped. Urban Health and Wellbeing, 2020, , 45-48.	0.3	1
153	Soil amendment with sewage sludge affects soil prokaryotic community composition, mobilome and resistome. FEMS Microbiology Ecology, 2019, 95, .	1.3	12
154	High-throughput characterization of antibiotic resistome in soil amended with commercial organic fertilizers. Journal of Soils and Sediments, 2019, 19, 641-651.	1.5	11
155	Straw biochar increases the abundance of inorganic phosphate solubilizing bacterial community for better rape (Brassica napus) growth and phosphate uptake. Science of the Total Environment, 2019, 647, 1113-1120.	3.9	76
156	Stable Isotope-Labeled Single-Cell Raman Spectroscopy Revealing Function and Activity of Environmental Microbes. Methods in Molecular Biology, 2019, 2046, 95-107.	0.4	5
157	Arsenic and Sulfamethoxazole Increase the Incidence of Antibiotic Resistance Genes in the Gut of Earthworm. Environmental Science & Technology, 2019, 53, 10445-10453.	4.6	59
158	Collembolans accelerate the dispersal of antibiotic resistance genes in the soil ecosystem. Soil Ecology Letters, 2019, 1, 14-21.	2.4	7
159	Loss of soil microbial diversity exacerbates spread of antibiotic resistance. Soil Ecology Letters, 2019, 1, 3-13.	2.4	66
160	The fungicide azoxystrobin perturbs the gut microbiota community and enriches antibiotic resistance genes in Enchytraeus crypticus. Environment International, 2019, 131, 104965.	4.8	64
161	Metabolic Inactivity and Re-awakening of a Nitrate Reduction Dependent Iron(II)-Oxidizing Bacterium Bacillus ferrooxidans. Frontiers in Microbiology, 2019, 10, 1494.	1.5	4
162	Soil biota, antimicrobial resistance and planetary health. Environment International, 2019, 131, 105059.	4.8	163

#	Article	IF	CITATIONS
163	Spatial ecology of a wastewater network defines the antibiotic resistance genes in downstream receiving waters. Water Research, 2019, 162, 347-357.	5.3	108
164	Fate of Labile Organic Carbon in Paddy Soil Is Regulated by Microbial Ferric Iron Reduction. Environmental Science & Technology, 2019, 53, 8533-8542.	4.6	42
165	Fungus-initiated catalytic reactions at hyphal-mineral interfaces drive iron redox cycling and biomineralization. Geochimica Et Cosmochimica Acta, 2019, 260, 192-203.	1.6	40
166	Adsorbed Sulfamethoxazole Exacerbates the Effects of Polystyrene (â^1⁄42 Î1⁄4m) on Gut Microbiota and the Antibiotic Resistome of a Soil Collembolan. Environmental Science & Technology, 2019, 53, 12823-12834.	4.6	63
167	Suppressed N fixation and diazotrophs after four decades of fertilization. Microbiome, 2019, 7, 143.	4.9	205
168	Reduction of Organoarsenical Herbicides and Antimicrobial Growth Promoters by the Legume Symbiont <i>Sinorhizobium meliloti</i> . Environmental Science & Technology, 2019, 53, 13648-13656.	4.6	17
169	Perspective on Surface-Enhanced Raman Spectroscopic Investigation of Microbial World. Analytical Chemistry, 2019, 91, 15345-15354.	3.2	45
170	The fungicide azoxystrobin promotes freshwater cyanobacterial dominance through altering competition. Microbiome, 2019, 7, 128.	4.9	52
171	Towards Urbanome the genome of the city to enhance the form and function of future cities. Nature Communications, 2019, 10, 4014.	5.8	6
172	Transcriptome Reveals the Rice Response to Elevated Free Air CO ₂ Concentration and TiO ₂ Nanoparticles. Environmental Science & Technology, 2019, 53, 11714-11724.	4.6	38
173	Changes in archaeal ether lipid composition in response to agriculture alternation in ancient and modern paddy soils. Organic Geochemistry, 2019, 138, 103912.	0.9	1
174	Understanding drivers of antibiotic resistance genes in High Arctic soil ecosystems. Environment International, 2019, 125, 497-504.	4.8	137
175	Potential use of the Pteris vittata arsenic hyperaccumulation-regulation network for phytoremediation. Journal of Hazardous Materials, 2019, 368, 386-396.	6.5	74
176	Soil Functions: Connecting Earth's Critical Zone. Annual Review of Earth and Planetary Sciences, 2019, 47, 333-359.	4.6	78
177	Simultaneous adsorption and immobilization of As and Cd by birnessite-loaded biochar in water and soil. Environmental Science and Pollution Research, 2019, 26, 8575-8584.	2.7	44
178	Trophic Transfer of Antibiotic Resistance Genes in a Soil Detritus Food Chain. Environmental Science & Technology, 2019, 53, 7770-7781.	4.6	69
179	NH4H2PO4-extractable arsenic provides a reliable predictor for arsenic accumulation and speciation in pepper fruits (Capsicum annum L.). Environmental Pollution, 2019, 251, 651-658.	3.7	15
180	Phyllosphere of staple crops under pig manure fertilization, a reservoir of antibiotic resistance genes. Environmental Pollution, 2019, 252, 227-235.	3.7	62

#	Article	IF	CITATIONS
181	Manure and Doxycycline Affect the Bacterial Community and Its Resistome in Lettuce Rhizosphere and Bulk Soil. Frontiers in Microbiology, 2019, 10, 725.	1.5	46
182	Interpreting distanceâ€decay pattern of soil bacteria via quantifying the assembly processes at multiple spatial scales. MicrobiologyOpen, 2019, 8, e00851.	1.2	42
183	Mineral and organic fertilization alters the microbiome of a soil nematode Dorylaimus stagnalis and its resistome. Science of the Total Environment, 2019, 680, 70-78.	3.9	35
184	Does nano silver promote the selection of antibiotic resistance genes in soil and plant?. Environment International, 2019, 128, 399-406.	4.8	59
185	Exposure to microplastics lowers arsenic accumulation and alters gut bacterial communities of earthworm Metaphire californica. Environmental Pollution, 2019, 251, 110-116.	3.7	171
186	Effects of diet on gut microbiota of soil collembolans. Science of the Total Environment, 2019, 676, 197-205.	3.9	28
187	Microbiota in non-flooded and flooded rice culms. FEMS Microbiology Ecology, 2019, 95, .	1.3	12
188	Mobile Incubator for Iron(III) Reduction in the Gut of the Soil-Feeding Earthworm <i>Pheretima guillelmi</i> and Interaction with Denitrification. Environmental Science & Technology, 2019, 53, 4215-4223.	4.6	41
189	Fate of Antibiotic Resistant Pseudomonas putida and Broad Host Range Plasmid in Natural Soil Microcosms. Frontiers in Microbiology, 2019, 10, 194.	1.5	48
190	Anaerobic oxidation of ethane by archaea from a marine hydrocarbon seep. Nature, 2019, 568, 108-111.	13.7	149
191	Microbiomes inhabiting rice roots and rhizosphere. FEMS Microbiology Ecology, 2019, 95, .	1.3	95
192	Antibiotic Resistomes in Plant Microbiomes. Trends in Plant Science, 2019, 24, 530-541.	4.3	233
193	Effects of Arsenic on Gut Microbiota and Its Biotransformation Genes in Earthworm <i>Metaphire sieboldi</i> . Environmental Science & Comp; Technology, 2019, 53, 3841-3849.	4.6	78
194	RNA Stable Isotope Probing of Potential Feammox Population in Paddy Soil. Environmental Science & Technology, 2019, 53, 4841-4849.	4.6	70
195	Soil oxytetracycline exposure alters the microbial community and enhances the abundance of antibiotic resistance genes in the gut of Enchytraeus crypticus. Science of the Total Environment, 2019, 673, 357-366.	3.9	29
196	Coupling metabolisms of arsenic and iron with humic substances through microorganisms in paddy soil. Journal of Hazardous Materials, 2019, 373, 591-599.	6.5	55
197	Rapid Antibiotic Susceptibility Testing of Pathogenic Bacteria Using Heavy-Water-Labeled Single-Cell Raman Spectroscopy in Clinical Samples. Analytical Chemistry, 2019, 91, 6296-6303.	3.2	104
198	Standardization of complex biologically derived spectrochemical datasets. Nature Protocols, 2019, 14, 1546-1577.	5.5	96

#	Article	IF	CITATIONS
199	DirtyGenes: testing for significant changes in gene or bacterial population compositions from a small number of samples. Scientific Reports, 2019, 9, 2373.	1.6	11
200	Spatial and seasonal variation of the airborne microbiome in a rapidly developing city of China. Science of the Total Environment, 2019, 665, 61-68.	3.9	70
201	Distinct rhizosphere effect on active and total bacterial communities in paddy soils. Science of the Total Environment, 2019, 649, 422-430.	3.9	62
202	Turning pig manure into biochar can effectively mitigate antibiotic resistance genes as organic fertilizer. Science of the Total Environment, 2019, 649, 902-908.	3.9	83
203	Effects of long-term fertilization on the associated microbiota of soil collembolan. Soil Biology and Biochemistry, 2019, 130, 141-149.	4.2	34
204	Exposure to tetracycline perturbs the microbiome of soil oligochaete Enchytraeus crypticus. Science of the Total Environment, 2019, 654, 643-650.	3.9	25
205	The gut microbiota of soil organisms show species-specific responses to liming. Science of the Total Environment, 2019, 659, 715-723.	3.9	16
206	Responses to soil pH gradients of inorganic phosphate solubilizing bacteria community. Scientific Reports, 2019, 9, 25.	1.6	39
207	Source Identification of Trace Elements in Peri-urban Soils in Eastern China. Exposure and Health, 2019, 11, 195-207.	2.8	19
208	Anaerobic ammonium oxidation in agricultural soils-synthesis and prospective. Environmental Pollution, 2019, 244, 127-134.	3.7	30
209	AsChip: A High-Throughput qPCR Chip for Comprehensive Profiling of Genes Linked to Microbial Cycling of Arsenic. Environmental Science & Technology, 2019, 53, 798-807.	4.6	34
210	Identification of Steps in the Pathway of Arsenosugar Biosynthesis. Environmental Science & Technology, 2019, 53, 634-641.	4.6	25
211	Heavy water-labeled Raman spectroscopy reveals carboxymethylcellulose-degrading bacteria and degradation activity at the single-cell level. Applied Microbiology and Biotechnology, 2019, 103, 1455-1464.	1.7	23
212	Organic Carbon Amendments Affect the Chemodiversity of Soil Dissolved Organic Matter and Its Associations with Soil Microbial Communities. Environmental Science & Technology, 2019, 53, 50-59.	4.6	150
213	Evidence for co-selection of antibiotic resistance genes and mobile genetic elements in metal polluted urban soils. Science of the Total Environment, 2019, 656, 512-520.	3.9	183
214	Nitrogen inputs are more important than denitrifier abundances in controlling denitrification-derived N2O emission from both urban and agricultural soils. Science of the Total Environment, 2019, 650, 2807-2817.	3.9	11
215	The Composition and Phosphorus Cycling Potential of Bacterial Communities Associated With Hyphae of Penicillium in Soil Are Strongly Affected by Soil Origin. Frontiers in Microbiology, 2019, 10, 2951.	1.5	19
216	Impact of Wastewater Treatment on the Prevalence of Integrons and the Genetic Diversity of Integron Gene Cassettes. Applied and Environmental Microbiology, 2018, 84, .	1.4	62

