Ira W Deveson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9029622/publications.pdf Version: 2024-02-01

IDA W DEVESON

#	Article	IF	CITATIONS
1	Reference standards for next-generation sequencing. Nature Reviews Genetics, 2017, 18, 473-484.	16.3	194
2	Analytical validity of nanopore sequencing for rapid SARS-CoV-2 genome analysis. Nature Communications, 2020, 11, 6272.	12.8	183
3	The Dimensions, Dynamics, and Relevance of the Mammalian Noncoding Transcriptome. Trends in Genetics, 2017, 33, 464-478.	6.7	181
4	Tracking the international spread of SARS-CoV-2 lineages B.1.1.7 and B.1.351/501Y-V2 with grinch. Wellcome Open Research, 2021, 6, 121.	1.8	129
5	Evaluating the analytical validity of circulating tumor DNA sequencing assays for precision oncology. Nature Biotechnology, 2021, 39, 1115-1128.	17.5	126
6	Spliced synthetic genes as internal controls in RNA sequencing experiments. Nature Methods, 2016, 13, 792-798.	19.0	123
7	Diagnosis of fusion genes using targeted RNA sequencing. Nature Communications, 2019, 10, 1388.	12.8	122
8	Tracking the international spread of SARS-CoV-2 lineages B.1.1.7 and B.1.351/501Y-V2. Wellcome Open Research, 2021, 6, 121.	1.8	115
9	Differential intron retention in <i>Jumonji</i> chromatin modifier genes is implicated in reptile temperature-dependent sex determination. Science Advances, 2017, 3, e1700731.	10.3	111
10	Universal Alternative Splicing of Noncoding Exons. Cell Systems, 2018, 6, 245-255.e5.	6.2	110
11	An update on the neurological short tandem repeat expansion disorders and the emergence of long-read sequencing diagnostics. Acta Neuropathologica Communications, 2021, 9, 98.	5.2	83
12	Synthetic microbe communities provide internal reference standards for metagenome sequencing and analysis. Nature Communications, 2018, 9, 3096.	12.8	81
13	Comprehensive genetic diagnosis of tandem repeat expansion disorders with programmable targeted nanopore sequencing. Science Advances, 2022, 8, eabm5386.	10.3	68
14	Respiratory viral co-infections among SARS-CoV-2 cases confirmed by virome capture sequencing. Scientific Reports, 2021, 11, 3934.	3.3	55
15	Fast nanopore sequencing data analysis with SLOW5. Nature Biotechnology, 2022, 40, 1026-1029.	17.5	40
16	No evidence of human genome integration of SARS-CoV-2 found by long-read DNA sequencing. Cell Reports, 2021, 36, 109530.	6.4	39
17	DNA methylation is required to maintain both DNA replication timing precision and 3D genome organization integrity. Cell Reports, 2021, 36, 109722.	6.4	39
18	Representing genetic variation with synthetic DNA standards. Nature Methods, 2016, 13, 784-791.	19.0	37

IRA W DEVESON

#	Article	IF	CITATIONS
19	Target RNA Secondary Structure Is a Major Determinant of miR159 Efficacy. Plant Physiology, 2017, 174, 1764-1778.	4.8	34
20	Two transcriptionally distinct pathways drive female development in a reptile with both genetic and temperature dependent sex determination. PLoS Genetics, 2021, 17, e1009465.	3.5	25
21	Use of synthetic DNA spike-in controls (sequins) for human genome sequencing. Nature Protocols, 2019, 14, 2119-2151.	12.0	22
22	Cross-oncopanel study reveals high sensitivity and accuracy with overall analytical performance depending on genomic regions. Genome Biology, 2021, 22, 109.	8.8	20
23	Genopo: a nanopore sequencing analysis toolkit for portable Android devices. Communications Biology, 2020, 3, 538.	4.4	19
24	ANAQUIN: a software toolkit for the analysis of spike-in controls for next generation sequencing. Bioinformatics, 2017, 33, 1723-1724.	4.1	17
25	MicroRNAs with analogous target complementarities perform with highly variable efficacies in <i>Arabidopsis</i> . FEBS Letters, 2013, 587, 3703-3708.	2.8	15
26	Chiral DNA sequences as commutable controls for clinical genomics. Nature Communications, 2019, 10, 1342.	12.8	11
27	Sex-specific splicing of Z- and W-borne <i>nr5a1</i> alleles suggests sex determination is controlled by chromosome conformation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	11
28	Oncogenic cooperation between TCF7-SPI1 and NRAS(G12D) requires β-catenin activity to drive T-cell acute lymphoblastic leukemia. Nature Communications, 2021, 12, 4164.	12.8	9
29	Advancing NGS quality control to enable measurement of actionable mutations in circulating tumor DNA. Cell Reports Methods, 2021, 1, 100106.	2.9	9
30	InterARTIC: an interactive web application for whole-genome nanopore sequencing analysis of SARS-CoV-2 and other viruses. Bioinformatics, 2022, 38, 1443-1446.	4.1	8
31	A universal and independent synthetic DNA ladder for the quantitative measurement of genomic features. Nature Communications, 2020, 11, 3609.	12.8	7
32	Long read sequencing overcomes challenges in the diagnosis of <scp> <i>SORD </i> </scp> neuropathy. Journal of the Peripheral Nervous System, 2022, 27, 120-126.	3.1	6
33	Truncated <i>jarid2</i> and <i>kdm6b</i> transcripts are associated with temperature-induced sex reversal during development in a dragon lizard. Science Advances, 2022, 8, eabk0275.	10.3	6
34	Assessment of Inter-Laboratory Differences in SARS-CoV-2 Consensus Genome Assemblies between Public Health Laboratories in Australia. Viruses, 2022, 14, 185.	3.3	4
35	Using synthetic chromosome controls to evaluate the sequencing of difficult regions within the human genome. Genome Biology, 2022, 23, 19.	8.8	4
36	Ultra-deep sequencing data from a liquid biopsy proficiency study demonstrating analytic validity. Scientific Data, 2022, 9, 170.	5.3	4

#	Article	IF	CITATIONS
37	Persistent highâ€level shedding of cultivable SARSâ€CoVâ€2 Delta virus 33 days after onset of COVIDâ€19 in a hospitalized patient with pneumonia. Journal of Medical Virology, 2022, 94, 4043-4046.	5.0	4
38	Expression of human ARGONAUTE 2 inhibits endogenous microRNA activity in Arabidopsis. Frontiers in Plant Science, 2013, 4, 96.	3.6	2
39	Chimeric synthetic reference standards enable cross-validation of positive and negative controls in SARS-CoV-2 molecular tests. Scientific Reports, 2021, 11, 2636.	3.3	2