#	Article	IF	CITATIONS
217	Exposure to nanoplastics disturbs the gut microbiome in the soil oligochaete Enchytraeus crypticus. Environmental Pollution, 2018, 239, 408-415.	3.7	254
218	Co-optimization of sponge-core bioreactors for removing total nitrogen and antibiotic resistance genes from domestic wastewater. Science of the Total Environment, 2018, 634, 1417-1423.	3.9	16
219	Developing China's National Emission Trading Scheme: Experiences from Existing Global Schemes and China's Pilot Programs. Chinese Geographical Science, 2018, 28, 287-295.	1.2	4
220	Silicon (Si) biochar for the mitigation of arsenic (As) bioaccumulation in spinach (Spinacia oleracean) Tj ETQq0 0	0 rgBT /O 4.6	verlock 10 Tf 75
221	DNA stable-isotope probing identifies uncultivated members of Pseudonocardia associated with biodegradation of pyrene in agricultural soil. FEMS Microbiology Ecology, 2018, 94, .	1.3	25
222	Antibiotics Disturb the Microbiome and Increase the Incidence of Resistance Genes in the Gut of a Common Soil Collembolan. Environmental Science & Technology, 2018, 52, 3081-3090.	4.6	162
223	The microbial cycling of phosphorus on long-term fertilized soil: Insights from phosphate oxygen isotope ratios. Chemical Geology, 2018, 483, 56-64.	1.4	32
224	Arsenic in Soil-Plant System: A Synthesis. , 2018, , 453-464.		2
225	In Situ Stabilization of Toxic Metals in Polluted Soils Using Different Soil Amendments: Mechanisms and Environmental Implication. , 2018, , 563-572.		1
226	Human dissemination of genes and microorganisms in Earth's Critical Zone. Global Change Biology, 2018, 24, 1488-1499.	4.2	71
227	Phosphate levels influence the utilisation of rice rhizodeposition carbon and the phosphate-solubilising microbial community in a paddy soil. Soil Biology and Biochemistry, 2018, 118, 103-114.	4.2	137
228	Trophic predator-prey relationships promote transport of microplastics compared with the single Hypoaspis aculeifer and Folsomia candida. Environmental Pollution, 2018, 235, 150-154.	3.7	134
229	Impact of sludge treatments on the extractability and fate of acetyl sulfamethoxazole residues in amended soils. Chemosphere, 2018, 194, 828-836.	4.2	9
230	Spatial and temporal distribution of antibiotic resistomes in a peri-urban area is associated significantly with anthropogenic activities. Environmental Pollution, 2018, 235, 525-533.	3.7	74
231	Molecular Chemodiversity of Dissolved Organic Matter in Paddy Soils. Environmental Science & Technology, 2018, 52, 963-971.	4.6	160
232	Identification and characterization of inorganic-phosphate-solubilizing bacteria from agricultural fields with a rapid isolation method. AMB Express, 2018, 8, 47.	1.4	57
233	Advances in research on the use of biochar in soil for remediation: a review. Journal of Soils and Sediments, 2018, 18, 2433-2450.	1.5	94
234	Microbe mediated arsenic release from iron minerals and arsenic methylation in rhizosphere controls arsenic fate in soil-rice system after straw incorporation. Environmental Pollution, 2018, 236, 598-608.	3.7	118

#	Article	IF	CITATIONS
235	Salinity is a key factor driving the nitrogen cycling in the mangrove sediment. Science of the Total Environment, 2018, 631-632, 1342-1349.	3.9	120
236	Functional Single-Cell Approach to Probing Nitrogen-Fixing Bacteria in Soil Communities by Resonance Raman Spectroscopy with ¹⁵ N ₂ Labeling. Analytical Chemistry, 2018, 90, 5082-5089.	3.2	67
237	Spatial scale affects the relative role of stochasticity versus determinism in soil bacterial communities in wheat fields across the North China Plain. Microbiome, 2018, 6, 27.	4.9	286
238	Microbial pathways for nitrogen loss in an upland soil. Environmental Microbiology, 2018, 20, 1723-1738.	1.8	76
239	Electron shuttle-mediated microbial Fe(III) reduction under alkaline conditions. Journal of Soils and Sediments, 2018, 18, 159-168.	1.5	35
240	The influence of soil properties and geographical distance on the bacterial community compositions of paddy soils enriched on SMFC anodes. Journal of Soils and Sediments, 2018, 18, 517-525.	1.5	14
241	Feed additives shift gut microbiota and enrich antibiotic resistance in swine gut. Science of the Total Environment, 2018, 621, 1224-1232.	3.9	141
242	Review of antibiotic resistance in China and its environment. Environment International, 2018, 110, 160-172.	4.8	1,043
243	The role of sulfate-reducing prokaryotes in the coupling of element biogeochemical cycling. Science of the Total Environment, 2018, 613-614, 398-408.	3.9	47
244	Hyperthermophilic Composting Accelerates the Removal of Antibiotic Resistance Genes and Mobile Genetic Elements in Sewage Sludge. Environmental Science & Technology, 2018, 52, 266-276.	4.6	321
245	Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition. Soil Biology and Biochemistry, 2018, 116, 302-310.	4.2	385
246	Relative importance of urban and non-urban land-use types for potential denitrification derived N2O: insights from a regional study. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2018, 109, 453-460.	0.3	1
247	Land Use Influences Antibiotic Resistance in the Microbiome of Soil Collembolans <i>Orchesellides sinensis</i> . Environmental Science & amp; Technology, 2018, 52, 14088-14098.	4.6	46
248	Prevalence and transmission of antibiotic resistance and microbiota between humans and water environments. Environment International, 2018, 121, 1155-1161.	4.8	92
249	Rhizosphere microorganisms can influence the timing of plant flowering. Microbiome, 2018, 6, 231.	4.9	240
250	Increased copper levels inhibit denitrification in urban soils. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2018, 109, 421-427.	0.3	7
251	Response to Comment on "Application of Struvite Alters the Antibiotic Resistome in Soil, Rhizosphere, and Phyllosphere― Environmental Science & Technology, 2018, 52, 14566-14567.	4.6	0
252	Biochar Modulates Methanogenesis through Electron Syntrophy of Microorganisms with Ethanol as a Substrate. Environmental Science & amp; Technology, 2018, 52, 12198-12207.	4.6	172

#	Article	IF	CITATIONS
253	Exposure of a Soil Collembolan to Ag Nanoparticles and AgNO ₃ Disturbs Its Associated Microbiota and Lowers the Incidence of Antibiotic Resistance Genes in the Gut. Environmental Science & Technology, 2018, 52, 12748-12756.	4.6	67
254	The chemodiversity of paddy soil dissolved organic matter correlates with microbial community at continental scales. Microbiome, 2018, 6, 187.	4.9	130
255	Antibiotic resistance genes and associated bacterial communities in agricultural soils amended with different sources of animal manures. Soil Biology and Biochemistry, 2018, 126, 91-102.	4.2	170
256	Application of biosolids drives the diversity of antibiotic resistance genes in soil and lettuce at harvest. Soil Biology and Biochemistry, 2018, 122, 131-140.	4.2	67
257	Clobal Survey of Antibiotic Resistance Genes in Air. Environmental Science & Technology, 2018, 52, 10975-10984.	4.6	227
258	Tracking antibiotic resistome during wastewater treatment using high throughput quantitative PCR. Environment International, 2018, 117, 146-153.	4.8	152
259	QMEC: a tool for high-throughput quantitative assessment of microbial functional potential in C, N, P, and S biogeochemical cycling. Science China Life Sciences, 2018, 61, 1451-1462.	2.3	181
260	Rejoinder to "Comments on Zhu et al. (2018) Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition―[Soil Biol. Biochem. 116 302–310]. Soil Biology and Biochemistry, 2018, 124, 275-276.	4.2	5
261	Large-scale biogeographical patterns of bacterial antibiotic resistome in the waterbodies of China. Environment International, 2018, 117, 292-299.	4.8	106
262	Bacillus ferrooxidans sp. nov., an iron(II)-oxidizing bacterium isolated from paddy soil. Journal of Microbiology, 2018, 56, 472-477.	1.3	5
263	Propionicimonas ferrireducens sp. nov., isolated from dissimilatory iron(III)-reducing microbial enrichment obtained from paddy soil. International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 1914-1918.	0.8	8
264	Arsenic Methyltransferase is Involved in Arsenosugar Biosynthesis by Providing DMA. Environmental Science & Technology, 2017, 51, 1224-1230.	4.6	34
265	Continental-scale pollution of estuaries with antibiotic resistance genes. Nature Microbiology, 2017, 2, 16270.	5.9	812
266	The role of biochar properties in influencing the sorption and desorption of Pb(II), Cd(II) and As(III) in aqueous solution. Journal of Cleaner Production, 2017, 148, 127-136.	4.6	228
267	Bacterial resistance to arsenic protects against protist killing. BioMetals, 2017, 30, 307-311.	1.8	13
268	Optimizing Peri-URban Ecosystems (PURE) to re-couple urban-rural symbiosis. Science of the Total Environment, 2017, 586, 1085-1090.	3.9	80
269	Long-term nitrogen fertilization decreased the abundance of inorganic phosphate solubilizing bacteria in an alkaline soil. Scientific Reports, 2017, 7, 42284.	1.6	50
270	Quantitative detection of fecal contamination with domestic poultry feces in environments in China. AMB Express, 2017, 7, 80.	1.4	19

#	Article	IF	CITATIONS
271	Land scale biogeography of arsenic biotransformation genes in estuarine wetland. Environmental Microbiology, 2017, 19, 2468-2482.	1.8	45
272	Surface-Enhanced Raman Spectroscopy Combined with Stable Isotope Probing to Monitor Nitrogen Assimilation at Both Bulk and Single-Cell Level. Analytical Chemistry, 2017, 89, 5793-5800.	3.2	43
273	Microbial mediated arsenic biotransformation in wetlands. Frontiers of Environmental Science and Engineering, 2017, 11, 1.	3.3	67
274	Application of Struvite Alters the Antibiotic Resistome in Soil, Rhizosphere, and Phyllosphere. Environmental Science & Technology, 2017, 51, 8149-8157.	4.6	196
275	Arsenic biotransformation by a cyanobacterium Nostoc sp. PCC 7120. Environmental Pollution, 2017, 228, 111-117.	3.7	34
276	Organic compounds stimulate horizontal transfer of antibiotic resistance genes in mixed wastewater treatment systems. Chemosphere, 2017, 184, 53-61.	4.2	91
277	Linking Genes to Microbial Biogeochemical Cycling: Lessons from Arsenic. Environmental Science & Technology, 2017, 51, 7326-7339.	4.6	223
278	Anthropogenic Cycles of Arsenic in Mainland China: 1990–2010. Environmental Science & Technology, 2017, 51, 1670-1678.	4.6	51
279	Development and Application of the Diffusive Gradients in Thin Films Technique for the Measurement of Nitrate in Soils. Analytical Chemistry, 2017, 89, 1178-1184.	3.2	19
280	Application of genomic technologies to measure and monitor antibiotic resistance in animals. Annals of the New York Academy of Sciences, 2017, 1388, 121-135.	1.8	41
281	Metagenomic assembly unravel microbial response to redox fluctuation in acid sulfate soil. Soil Biology and Biochemistry, 2017, 105, 244-252.	4.2	27
282	Toward a Comprehensive Strategy to Mitigate Dissemination of Environmental Sources of Antibiotic Resistance. Environmental Science & Technology, 2017, 51, 13061-13069.	4.6	236
283	From chemical mixtures to antibiotic resistance. Journal of Environmental Sciences, 2017, 62, 138-144.	3.2	39
284	Microbial mass movements. Science, 2017, 357, 1099-1100.	6.0	218
285	Recurrent horizontal transfer of arsenite methyltransferase genes facilitated adaptation of life to arsenic. Scientific Reports, 2017, 7, 7741.	1.6	60
286	Thermodynamic energy of anaerobic microbial redox reactions couples elemental biogeochemical cycles. Journal of Soils and Sediments, 2017, 17, 2831-2846.	1.5	26
287	Do manure-borne or indigenous soil microorganisms influence the spread of antibiotic resistance genes in manured soil?. Soil Biology and Biochemistry, 2017, 114, 229-237.	4.2	170
288	Linking Urbanization and the Environment: Conceptual and Empirical Advances. Annual Review of Environment and Resources, 2017, 42, 215-240.	5.6	222

#	Article	IF	CITATIONS
289	Raman-Deuterium Isotope Probing for in-situ identification of antimicrobial resistant bacteria in Thames River. Scientific Reports, 2017, 7, 16648.	1.6	69
290	Biochars mitigate greenhouse gas emissions and bioaccumulation of potentially toxic elements and arsenic speciation in Phaseolus vulgaris L. Environmental Science and Pollution Research, 2017, 24, 19524-19534.	2.7	21
291	An overlooked nitrogen loss linked to anaerobic ammonium oxidation in estuarine sediments in China. Journal of Soils and Sediments, 2017, 17, 2537-2546.	1.5	16
292	Bacterial succession along a long-term chronosequence of paddy soil in the Yangtze River Delta, China. Soil Biology and Biochemistry, 2017, 104, 59-67.	4.2	70
293	Does organically produced lettuce harbor higher abundance of antibiotic resistance genes than conventionally produced?. Environment International, 2017, 98, 152-159.	4.8	205
294	Use of commercial organic fertilizer increases the abundance of antibiotic resistance genes and antibiotics in soil. Environmental Science and Pollution Research, 2017, 24, 701-710.	2.7	85
295	Structural features of the aromatic/arginine constriction in the aquaglyceroporin GintAQPF2 are responsible for glycerol impermeability in arbuscular mycorrhizal symbiosis. Fungal Biology, 2017, 121, 95-102.	1.1	4
296	The antibiotic resistome of swine manure is significantly altered by association with the <i>Musca domestica</i> larvae gut microbiome. ISME Journal, 2017, 11, 100-111.	4.4	101
297	Arsenic Transport in Rice and Biological Solutions to Reduce Arsenic Risk from Rice. Frontiers in Plant Science, 2017, 8, 268.	1.7	126
298	Co-expression of Cyanobacterial Genes for Arsenic Methylation and Demethylation in Escherichia coli Offers Insights into Arsenic Resistance. Frontiers in Microbiology, 2017, 8, 60.	1.5	9
299	Biochar Addition Increases the Rates of Dissimilatory Iron Reduction and Methanogenesis in Ferrihydrite Enrichments. Frontiers in Microbiology, 2017, 8, 589.	1.5	31
300	Metagenomics of urban sewage identifies an extensively shared antibiotic resistome in China. Microbiome, 2017, 5, 84.	4.9	247
301	Determination of different arsenic species in foodâ€grade spirulina powder by ion chromatography combined with inductively coupled plasma mass spectrometry. Journal of Separation Science, 2017, 40, 3655-3661.	1.3	11
302	Bacterial Survival in Dictyostelium. Bio-protocol, 2017, 7, e2376.	0.2	3
303	Back to the Future of Soil Metagenomics. Frontiers in Microbiology, 2016, 7, 73.	1.5	120
304	Transcriptomic Analysis Reveals Adaptive Responses of an Enterobacteriaceae Strain LSJC7 to Arsenic Exposure. Frontiers in Microbiology, 2016, 7, 636.	1.5	38
305	An aquaporin Pv <scp>TIP</scp> 4;1 from <i>Pteris vittata</i> may mediate arsenite uptake. New Phytologist, 2016, 209, 746-761.	3.5	102
306	Distribution of soil selenium in China is potentially controlled by deposition and volatilization?. Scientific Reports, 2016, 6, 20953.	1.6	49

#	Article	IF	CITATIONS
307	Restoration of growth by manganese in a mutant strain of Escherichia coli lacking most known iron and manganese uptake systems. BioMetals, 2016, 29, 433-450.	1.8	2
308	Clusters of Antibiotic Resistance Genes Enriched Together Stay Together in Swine Agriculture. MBio, 2016, 7, e02214-15.	1.8	201
309	Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil. Environment International, 2016, 92-93, 1-10.	4.8	620
310	China's soil and groundwater management challenges: Lessons from the UK's experience and opportunities for China. Environment International, 2016, 91, 196-200.	4.8	47
311	Using the SBRC Assay to Predict Lead Relative Bioavailability in Urban Soils: Contaminant Source and Correlation Model. Environmental Science & Technology, 2016, 50, 4989-4996.	4.6	34
312	Research and application of method of oxygen isotope of inorganic phosphate in Beijing agricultural soils. Environmental Science and Pollution Research, 2016, 23, 23406-23414.	2.7	10
313	Electron Shuttles Enhance Anaerobic Ammonium Oxidation Coupled to Iron(III) Reduction. Environmental Science & Technology, 2016, 50, 9298-9307.	4.6	217
314	Anthropogenic arsenic cycles: A research framework and features. Journal of Cleaner Production, 2016, 139, 328-336.	4.6	48
315	A role for copper in protozoan grazing – two billion years selecting for bacterial copper resistance. Molecular Microbiology, 2016, 102, 628-641.	1.2	82
316	Long-Term Impact of Field Applications of Sewage Sludge on Soil Antibiotic Resistome. Environmental Science & Technology, 2016, 50, 12602-12611.	4.6	97
317	Arsenic methylation by an arsenite S-adenosylmethionine methyltransferase from Spirulina platensis. Journal of Environmental Sciences, 2016, 49, 162-168.	3.2	34
318	Characterization and Potential Applications of a Selenium Nanoparticle Producing and Nitrate Reducing Bacterium Bacillus oryziterrae sp. nov Scientific Reports, 2016, 6, 34054.	1.6	38
319	Inositol transporters AtINT2 and AtINT4 regulate arsenic accumulation in Arabidopsis seeds. Nature Plants, 2016, 2, 15202.	4.7	88
320	A buried Neolithic paddy soil reveals loss of microbial functional diversity after modern rice cultivation. Science Bulletin, 2016, 61, 1052-1060.	4.3	41
321	Arsenic modulates the composition of anode-respiring bacterial community during dry-wet cycles in paddy soils. Journal of Soils and Sediments, 2016, 16, 1745-1753.	1.5	18
322	Geographic distance and amorphous iron affect the abundance and distribution of Geobacteraceae in paddy soils in China. Journal of Soils and Sediments, 2016, 16, 2657-2665.	1.5	35
323	Quantification of the bioreactive Hg fraction in Chinese soils using luminescence-based biosensors. Environmental Technology and Innovation, 2016, 5, 267-276.	3.0	5
324	The phenological stage of rice growth determines anaerobic ammonium oxidation activity in rhizosphere soil. Soil Biology and Biochemistry, 2016, 100, 59-65.	4.2	58

#	Article	IF	CITATIONS
325	Metagenomic profiles of antibiotic resistance genes in paddy soils from South China. FEMS Microbiology Ecology, 2016, 92, fiw023.	1.3	87
326	Surface-Enhanced Raman Spectroscopy for Identification of Heavy Metal Arsenic(V)-Mediated Enhancing Effect on Antibiotic Resistance. Analytical Chemistry, 2016, 88, 3164-3170.	3.2	50
327	Metagenomic analysis revealed highly diverse microbial arsenic metabolism genes in paddy soils with low-arsenic contents. Environmental Pollution, 2016, 211, 1-8.	3.7	125
328	Behavior of antibiotics and antibiotic resistance genes in eco-agricultural system: A case study. Journal of Hazardous Materials, 2016, 304, 18-25.	6.5	154
329	Impact of liming and drying municipal sewage sludge on the amountÂand availability of 14 C-acetyl sulfamethoxazole and 14 C-acetaminophen residues. Water Research, 2016, 88, 156-163.	5.3	9
330	Assessing the genetic diversity of Cu resistance in mine tailings through high-throughput recovery of full-length copA genes. Scientific Reports, 2015, 5, 13258.	1.6	27
331	Transcriptional profiling of the soil invertebrate <i>Folsomia candida</i> in pentachlorophenolâ€contaminated soil. Environmental Toxicology and Chemistry, 2015, 34, 1362-1368.	2.2	14
332	Diversity and Abundance of Arsenic Biotransformation Genes in Paddy Soils from Southern China. Environmental Science & Technology, 2015, 49, 4138-4146.	4.6	195
333	Antibiotic Resistome and Its Association with Bacterial Communities during Sewage Sludge Composting. Environmental Science & Technology, 2015, 49, 7356-7363.	4.6	736
334	Community Structure and Soil pH Determine Chemoautotrophic Carbon Dioxide Fixation in Drained Paddy Soils. Environmental Science & Technology, 2015, 49, 7152-7160.	4.6	67
335	Antibiotic resistance genes in manure-amended soil and vegetables at harvest. Journal of Hazardous Materials, 2015, 299, 215-221.	6.5	263
336	Microbial ecology associated to soil-plant interactions: exemplifying recent progress in East Asia. Plant and Soil, 2015, 392, 1-2.	1.8	6
337	Protecting global soil resources for ecosystem services. Ecosystem Health and Sustainability, 2015, 1, 1-4.	1.5	8
338	Arsenic Demethylation by a C·As Lyase in Cyanobacterium <i><i>Nostoc</i></i> sp. PCC 7120. Environmental Science & Technology, 2015, 49, 14350-14358.	4.6	55
339	Research and Application of Analytical Technique on δ18Op of Inorganic Phosphate in Soil. Chinese Journal of Analytical Chemistry, 2015, 43, 187-192.	0.9	6
340	Copper Tolerance Mechanisms of <i>Mesorhizobium amorphae</i> and Its Role in Aiding Phytostabilization by <i>Robinia pseudoacacia</i> in Copper Contaminated Soil. Environmental Science & Technology, 2015, 49, 2328-2340.	4.6	56
341	Nitrogen loss by anaerobic oxidation of ammonium in rice rhizosphere. ISME Journal, 2015, 9, 2059-2067.	4.4	108
342	Selenite-Induced Toxicity in Cancer Cells Is Mediated by Metabolic Generation of Endogenous Selenium Nanoparticles. Journal of Proteome Research, 2015, 14, 1127-1136.	1.8	54

#	Article	IF	CITATIONS
343	Impacts of reactive nitrogen on climate change in China. Scientific Reports, 2015, 5, 8118.	1.6	47
344	Survival in amoeba—a major selection pressure on the presence of bacterial copper and zinc resistance determinants? Identification of a "copper pathogenicity island― Applied Microbiology and Biotechnology, 2015, 99, 5817-5824.	1.7	42
345	Variability in responses of bacterial communities and nitrogen oxide emission to urea fertilization among various flooded paddy soils. FEMS Microbiology Ecology, 2015, 91, .	1.3	21
346	Bacterial community composition at anodes of microbial fuel cells for paddy soils: the effects of soil properties. Journal of Soils and Sediments, 2015, 15, 926-936.	1.5	51
347	Arsenic bioavailability to rice plant in paddy soil: influence of microbial sulfate reduction. Journal of Soils and Sediments, 2015, 15, 1960-1967.	1.5	53
348	Ecotoxicological assessment of antibiotics: A call for improved consideration of microorganisms. Environment International, 2015, 85, 189-205.	4.8	209
349	Genome sequences of copper resistant and sensitive Enterococcus faecalis strains isolated from copper-fed pigs in Denmark. Standards in Genomic Sciences, 2015, 10, 35.	1.5	25
350	Multivariate and geostatistical analyses of the spatial distribution and source of arsenic and heavy metals in the agricultural soils in Shunde, Southeast China. Journal of Geochemical Exploration, 2015, 148, 189-195.	1.5	203
351	Soil Contamination in China: Current Status and Mitigation Strategies. Environmental Science & Technology, 2015, 49, 750-759.	4.6	1,488
352	Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. ISME Journal, 2015, 9, 1269-1279.	4.4	974
353	Potential Contribution of Anammox to Nitrogen Loss from Paddy Soils in Southern China. Applied and Environmental Microbiology, 2015, 81, 938-947.	1.4	118
354	Longâ€ŧerm balanced fertilization increases the soil microbial functional diversity in a phosphorusâ€iimited paddy soil. Molecular Ecology, 2015, 24, 136-150.	2.0	197
355	Long-term nitrogen fertilization of paddy soil shifts iron-reducing microbial community revealed by RNA-13C-acetate probing coupled with pyrosequencing. ISME Journal, 2015, 9, 721-734.	4.4	118
356	Phyllosphere Bacterial Community of Floating Macrophytes in Paddy Soil Environments as Revealed by Illumina High-Throughput Sequencing. Applied and Environmental Microbiology, 2015, 81, 522-532.	1.4	65
357	Food systems and life expectancy with rapid urbanisation in provincial China. Asia Pacific Journal of Clinical Nutrition, 2015, 24, 731-43.	0.3	1
358	Preferred ecosystem characteristics: their food and health relevance to China's rapid urbanisation. Asia Pacific Journal of Clinical Nutrition, 2015, 24, 556-74.	0.3	1
359	Biosynthesis of arsenolipids by the cyanobacterium Synechocystis sp. PCC 6803. Environmental Chemistry, 2014, 11, 506.	0.7	38
360	Quantitative analyses of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) large-subunit genes (<i>cbbL</i>) in typical paddy soils. FEMS Microbiology Ecology, 2014, 87, 89-101.	1.3	63

#	Article	IF	CITATIONS
361	Does urbanization shape bacterial community composition in urban park soils? A case study in 16 representative Chinese cities based on the pyrosequencing method. FEMS Microbiology Ecology, 2014, 87, 182-192.	1.3	80
362	Potential ecological footprints of active pharmaceutical ingredients: an examination of risk factors in low-, middle- and high-income countries. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130586.	1.8	123
363	Genome Wide Association Mapping of Grain Arsenic, Copper, Molybdenum and Zinc in Rice (Oryza) Tj ETQq1 1	0.784314 1.1	rgBT /Overlo 228
364	Impact of reclaimed water irrigation on antibiotic resistance in public parks, Beijing, China. Environmental Pollution, 2014, 184, 247-253.	3.7	150
365	Managing urban nutrient biogeochemistry for sustainable urbanization. Environmental Pollution, 2014, 192, 244-250.	3.7	60
366	A review on completing arsenic biogeochemical cycle: Microbial volatilization of arsines in environment. Journal of Environmental Sciences, 2014, 26, 371-381.	3.2	128
367	Compaction stimulates denitrification in an urban park soil using 15N tracing technique. Environmental Science and Pollution Research, 2014, 21, 3783-3791.	2.7	16
368	Rhizosphere effect has no effect on marker genes related to autotrophic CO2 fixation in paddy soils?. Journal of Soils and Sediments, 2014, 14, 1082-1087.	1.5	14
369	Functional metagenomic characterization of antibiotic resistance genes in agricultural soils from China. Environment International, 2014, 65, 9-15.	4.8	149
370	Methane production and methanogenic archaeal communities in two types of paddy soil amended with different amounts of rice straw. FEMS Microbiology Ecology, 2014, 88, 372-385.	1.3	45
371	Application of biochar to soil reduces cancer risk via rice consumption: A case study in Miaoqian village, Longyan, China. Environment International, 2014, 68, 154-161.	4.8	156
372	Biosensor for Organoarsenical Herbicides and Growth Promoters. Environmental Science & Technology, 2014, 48, 1141-1147.	4.6	51
373	Lead in rice: Analysis of baseline lead levels in market and field collected rice grains. Science of the Total Environment, 2014, 485-486, 428-434.	3.9	78
374	Imaging element distribution and speciation in plant cells. Trends in Plant Science, 2014, 19, 183-192.	4.3	138
375	Earth Abides Arsenic Biotransformations. Annual Review of Earth and Planetary Sciences, 2014, 42, 443-467.	4.6	423
376	Identification and Characterization of Arsenite Methyltransferase from an Archaeon, <i>Methanosarcina acetivorans</i> C2A. Environmental Science & Technology, 2014, 48, 12706-12713.	4.6	60
377	Arsenite Oxidation by the Phyllosphere Bacterial Community Associated with <i>Wolffia australiana</i> . Environmental Science & Technology, 2014, 48, 9668-9674.	4.6	31
378	Biochar Impacts Soil Microbial Community Composition and Nitrogen Cycling in an Acidic Soil Planted with Rape. Environmental Science & Technology, 2014, 48, 9391-9399.	4.6	390

#	Article	IF	CITATIONS
379	Volatilization of Arsenic from Polluted Soil by <i>Pseudomonas putida</i> Engineered for Expression of the <i>arsM</i> Arsenic(III) S-Adenosine Methyltransferase Gene. Environmental Science & Technology, 2014, 48, 10337-10344.	4.6	106
380	Arsenic Uptake by Rice Is Influenced by Microbe-Mediated Arsenic Redox Changes in the Rhizosphere. Environmental Science & Technology, 2014, 48, 1001-1007.	4.6	177
381	High Throughput Profiling of Antibiotic Resistance Genes in Urban Park Soils with Reclaimed Water Irrigation. Environmental Science & Technology, 2014, 48, 9079-9085.	4.6	351
382	Mineral weathering and element cycling in soil-microorganism-plant system. Science China Earth Sciences, 2014, 57, 888-896.	2.3	40
383	Cyanobacteria-Mediated Arsenic Redox Dynamics Is Regulated by Phosphate in Aquatic Environments. Environmental Science & Technology, 2014, 48, 994-1000.	4.6	68
384	Nitrogen Loss through Anaerobic Ammonium Oxidation Coupled to Iron Reduction from Paddy Soils in a Chronosequence. Environmental Science & Technology, 2014, 48, 10641-10647.	4.6	235
385	Identification and characterization of the arsenite methyltransferase from a protozoan, Tetrahymena pyriformis. Aquatic Toxicology, 2014, 149, 50-57.	1.9	24
386	Growth and metal uptake of energy sugarcane (Saccharum spp.) in different metal mine tailings with soil amendments. Journal of Environmental Sciences, 2014, 26, 1080-1089.	3.2	20
387	Genome sequence of the anaerobic bacterium Bacillus sp. strain ZYK, a selenite and nitrate reducer from paddy soil. Standards in Genomic Sciences, 2014, 9, 646-654.	1.5	6
388	Arsenic volatilization in model anaerobic biogas digesters. Applied Geochemistry, 2013, 33, 294-297.	1.4	40
389	Bacterial communities predominant in the degradation of 13C4-4,5,9,10-pyrene during composting. Bioresource Technology, 2013, 143, 608-614.	4.8	44
390	Sewage Sludge Biochar Influence upon Rice (<i>Oryza sativa</i> L) Yield, Metal Bioaccumulation and Greenhouse Gas Emissions from Acidic Paddy Soil. Environmental Science & Technology, 2013, 47, 8624-8632.	4.6	413
391	Biomethylation and volatilization of arsenic by the marine microalgae Ostreococcus tauri. Chemosphere, 2013, 93, 47-53.	4.2	85
392	Urinary Metabolic Biomarkers Link Oxidative Stress Indicators Associated with General Arsenic Exposure to Male Infertility In a Han Chinese Population. Environmental Science & Technology, 2013, 47, 130722083038001.	4.6	40
393	Application of Microbial Biosensors to Complement Geochemical Characterisation: a Case Study in Northern China. Water, Air, and Soil Pollution, 2013, 224, 1.	1.1	2
394	Profiling the ionome of rice and its use in discriminating geographical origins at the regional scale, China. Journal of Environmental Sciences, 2013, 25, 144-154.	3.2	44
395	Effect of Long-Term Wastewater Irrigation on Potential Denitrification and Denitrifying Communities in Soils at the Watershed Scale. Environmental Science & Technology, 2013, 47, 3105-3113.	4.6	111
396	Impact of temperature, CO ₂ fixation and nitrate reduction on selenium reduction, by a paddy soil <i>Clostridium</i> strain. Journal of Applied Microbiology, 2013, 114, 703-712.	1.4	23

#	Article	IF	CITATIONS
397	Microbial Arsenic Methylation in Soil and Rice Rhizosphere. Environmental Science & Technology, 2013, 47, 3141-3148.	4.6	232
398	Effects of microbial processes on the fate of arsenic in paddy soil. Science Bulletin, 2013, 58, 186-193.	1.7	49
399	Biogas slurry application elevated arsenic accumulation in rice plant through increased arsenic release and methylation in paddy soil. Plant and Soil, 2013, 365, 387-396.	1.8	29
400	Methylated Arsenic Species in Rice: Geographical Variation, Origin, and Uptake Mechanisms. Environmental Science & Technology, 2013, 47, 3957-3966.	4.6	276
401	Variation in Rice Cadmium Related to Human Exposure. Environmental Science & Technology, 2013, 47, 5613-5618.	4.6	365
402	Association of arsenic with nutrient elements in rice plants. Metallomics, 2013, 5, 784.	1.0	99
403	Arsenic Methylation in Soils and Its Relationship with Microbial <i>arsM</i> Abundance and Diversity, and As Speciation in Rice. Environmental Science & Technology, 2013, 47, 7147-7154.	4.6	166
404	CADMIUM ACCUMULATION IN THE ROOTLESS MACROPHYTE <i>WOLFFIA GLOBOSA</i> AND ITS POTENTIAL FOR PHYTOREMEDIATION. International Journal of Phytoremediation, 2013, 15, 385-397.	1.7	37
405	Management Options for Reducing the Release of Antibiotics and Antibiotic Resistance Genes to the Environment. Environmental Health Perspectives, 2013, 121, 878-885.	2.8	657
406	Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3435-3440.	3.3	1,925
407	Engineering the Soil Bacterium Pseudomonas putida for Arsenic Methylation. Applied and Environmental Microbiology, 2013, 79, 4493-4495.	1.4	85
408	Centennial-scale analysis of the creation and fate of reactive nitrogen in China (1910–2010). Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2052-2057.	3.3	264
409	Arsenite Elicits Anomalous Sulfur Starvation Responses in Barley Â. Plant Physiology, 2013, 162, 401-409.	2.3	20
410	Influence of Humans on Evolution and Mobilization of Environmental Antibiotic Resistome. Emerging Infectious Diseases, 2013, 19, .	2.0	118
411	Draft Genome Sequence of a Novel Bacterial Strain, LSJC7, Belonging to the Family Enterobacteriaceae with Dual Resistance to Arsenic and Tetracycline. Journal of Bacteriology, 2012, 194, 7005-7006.	1.0	7
412	Do radial oxygen loss and external aeration affect iron plaque formation and arsenic accumulation and speciation in rice?. Journal of Experimental Botany, 2012, 63, 2961-2970.	2.4	120
413	A Novel Biosensor Selective for Organoarsenicals. Applied and Environmental Microbiology, 2012, 78, 7145-7147.	1.4	22
414	Trace metal contamination in urban soils of China. Science of the Total Environment, 2012, 421-422, 17-30.	3.9	417

#	Article	IF	CITATIONS
415	Modelling of organic matter dynamics during the composting process. Waste Management, 2012, 32, 19-30.	3.7	67
416	Arsenic biomethylation by photosynthetic organisms. Trends in Plant Science, 2012, 17, 155-162.	4.3	206
417	Conversion, sorption, and transport of arsenic species in geological media. Applied Geochemistry, 2012, 27, 2197-2203.	1.4	7
418	Environmental exposure to arsenic may reduce human semen quality: associations derived from a Chinese cross-sectional study. Environmental Health, 2012, 11, 46.	1.7	73
419	Pathways and Relative Contributions to Arsenic Volatilization from Rice Plants and Paddy Soil. Environmental Science & Technology, 2012, 46, 8090-8096.	4.6	131
420	Antimony (Sb) and Arsenic (As) in Sb Mining Impacted Paddy Soil from Xikuangshan, China: Differences in Mechanisms Controlling Soil Sequestration and Uptake in Rice. Environmental Science & Technology, 2012, 46, 3155-3162.	4.6	203
421	Arsenic Speciation and Volatilization from Flooded Paddy Soils Amended with Different Organic Matters. Environmental Science & Technology, 2012, 46, 2163-2168.	4.6	150
422	Urban sustainability and human health in China, East Asia and Southeast Asia. Current Opinion in Environmental Sustainability, 2012, 4, 436-442.	3.1	29
423	Rice consumption contributes to low level methylmercury exposure in southern China. Environment International, 2012, 49, 18-23.	4.8	92
424	Utilization of urban sewage sludge: Chinese perspectives. Environmental Science and Pollution Research, 2012, 19, 1454-1463.	2.7	172
425	Environmental impacts of rapid urbanization in China: a showcase of recent research developments. Environmental Science and Pollution Research, 2012, 19, 1351-1351.	2.7	17
426	Variation in grain arsenic assessed in a diverse panel of rice (<i>Oryza sativa</i>) grown in multiple sites. New Phytologist, 2012, 193, 650-664.	3.5	126
427	Arsenate toxicity and stress responses in the freshwater ciliate Tetrahymena pyriformis. European Journal of Protistology, 2012, 48, 227-236.	0.5	20
428	Phytochelatins play a key role in arsenic accumulation and tolerance in the aquatic macrophyte Wolffia globosa. Environmental Pollution, 2012, 165, 18-24.	3.7	47
429	A novel sediment microbial fuel cell with a biocathode in the rice rhizosphere. Bioresource Technology, 2012, 108, 55-59.	4.8	128
430	Health risk assessment of heavy metals in soils and vegetables from wastewater irrigated area, Beijing-Tianjin city cluster, China. Journal of Environmental Sciences, 2012, 24, 690-698.	3.2	166
431	Urban Phosphorus Metabolism through Food Consumption. Journal of Industrial Ecology, 2012, 16, 588-599.	2.8	91
432	Identification of quantitative trait loci for rice grain element composition on an arsenic impacted soil: Influence of flowering time on genetic loci. Annals of Applied Biology, 2012, 161, 46-56.	1.3	49

#	Article	IF	CITATIONS
433	Trace metal pollution in China. Science of the Total Environment, 2012, 421-422, 1-2.	3.9	14
434	Arsenic mobilization and speciation during iron plaque decomposition in a paddy soil. Journal of Soils and Sediments, 2012, 12, 402-410.	1.5	28
435	Environmental impacts on soil and groundwater at airports: origin, contaminants of concern and environmental risks. Journal of Environmental Monitoring, 2011, 13, 3026.	2.1	17
436	Comparison of polycyclic aromatic hydrocarbon uptake pathways and risk assessment of vegetables from waste-water irrigated areas in northern China. Journal of Environmental Monitoring, 2011, 13, 433-439.	2.1	44
437	Understanding and Harnessing the Health Effects of Rapid Urbanization in China. Environmental Science & Technology, 2011, 45, 5099-5104.	4.6	139
438	Pyrene Biodegradation in an Industrial Soil Exposed to Simulated Rhizodeposition: How Does It Affect Functional Microbial Abundance?. Environmental Science & Technology, 2011, 45, 1579-1585.	4.6	51
439	Assessing the Labile Arsenic Pool in Contaminated Paddy Soils by Isotopic Dilution Techniques and Simple Extractions. Environmental Science & amp; Technology, 2011, 45, 4262-4269.	4.6	75
440	Arsenic accumulation and speciation in rice are affected by root aeration and variation of genotypes. Journal of Experimental Botany, 2011, 62, 2889-2898.	2.4	135
441	Identification of tetramethylarsonium in rice grains with elevated arsenic content. Journal of Environmental Monitoring, 2011, 13, 32-34.	2.1	56
442	A cultural practice of drinking realgar wine leading to elevated urinary arsenic and its potential health risk. Environment International, 2011, 37, 889-892.	4.8	9
443	Inorganic arsenic in Chinese food and its cancer risk. Environment International, 2011, 37, 1219-1225.	4.8	328
444	Spatial distribution of arsenic and temporal variation of its concentration in rice. New Phytologist, 2011, 189, 200-209.	3.5	121
445	Arsenic biotransformation and volatilization in transgenic rice. New Phytologist, 2011, 191, 49-56.	3.5	116
446	Assessment of the solubility and bioaccessibility of arsenic in realgar wine using a simulated gastrointestinal system. Science of the Total Environment, 2011, 409, 2357-2360.	3.9	18
447	Evidence for a role of phytochelatins in regulating arsenic accumulation in rice grain. Environmental and Experimental Botany, 2011, 71, 416-416.	2.0	75
448	Rapid biotransformation of arsenic by a model protozoan Tetrahymena thermophila. Environmental Pollution, 2011, 159, 837-840.	3.7	42
449	Effect of pyrene on denitrification activity and abundance and composition of denitrifying community in an agricultural soil. Environmental Pollution, 2011, 159, 1886-1895.	3.7	67
450	Distribution, speciation and availability of antimony (Sb) in soils and terrestrial plants from an active Sb mining area. Environmental Pollution, 2011, 159, 2427-2434.	3.7	210

#	Article	IF	CITATIONS
451	Material flow analysis of phosphorus through food consumption in two megacities in northern China. Chemosphere, 2011, 84, 773-778.	4.2	46
452	Remediation of polycyclic aromatic hydrocarbon (PAH) contaminated soil through composting with fresh organic wastes. Environmental Science and Pollution Research, 2011, 18, 1574-1584.	2.7	44
453	Pyrene effects on methanotroph community and methane oxidation rate, tested by dose–response experiment and resistance and resilience experiment. Journal of Soils and Sediments, 2011, 11, 312-321.	1.5	15
454	Phylogenetic diversity of Fe(III)-reducing microorganisms in rice paddy soil: enrichment cultures with different short-chain fatty acids as electron donors. Journal of Soils and Sediments, 2011, 11, 1234-1242.	1.5	86
455	Biotransformation and Volatilization of Arsenic by Three Photosynthetic Cyanobacteria. Plant Physiology, 2011, 156, 1631-1638.	2.3	171
456	Botanical composition, production and nutrient status of an originally Lolium perenne-dominant cut grass sward receiving long-term manure applications. Plant and Soil, 2010, 326, 355-367.	1.8	23
457	Soil-plant interactions and sustainability of eco-agriculture in arid region: a crucially important topic to address. Plant and Soil, 2010, 326, 1-2.	1.8	13
458	C: N: P stoichiometry and specific growth rate of clover colonized by arbuscular mycorrhizal fungi. Plant and Soil, 2010, 326, 21-29.	1.8	37
459	Dynamic changes in functional gene copy numbers and microbial communities during degradation of pyrene in soils. Environmental Pollution, 2010, 158, 2872-2879.	3.7	49
460	Copper toxicity thresholds in Chinese soils based on substrate-induced nitrification assay. Environmental Toxicology and Chemistry, 2010, 29, 294-300.	2.2	17
461	Arsenic Bioavailability to Rice Is Elevated in Bangladeshi Paddy Soils. Environmental Science & Technology, 2010, 44, 8515-8521.	4.6	139
462	Arsenic Shoot-Grain Relationships in Field Grown Rice Cultivars. Environmental Science & Technology, 2010, 44, 1471-1477.	4.6	54
463	Distribution and Translocation of Selenium from Soil to Grain and Its Speciation in Paddy Rice (<i>Oryza sativa</i> L.). Environmental Science & Technology, 2010, 44, 6706-6711.	4.6	105
464	Urbanisation and health in China. Lancet, The, 2010, 376, 232-233.	6.3	21
465	Abundance and Diversity of Tetracycline Resistance Genes in Soils Adjacent to Representative Swine Feedlots in China. Environmental Science & Technology, 2010, 44, 6933-6939.	4.6	315
466	Biogeochemical Processes of Arsenic in Paddy Soils. , 2010, , 47-48.		0
467	Control of Cell Proliferation, Organ Growth, and DNA Damage Response Operate Independently of Dephosphorylation of the <i>Arabidopsis</i> Cdk1 Homolog CDKA;1 Â. Plant Cell, 2009, 21, 3641-3654.	3.1	106
468	Selenium Characterization in the Global Rice Supply Chain. Environmental Science & Technology, 2009, 43, 6024-6030.	4.6	191

#	Article	IF	CITATIONS
469	Arbuscular mycorrhizal colonisation increases copper binding capacity of root cell walls of Oryza sativa L. and reduces copper uptake. Soil Biology and Biochemistry, 2009, 41, 930-935.	4.2	77
470	Perspectives for genetic engineering for the phytoremediation of arsenic-contaminated environments: from imagination to reality?. Current Opinion in Biotechnology, 2009, 20, 220-224.	3.3	96
471	Do ammonia-oxidizing archaea respond to soil Cu contamination similarly asammonia-oxidizing bacteria?. Plant and Soil, 2009, 324, 209-217.	1.8	53
472	Phylogenetic diversity of dissimilatory ferric iron reducers in paddy soil of Hunan, South China. Journal of Soils and Sediments, 2009, 9, 568-577.	1.5	92
473	Resistance and resilience of Cu-polluted soil after Cu perturbation, tested by a wide range of soil microbial parameters. FEMS Microbiology Ecology, 2009, 70, 293-304.	1.3	50
474	Showcasing microbial ecology research in China. FEMS Microbiology Ecology, 2009, 70, 163-164.	1.3	1
475	Element interconnections inLotus japonicus: A systematic study of the effects of element additions on different natural variants. Soil Science and Plant Nutrition, 2009, 55, 91-101.	0.8	36
476	Urban Conservation and Environmental Protection in China: a Major Effort by the Chinese Academy of Sciences. Conservation Biology, 2009, 23, 546-547.	2.4	2
477	Arsenic uptake and speciation in the rootless duckweed <i>Wolffia globosa</i> . New Phytologist, 2009, 182, 421-428.	3.5	111
478	Speciation and distribution of arsenic and localization of nutrients in rice grains. New Phytologist, 2009, 184, 193-201.	3.5	226
479	An inventory of trace element inputs to agricultural soils in China. Journal of Environmental Management, 2009, 90, 2524-2530.	3.8	508
480	ARSENATE TOXICITY FOR WHEAT AND LETTUCE IN SIX CHINESE SOILS WITH DIFFERENT PROPERTIES. Environmental Toxicology and Chemistry, 2009, 28, 1946.	2.2	16
481	Arsenic Binding to Iron(II) Minerals Produced by An Iron(III)â€Reducing <i>Aeromonas</i> Strain Isolated from Paddy Soil. Environmental Toxicology and Chemistry, 2009, 28, 2255-2262.	2.2	22
482	Uptake and Acropetal Translocation of Polycyclic Aromatic Hydrocarbons by Wheat (Triticum) Tj ETQq0 0 0 rgBT / 3556-3560.	Overlock 4.6	10 Tf 50 227 84
483	Survey of arsenic and its speciation in rice products such as breakfast cereals, rice crackers and Japanese rice condiments. Environment International, 2009, 35, 473-475.	4.8	138
484	Arsenic geochemistry, transport mechanism in the soil–plant system, human and animal health issues. Environment International, 2009, 35, 453-454.	4.8	29
485	Assessing current and future ozone-induced yield reductions for rice and winter wheat in Chongqing and the Yangtze River Delta of China. Environmental Pollution, 2009, 157, 707-709.	3.7	32
486	Phenanthrene uptake by Medicago sativa L. under the influence of an arbuscular mycorrhizal fungus. Environmental Pollution, 2009, 157, 1613-1618.	3.7	42

#	Article	IF	CITATIONS
487	Interactions of mixed organic contaminants in uptake by rice seedlings. Chemosphere, 2009, 74, 890-895.	4.2	9
488	Adsorption and desorption of iodine by various Chinese soils: II. Iodide and iodate. Geoderma, 2009, 153, 130-135.	2.3	102
489	Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends in Plant Science, 2009, 14, 436-442.	4.3	486
490	Does salicylic acid regulate antioxidant defense system, cell death, cadmium uptake and partitioning to acquire cadmium tolerance in rice?. Journal of Plant Physiology, 2009, 166, 20-31.	1.6	129
491	Arsenic Limits Trace Mineral Nutrition (Selenium, Zinc, and Nickel) in Bangladesh Rice Grain. Environmental Science & Technology, 2009, 43, 8430-8436.	4.6	99
492	Occurrence and Partitioning of Cadmium, Arsenic and Lead in Mine Impacted Paddy Rice: Hunan, China. Environmental Science & Technology, 2009, 43, 637-642.	4.6	451
493	Environmental and Genetic Control of Arsenic Accumulation and Speciation in Rice Grain: Comparing a Range of Common Cultivars Grown in Contaminated Sites Across Bangladesh, China, and India. Environmental Science & Technology, 2009, 43, 8381-8386.	4.6	146
494	Chapter 8 Principles and Technologies for Remediation of Uranium-Contaminated Environments. Radioactivity in the Environment, 2009, 14, 357-374.	0.2	5
495	The importance of the 'international collaboration dividend': the case of China. Science and Public Policy, 2009, 36, 723-735.	1.2	6
496	Geographical Variation in Total and Inorganic Arsenic Content of Polished (White) Rice. Environmental Science & Technology, 2009, 43, 1612-1617.	4.6	673
497	Positive correlation between soil bacterial metabolic and plant species diversity and bacterial and fungal diversity in a vegetation succession on Karst. Plant and Soil, 2008, 307, 123-134.	1.8	74
498	Influences of phosphorus starvation on OsACR2.1 expression and arsenic metabolism in rice seedlings. Plant and Soil, 2008, 313, 129-139.	1.8	8
499	Concentrations and bioaccessibility of polycyclic aromatic hydrocarbons in wastewater-irrigated soil using in vitro gastrointestinal test. Environmental Science and Pollution Research, 2008, 15, 344-353.	2.7	43
500	Arbuscular mycorrhizas contribute to phytostabilization of uranium in uranium mining tailings. Journal of Environmental Radioactivity, 2008, 99, 801-810.	0.9	38
501	Accumulation of polycyclic aromatic hydrocarbons and heavy metals in lettuce grown in the soils contaminated with long-term wastewater irrigation. Journal of Hazardous Materials, 2008, 152, 506-515.	6.5	235
502	Arsenic bioavailability in the soil amended with leaves of arsenic hyperaccumulator, Chinese brake fern (<i>Pteris vittata</i> L.). Environmental Toxicology and Chemistry, 2008, 27, 126-130.	2.2	5
503	Arsenateâ€induced toxicity: Effects on antioxidative enzymes and DNA damage in <i>Vicia faba</i> . Environmental Toxicology and Chemistry, 2008, 27, 413-419.	2.2	86
504	Effects of different forms of nitrogen fertilizers on arsenic uptake by rice plants. Environmental Toxicology and Chemistry, 2008, 27, 881-887.	2.2	79

#	Article	IF	CITATIONS
505	Gene Structure and Expression of the Highâ€affinity Nitrate Transport System in Rice Roots. Journal of Integrative Plant Biology, 2008, 50, 443-451.	4.1	96
506	Differences in soil bacterial diversity: driven by contemporary disturbances or historical contingencies?. ISME Journal, 2008, 2, 254-264.	4.4	182
507	Mapping quantitative trait loci associated with arsenic accumulation in rice (<i>Oryza sativa</i>). New Phytologist, 2008, 177, 350-356.	3.5	108
508	Highly efficient xylem transport of arsenite in the arsenic hyperaccumulator <i>Pteris vittata</i> . New Phytologist, 2008, 180, 434-441.	3.5	161
509	Abundance and composition of ammoniaâ€oxidizing bacteria and ammoniaâ€oxidizing archaea communities of an alkaline sandy loam. Environmental Microbiology, 2008, 10, 1601-1611.	1.8	508
510	Ammoniaâ€oxidizing archaea: important players in paddy rhizosphere soil?. Environmental Microbiology, 2008, 10, 1978-1987.	1.8	340
511	Tracing the behaviour of hexachlorobenzene in a paddy soil-rice system over a growth season. Journal of Environmental Sciences, 2008, 20, 56-61.	3.2	13
512	Does copper reduce cadmium uptake by different rice genotypes?. Journal of Environmental Sciences, 2008, 20, 332-338.	3.2	22
513	Microbial DNA extraction and analyses of soil iron–manganese nodules. Soil Biology and Biochemistry, 2008, 40, 1364-1369.	4.2	29
514	Speciation and Localization of Arsenic in White and Brown Rice Grains. Environmental Science & Technology, 2008, 42, 1051-1057.	4.6	321
515	Inorganic Arsenic in Rice Bran and Its Products Are an Order of Magnitude Higher than in Bulk Grain. Environmental Science & Technology, 2008, 42, 7542-7546.	4.6	278
516	High Percentage Inorganic Arsenic Content of Mining Impacted and Nonimpacted Chinese Rice. Environmental Science & Technology, 2008, 42, 5008-5013.	4.6	390
517	Bacterial Communities Inside and Surrounding Soil Iron-Manganese Nodules. Geomicrobiology Journal, 2008, 25, 14-24.	1.0	59
518	Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental Pollution, 2008, 152, 686-692.	3.7	1,712
519	Arbuscular mycorrhiza enhanced arsenic resistance of both white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.) plants in an arsenic-contaminated soil. Environmental Pollution, 2008, 155, 174-181.	3.7	117
520	Uptake of selected PAHs from contaminated soils by rice seedlings (Oryza sativa) and influence of rhizosphere on PAH distribution. Environmental Pollution, 2008, 155, 359-365.	3.7	83
521	Inorganic arsenic levels in baby rice are of concern. Environmental Pollution, 2008, 152, 746-749.	3.7	168
522	Exposure to inorganic arsenic from rice: A global health issue?. Environmental Pollution, 2008, 154, 169-171.	3.7	344

#	Article	IF	CITATIONS
523	Arsenic accumulation by the aquatic fern Azolla: Comparison of arsenate uptake, speciation and efflux by A. caroliniana and A. filiculoides. Environmental Pollution, 2008, 156, 1149-1155.	3.7	89
524	Effects of rice straw on the speciation of cadmium (Cd) and copper (Cu) in soils. Geoderma, 2008, 146, 370-377.	2.3	56
525	Relationships Between Agronomic and Environmental Soil Test Phosphorus in Three Typical Cultivated Soils in China. Pedosphere, 2008, 18, 795-800.	2.1	9
526	Effect of Long-Term Application of Chemical Fertilizers on Microbial Biomass and Functional Diversity of a Black Soil. Pedosphere, 2008, 18, 801-808.	2.1	42
527	Do water regimes affect ironâ€plaque formation and microbial communities in the rhizosphere of paddy rice?. Journal of Plant Nutrition and Soil Science, 2008, 171, 193-199.	1.1	50
528	Contribution of motor vehicle emissions to surface ozone in urban areas: A case study in Beijing. International Journal of Sustainable Development and World Ecology, 2008, 15, 345-349.	3.2	5
529	Influences of polycyclic aromatic hydrocarbons (PAHs) on soil microbial community composition with or without Vegetation. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2007, 42, 65-72.	0.9	19
530	Effects of soil moisture and plant interactions on the soil microbial community structure. European Journal of Soil Biology, 2007, 43, 31-38.	1.4	103
531	Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings. Environmental Pollution, 2007, 147, 374-380.	3.7	158
532	Ground-level ozone in China: Distribution and effects on crop yields. Environmental Pollution, 2007, 147, 394-400.	3.7	156
533	Lead and cadmium in leaves of deciduous trees in Beijing, China: Development of a metal accumulation index (MAI). Environmental Pollution, 2007, 145, 387-390.	3.7	91
534	Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review. Environmental Pollution, 2007, 147, 422-428.	3.7	885
535	Sulfur (S)-induced enhancement of iron plaque formation in the rhizosphere reduces arsenic accumulation in rice (Oryza sativa L.) seedlings. Environmental Pollution, 2007, 147, 387-393.	3.7	161
536	Effect of arbuscular mycorrhizal fungus (Glomus caledonium) on the accumulation and metabolism of atrazine in maize (Zea mays L.) and atrazine dissipation in soil. Environmental Pollution, 2007, 146, 452-457.	3.7	70
537	Uptake of oxytetracycline and its phytotoxicity to alfalfa (Medicago sativa L.). Environmental Pollution, 2007, 147, 187-193.	3.7	178
538	Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress. Environmental Pollution, 2007, 147, 743-749.	3.7	212
539	China steps up its efforts in research and development to combat environmental pollution. Environmental Pollution, 2007, 147, 301-302.	3.7	13
540	Is the effect of silicon on rice uptake of arsenate (AsV) related to internal silicon concentrations, iron plaque and phosphate nutrition?. Environmental Pollution, 2007, 148, 251-257.	3.7	90

#	Article	IF	CITATIONS
541	Where do Chinese scientists publish their research in environmental science and technology?. Environmental Pollution, 2007, 147, 1-3.	3.7	5
542	DNA damage and repair process in earthworm after in-vivo and in vitro exposure to soils irrigated by wastewaters. Environmental Pollution, 2007, 148, 141-147.	3.7	42
543	Transport mechanisms for the uptake of organic compounds by rice (Oryza sativa) roots. Environmental Pollution, 2007, 148, 94-100.	3.7	88
544	The impact of sewage irrigation on the uptake of mercury in corn plants (Zea mays) from suburban Beijing. Environmental Pollution, 2007, 149, 246-251.	3.7	24
545	An analysis of papers published in Environmental Pollution in 2006: A continuing pattern of advancement and success. Environmental Pollution, 2007, 150, 2-4.	3.7	Ο
546	The ageing effect on the bioaccessibility and fractionation of arsenic in soils from China. Chemosphere, 2007, 66, 1183-1190.	4.2	109
547	Improved Approaches for Modeling the Sorption of Phenanthrene by a Range of Plant Species. Environmental Science & Technology, 2007, 41, 7818-7823.	4.6	42
548	Effects of exposure time and co-existing organic compounds on uptake of atrazine from nutrient solution by rice seedlings (Oryza sativa L.). Journal of Hazardous Materials, 2007, 141, 223-229.	6.5	9
549	Wheat phytotoxicity from arsenic and cadmium separately and together in solution culture and in a calcareous soil. Journal of Hazardous Materials, 2007, 148, 377-382.	6.5	55
550	A CDC25 homologue from rice functions as an arsenate reductase. New Phytologist, 2007, 174, 311-321.	3.5	167
551	Quantitative analyses of the abundance and composition of ammoniaâ€oxidizing bacteria and ammoniaâ€oxidizing archaea of a Chinese upland red soil under longâ€ŧerm fertilization practices. Environmental Microbiology, 2007, 9, 2364-2374.	1.8	877
552	Quantitative analyses of the abundance and composition of ammoniaâ€oxidizing bacteria and ammoniaâ€oxidizing archaea of a Chinese upland red soil under longâ€ŧerm fertilization practices. Environmental Microbiology, 2007, 9, 3152-3152.	1.8	36
553	Regulation of the Highâ€Affinity Nitrate Transport System in Wheat Roots by Exogenous Abscisic Acid and Glutamine. Journal of Integrative Plant Biology, 2007, 49, 1719-1725.	4.1	24
554	Which ornamental plant species effectively remove benzene from indoor air?. Atmospheric Environment, 2007, 41, 650-654.	1.9	112
555	The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn. Science of the Total Environment, 2007, 379, 226-234.	3.9	138
556	Marschner reviews: A new initiative in delivering cutting-edge science in soil–plant interactions. Plant and Soil, 2007, 300, 1-7.	1.8	11
557	Does long-term fertilization treatment affect the response of soil ammonia-oxidizing bacterial communities to Zn contamination?. Plant and Soil, 2007, 301, 245-254.	1.8	10
558	Increase of multi-metal tolerance of three leguminous plants by arbuscular mycorrhizal fungi colonization. Environmental Geochemistry and Health, 2007, 29, 473-481.	1.8	64

#	Article	IF	CITATIONS
559	ARSENIC BIOAVAILABILITY IN THE SOIL AMENDED WITH LEAVES OF ARSENIC HYPERACCUMULATOR, CHINESE BRAKE FERN (PTERIS VITTATA L.). Environmental Toxicology and Chemistry, 2007, preprint, 1.	2.2	0
560	Increase in Rice Grain Arsenic for Regions of Bangladesh Irrigating Paddies with Elevated Arsenic in Groundwaters. Environmental Science & Technology, 2006, 40, 4903-4908.	4.6	473
561	Linear Adsorption of Nonionic Organic Compounds from Water onto Hydrophilic Minerals:Â Silica and Alumina. Environmental Science & Technology, 2006, 40, 6949-6954.	4.6	53
562	Arsenic Sequestration in Iron Plaque, Its Accumulation and Speciation in Mature Rice Plants (Oryza) Tj ETQq0 0 0	rgBT /0\ 4.6	verlock 10 Tf 5
563	Leaf Chlorophyll Readings as an Indicator for Spinach Yield and Nutritional Quality with Different Nitrogen Fertilizer Applications. Journal of Plant Nutrition, 2006, 29, 1207-1217.	0.9	50
564	Genotoxic Risk Identification of Soil Contamination at a Major Industrialized City in Northeast China by a Combination of in Vitro and in Vivo Bioassays. Environmental Science & Technology, 2006, 40, 6170-6175.	4.6	23
565	Temporal change in land use and its relationship to slope degree and soil type in a small catchment on the Loess Plateau of China. Catena, 2006, 65, 41-48.	2.2	105
566	Arsenate (As) uptake by and distribution in two cultivars of winter wheat (Triticum aestivum L.). Chemosphere, 2006, 62, 608-615.	4.2	51
567	Effects of arbuscular mycorrhizal inoculation on uranium and arsenic accumulation by Chinese brake fern (Pteris vittata L.) from a uranium mining-impacted soil. Chemosphere, 2006, 62, 1464-1473.	4.2	78
568	Oxalate and root exudates enhance the desorption of p,p′-DDT from soils. Chemosphere, 2006, 63, 1273-1279.	4.2	58
569	Arbuscular mycorrhizal fungi can alleviate the adverse effects of chlorothalonil on Oryza sativa L Chemosphere, 2006, 64, 1627-1632.	4.2	23
570	Adsorption (AsIII,V) and oxidation (AsIII) of arsenic by pedogenic Fe–Mn nodules. Geoderma, 2006, 136, 566-572.	2.3	36
571	The effect of ageing on the bioaccessibility and fractionation of cadmium in some typical soils of China. Environment International, 2006, 32, 682-689.	4.8	141
572	Bioconcentration of atrazine and chlorophenols into roots and shoots of rice seedlings. Environmental Pollution, 2006, 139, 32-39.	3.7	48
573	Effect of bone char application on Pb bioavailability in a Pb-contaminated soil. Environmental Pollution, 2006, 139, 433-439.	3.7	85
574	Assessment of the bioaccessibility of polycyclic aromatic hydrocarbons in soils from Beijing using an in vitro test. Environmental Pollution, 2006, 140, 279-285.	3.7	104
575	The veterinary antibiotic oxytetracycline and Cu influence functional diversity of the soil microbial community. Environmental Pollution, 2006, 143, 129-137.	3.7	211
576	Fast moves in arbuscular mycorrhizal symbiotic signalling. Trends in Plant Science, 2006, 11, 369-371.	4.3	25

#	Article	IF	CITATIONS
577	Importance of plant species and external silicon concentration to active silicon uptake and transport. New Phytologist, 2006, 172, 63-72.	3.5	185
578	Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorusâ€fixing soil even in the absence of positive growth responses. New Phytologist, 2006, 172, 536-543.	3.5	201
579	Iron plaque enhances phosphorus uptake by rice (Oryza sativa) growing under varying phosphorus and iron concentrations. Annals of Applied Biology, 2006, 149, 305-312.	1.3	53
580	Introgression of Resistance to Powdery Mildew Conferred by Chromosome 2R by Crossing Wheat Nullisomic 2D with Rye. Journal of Integrative Plant Biology, 2006, 48, 838-847.	4.1	31
581	The effect of grain size of rock phosphate amendment on metal immobilization in contaminated soils. Journal of Hazardous Materials, 2006, 134, 74-79.	6.5	91
582	CHARACTERIZATION OF Pb, Cu, AND Cd ADSORPTION ON PARTICULATE ORGANIC MATTER IN SOIL. Environmental Toxicology and Chemistry, 2006, 25, 2366.	2.2	88
583	ARSENATE SORPTION ON TWO CHINESE RED SOILS EVALUATED WITH MACROSCOPIC MEASUREMENTS AND EXTENDED X-RAY ABSORPTION FINE-STRUCTURE SPECTROSCOPY. Environmental Toxicology and Chemistry, 2006, 25, 3118.	2.2	20
584	Humic Acids Increase the Phytoavailability of Cd and Pb to Wheat Plants Cultivated in Freshly Spiked, Contaminated Soil (7 pp). Journal of Soils and Sediments, 2006, 6, 236-242.	1.5	72
585	Arsenate Causes Differential Acute Toxicity to Two P-deprived Genotypes of Rice Seedlings (Oryza) Tj ETQq1 1 0.	784314 rg 1.8	gBT_/Overlock
586	Mapping QTLs for nitrogen uptake in relation to the early growth of wheat (Triticum aestivum L.). Plant and Soil, 2006, 284, 73-84.	1.8	169
587	Availability of iodide and iodate to spinach (Spinacia oleracea L.) in relation to total iodine in soil solution. Plant and Soil, 2006, 289, 301-308.	1.8	57
588	Effects of Oxalate and Humic Acid on Arsenate Sorption by and Desorption from a Chinese Red Soil. Water, Air, and Soil Pollution, 2006, 176, 269-283.	1.1	16
589	Ecological effects of crude oil residues on the functional diversity of soil microorganisms in three weed rhizospheres. Journal of Environmental Sciences, 2006, 18, 1101-1106.	3.2	21
590	Phosphate (Pi) and Arsenate Uptake by Two Wheat (Triticum aestivum) Cultivars and Their Doubled Haploid Lines. Annals of Botany, 2006, 98, 631-636.	1.4	34
591	Influence of Lead on Atrazine Uptake by Rice (Oryza sativa L.) Seedlings from Nutrient Solution (7 pp). Environmental Science and Pollution Research, 2005, 12, 21-27.	2.7	14
592	The Influence of Mycorrhiza on Uranium and Phosphorus Uptake by Barley Plants from a Field-contaminated Soil (7 pp). Environmental Science and Pollution Research, 2005, 12, 325-331.	2.7	36
593	Direct evidence showing the effect of root surface iron plaque on arsenite and arsenate uptake into rice (Oryza sativa) roots. New Phytologist, 2005, 165, 91-97.	3.5	279
594	Mycorrhiza and root hairs in barley enhance acquisition of phosphorus and uranium from phosphate rock but mycorrhiza decreases root to shoot uranium transfer. New Phytologist, 2005, 165, 591-598.	3.5	82

#	Article	IF	CITATIONS
595	Organic acids promote the uptake of lanthanum by barley roots. New Phytologist, 2005, 165, 481-492.	3.5	91
596	Contrasting phosphate acquisition of mycorrhizal fungi with that of root hairs using the root hairs hairless barley mutant. Plant, Cell and Environment, 2005, 28, 928-938.	2.8	90
597	Uptake of mercury (Hg) by seedlings of rice (Oryza sativa L.) grown in solution culture and interactions with arsenate uptake. Environmental and Experimental Botany, 2005, 54, 1-7.	2.0	108
598	Co-uptake of atrazine and mercury by rice seedlings from water. Pesticide Biochemistry and Physiology, 2005, 82, 226-232.	1.6	14
599	Evaluation of Genotoxicity of Combined Pollution by Cadmium and Atrazine. Bulletin of Environmental Contamination and Toxicology, 2005, 74, 589-596.	1.3	15
600	Soil to plant transfer of 238U, 226Ra and 232Th on a uranium mining-impacted soil from southeastern China. Journal of Environmental Radioactivity, 2005, 82, 223-236.	0.9	146
601	Influence of the arbuscular mycorrhizal fungus Glomus mosseae on uptake of arsenate by the As hyperaccumulator fern Pteris vittata L Mycorrhiza, 2005, 15, 187-192.	1.3	127
602	Sequestration of As by iron plaque on the roots of three rice (Oryza sativa L.) cultivars in a low-P soil with or without P fertilizer. Environmental Geochemistry and Health, 2005, 27, 169-176.	1.8	70
603	Effect of silicate on the growth and arsenate uptake by rice (Oryza sativa L.) seedlings in solution culture. Plant and Soil, 2005, 272, 173-181.	1.8	105
604	Effects of Iron and Manganese Plaques on Arsenic Uptake by Rice Seedlings (Oryza sativa L.) Grown in Solution Culture Supplied with Arsenate and Arsenite. Plant and Soil, 2005, 277, 127-138.	1.8	151
605	Wheat Responses to Arbuscular Mycorrhizal Fungi in a Highly Calcareous Soil Differ from those of Clover, and Change with Plant Development and P supply. Plant and Soil, 2005, 277, 221-232.	1.8	76
606	Effects of Boron on Leaf Expansion and Intercellular Airspaces in Mung Bean in Solution Culture. Journal of Plant Nutrition, 2005, 28, 351-361.	0.9	9
607	Uptake and Translocation of Arsenic and Phosphorus inpho2Mutant and Wild Type ofArabidopsis thaliana. Journal of Plant Nutrition, 2005, 28, 1323-1336.	0.9	8
608	Effects of the mycorrhizal fungus Glomus intraradices on uranium uptake and accumulation by Medicago truncatula L. from uranium-contaminated soil. Plant and Soil, 2005, 275, 349-359.	1.8	37
609	Characterization of Arsenate Reductase in the Extract of Roots and Fronds of Chinese Brake Fern, an Arsenic Hyperaccumulator. Plant Physiology, 2005, 138, 461-469.	2.3	180
610	Effect of Zinc on Cadmium Toxicity-Induced Oxidative Stress in Winter Wheat Seedlings. Journal of Plant Nutrition, 2005, 28, 1947-1959.	0.9	29
611	Evaluation of the EUROSEM model with single event data on Steeplands in the Three Gorges Reservoir Areas, China. Catena, 2005, 59, 19-33.	2.2	43
612	Toxicity of arsenate and arsenite on germination, seedling growth and amylolytic activity of wheat. Chemosphere, 2005, 61, 293-301.	4.2	197

#	Article	IF	CITATIONS
613	Interaction between cadmium and atrazine during uptake by rice seedlings (Oryza sativa L.). Chemosphere, 2005, 60, 802-809.	4.2	36
614	Exposure to metal mixtures and human health impacts in a contaminated area in Nanning, China. Environment International, 2005, 31, 784-790.	4.8	243
615	Contamination of polycyclic aromatic hydrocarbons (PAHs) in urban soils in Beijing, China. Environment International, 2005, 31, 822-828.	4.8	265
616	Yield and arsenate uptake of arbuscular mycorrhizal tomato colonized by Glomus mosseae BEG167 in As spiked soil under glasshouse conditions. Environment International, 2005, 31, 867-873.	4.8	62
617	Adsorption of arsenate on soils. Part 1: Laboratory batch experiments using 16 Chinese soils with different physiochemical properties. Environmental Pollution, 2005, 138, 278-284.	3.7	50
618	Adsorption of arsenate on soils. Part 2: Modeling the relationship between adsorption capacity and soil physiochemical properties using 16 Chinese soils. Environmental Pollution, 2005, 138, 285-289.	3.7	59
619	Arsenate uptake and translocation in seedlings of two genotypes of rice is affected by external phosphate concentrations. Aquatic Botany, 2005, 83, 321-331.	0.8	70
620	Environmental sustainability index of Shandong Province, China. International Journal of Sustainable Development and World Ecology, 2004, 11, 227-233.	3.2	14
621	Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa) Tj ETQq1	1 0.78431 2.4	l4 rgBT /Ove 261
622	Do phosphorus nutrition and iron plaque alter arsenate (As) uptake by rice seedlings in hydroponic culture?. New Phytologist, 2004, 162, 481-488.	3.5	296
623	Selecting Iodine-Enriched Vegetables and the Residual Effect of Iodate Application to Soil. Biological Trace Element Research, 2004, 101, 265-276.	1.9	95
624	Interactions between selenium and iodine uptake by spinach (Spinacia oleracea L.) in solution culture. Plant and Soil, 2004, 261, 99-105.	1.8	48
625	An assessment of the usefulness of solution culture in screening for phosphorus efficiency in wheat. Plant and Soil, 2004, 261, 91-97.	1.8	22
626	Relationships between soil characteristics, topography and plant diversity in a heterogeneous deciduous broad-leaved forest near Beijing, China. Plant and Soil, 2004, 261, 47-54.	1.8	142
627	Effects of soil amendments on lead uptake by two vegetable crops from a lead-contaminated soil from Anhui, China. Environment International, 2004, 30, 351-356.	4.8	106
628	Adsorption and desorption of iodine by various Chinese soils. Environment International, 2004, 30, 525-530.	4.8	63
629	Assessment of the effectiveness of different phosphorus fertilizers to remediate Pb-contaminated soil using in vitro test. Environment International, 2004, 30, 531-537.	4.8	50
630	Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China. Environment International, 2004, 30, 785-791.	4.8	629

#	Article	IF	CITATIONS
631	Vacuolar compartmentalization: a second-generation approach to engineering plants for phytoremediation. Trends in Plant Science, 2004, 9, 7-9.	4.3	261
632	Effects of forms and rates of potassium fertilizers on cadmium uptake by two cultivars of spring wheat (Triticum aestivum, L.). Environment International, 2004, 29, 973-978.	4.8	94
633	Ecological footprint of Shandong, China. Journal of Environmental Sciences, 2004, 16, 167-72.	3.2	3
634	Cadmium uptake by different rice genotypes that produce white or dark grains. Journal of Environmental Sciences, 2004, 16, 962-7.	3.2	7
635	Title is missing!. Plant and Soil, 2003, 251, 237-245.	1.8	108
636	Effect of Zinc?Cadmium Interactions on the Uptake of Zinc and Cadmium by Winter Wheat (Triticum) Tj ETQq0 0 1289-96.	0 rgBT /C 1.3	verlock 10 T 27
637	Toxicity Issues Associated with Geogenic Arsenic in the Groundwater?Soil?Plant?Human Continuum. Bulletin of Environmental Contamination and Toxicology, 2003, 71, 1100-7.	1.3	22
638	Phosphorus efficiencies and responses of barley (Hordeum vulgare L.) to arbuscular mycorrhizal fungi grown in highly calcareous soil. Mycorrhiza, 2003, 13, 93-100.	1.3	88
639	Phosphorus–Zinc Interactions in Two Barley Cultivars Differing in Phosphorus and Zinc Efficiencies. Journal of Plant Nutrition, 2003, 26, 1085-1099.	0.9	46
640	lodine uptake by spinach (Spinacia oleracea L.) plants grown in solution culture: effects of iodine species and solution concentrations. Environment International, 2003, 29, 33-37.	4.8	131
641	Carbon cycling by arbuscular mycorrhizal fungi in soil–plant systems. Trends in Plant Science, 2003, 8, 407-409.	4.3	296
642	INTERACTIONS BETWEEN SOIL MOISTURE CONTENT AND PHOSPHORUS SUPPLY IN SPRING WHEAT PLANTS GROWN IN POT CULTURE. Journal of Plant Nutrition, 2002, 25, 913-925.	0.9	34
643	Phosphorus efficiencies and their effects on Zn, Cu, and Mn nutrition of different barley (Hordeum) Tj ETQq1 1 0.3	784314 rg 1.5	gBŢ /Overloci
644	Effect of external potassium supply and plant age on the uptake of radiocaesium (137Cs) by broad bean (Vicia faba): interpretation of results from a large-scale hydroponic study. Environmental and Experimental Botany, 2002, 47, 173-187.	2.0	21
645	Title is missing!. Plant and Soil, 2002, 239, 1-8.	1.8	51
646	Zinc (Zn)-phosphorus (P) Interactions in Two Cultivars of Spring Wheat (Triticum aestivum L.) Differing in P Uptake Efficiency. Annals of Botany, 2001, 88, 941-945.	1.4	90
647	Backseat driving? Accessing phosphate beyond the rhizosphere-depletion zone. Trends in Plant Science, 2001, 6, 194-195.	4.3	34
648	Uptake of Zn by arbuscular mycorrhizal white clover from Zn-contaminated soil. Chemosphere, 2001, 42, 193-199.	4.2	106

#	Article	IF	CITATIONS
649	Effect of external potassium (K) supply on the uptake of 137Cs by spring wheat (Triticum aestivum cv.) Tj ETQq1	1 0.78431	4.rgBT /Ove
650	Title is missing!. , 2001, 231, 105-112.		72
651	Phosphorus (P) efficiencies and mycorrhizal responsiveness of old and modern wheat cultivars. Plant and Soil, 2001, 237, 249-255.	1.8	169
652	Capillary gel electrophoretic separation of superoxide dismutases in leaf extracts of Triticum aestivum L Phytochemical Analysis, 2000, 11, 362-365.	1.2	3
653	The specificity of arbuscular mycorrhizal fungi in perennial ryegrass–white clover pasture. Agriculture, Ecosystems and Environment, 2000, 77, 211-218.	2.5	40
654	Title is missing!. Plant and Soil, 2000, 220, 27-34.	1.8	40
655	Plant uptake of radiocaesium: a review of mechanisms, regulation and application. Journal of Experimental Botany, 2000, 51, 1635-1645.	2.4	385
656	Soil contamination with radionuclides and potential remediation. Chemosphere, 2000, 41, 121-128.	4.2	145
657	Effects of External Potassium Supply on Compartmentation and Flux Characteristics of Radiocaesium in Intact Spring Wheat Roots. Annals of Botany, 1999, 84, 639-644.	1.4	21