Lisa M Harrison-Bernard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9029360/publications.pdf

Version: 2024-02-01

50 papers

2,789 citations

257450 24 h-index 233421 45 g-index

50 all docs

50 docs citations

50 times ranked

2111 citing authors

#	Article	IF	CITATIONS
1	Qualitative analysis of pre-licensure student perceptions of ingroup professional stereotypes. Journal of Interprofessional Education and Practice, 2021, 23, 100413.	0.4	O
2	Perspectives Against Racism: educational and socialization efforts at the departmental level. American Journal of Physiology - Advances in Physiology Education, 2021, 45, 720-729.	1.6	1
3	Knowledge gains in a professional development workshop on diversity, equity, inclusion, and implicit bias in academia. American Journal of Physiology - Advances in Physiology Education, 2020, 44, 286-294.	1.6	37
4	Longitudinal interprofessional education in a graduate physiology course. American Journal of Physiology - Advances in Physiology Education, 2019, 43, 241-245.	1.6	5
5	The prevalence of cardio-metabolic risk factors is differentially elevated in obesity-prone Osborne-Mendel and obesity-resistant S5B/Pl rats. Life Sciences, 2019, 223, 95-101.	4.3	7
6	Chymase inhibition retards albuminuria in type 2 diabetes. Physiological Reports, 2019, 7, e14302.	1.7	9
7	Lack of contribution of nitric oxide synthase to cholinergic vasodilation in murine renal afferent arterioles. American Journal of Physiology - Renal Physiology, 2018, 314, F1197-F1204.	2.7	5
8	Effectiveness of interprofessional education in renal physiology curricula for health sciences graduate students. American Journal of Physiology - Advances in Physiology Education, 2017, 41, 594-598.	1.6	7
9	High Frequency Spinal Cord Stimulation for Complex Regional Pain Syndrome: A Case Report. Pain Physician, 2017, 20, E177-E182.	0.4	11
10	Sphingolipids, new kids on the block, promoting glomerular fibrosis in the diabetic kidney. American Journal of Physiology - Renal Physiology, 2015, 309, F685-F686.	2.7	3
11	Expression of Inflammatory Markers in Visceral Fat of Obesityâ€prone Rats is Increased by High Fat Diet Consumption. FASEB Journal, 2015, 29, LB658.	0.5	1
12	Direct Evidence for Intrarenal Chymase-Dependent Angiotensin II Formation on the Diabetic Renal Microvasculature. Hypertension, 2013, 61, 465-471.	2.7	30
13	Assessment of Renal Function; Clearance, the Renal Microcirculation, Renal Blood Flow, and Metabolic Balance., 2013, 3, 165-200.		34
14	Lack of Specificity of Commercial Antibodies Leads to Misidentification of Angiotensin Type 1 Receptor Protein. Hypertension, 2013, 61, 253-258.	2.7	138
15	Cardinal Role of the Intrarenal Renin-Angiotensin System in the Pathogenesis of Diabetic Nephropathy. Journal of Investigative Medicine, 2013, 61, 256-264.	1.6	53
16	Switch from ACE to Chymase mRNA Expression in Diabetes in Enriched Renal Vascular Tissues Harvested by Manual Sieving. FASEB Journal, 2013, 27, 1110.9.	0.5	0
17	Chymase Protein Expressed in Principal Cells of Inner Medullary Collecting Ducts in Diabetic Kidney Disease. FASEB Journal, 2013, 27, 702.1.	0.5	O
18	Enhanced vascular chymase-dependent conversion of endothelin in the diabetic kidney. Ochsner Journal, 2013, 13, 49-55.	1.1	6

#	Article	IF	Citations
19	Unraveling the glomerular RAS: one peptidase at a time. American Journal of Physiology - Renal Physiology, 2012, 303, F373-F374.	2.7	3
20	Disruption of Npr1 gene differentially regulates the juxtaglomerular and distal tubular renin levels in null mutant mice. International Journal of Physiology, Pathophysiology and Pharmacology, 2012, 4, 128-39.	0.8	7
21	Major role for ACE-independent intrarenal ANG II formation in type II diabetes. American Journal of Physiology - Renal Physiology, 2010, 298, F37-F48.	2.7	81
22	The renal renin-angiotensin system. American Journal of Physiology - Advances in Physiology Education, 2009, 33, 270-274.	1.6	111
23	Intact renal afferent arteriolar autoregulatory responsiveness in <i>db</i> /i>/ <i>db</i> mice. American Journal of Physiology - Renal Physiology, 2008, 295, F1504-F1511.	2.7	26
24	Augmented Renal Vascular nNOS and Renin Protein Expression in Angiotensin Type 1 Receptor Null Mice. Journal of Histochemistry and Cytochemistry, 2008, 56, 401-414.	2.5	13
25	Compromised renal microvascular reactivity of angiotensin type 1 double null mice. American Journal of Physiology - Renal Physiology, 2007, 293, F60-F67.	2.7	18
26	The Bradykinin B2 Receptor Gene Is a Target of Angiotensin II Type 1 Receptor Signaling. Journal of the American Society of Nephrology: JASN, 2007, 18, 1140-1149.	6.1	36
27	Knockout Mice Reveal That the Angiotensin II type 1B Receptor Links to Smooth Muscle Contraction. American Journal of Hypertension, 2007, 20, 335-337.	2.0	21
28	Intact renal afferent arteriolar autoregulatory responsiveness and enhanced AnglI sensitivity in diabetic mice. FASEB Journal, 2007, 21, A1193.	0.5	0
29	Angiotensin type 1 receptor (AT1) double null mice (DKO) exhibit augmented renal renin and neuronal nitric oxide synthase (nNOS) protein expression. FASEB Journal, 2007, 21, A1245.	0.5	2
30	Efferent arterioles exclusively express the subtype 1A angiotensin receptor: functional insights from genetic mouse models. American Journal of Physiology - Renal Physiology, 2006, 290, F1177-F1186.	2.7	25
31	Enhancement of Collecting Duct Renin in Angiotensin II–Dependent Hypertensive Rats. Hypertension, 2004, 44, 223-229.	2.7	210
32	Targeting of the Renin-Angiotensin System as an Adjunct to Estrogen Replacement Therapy. Hypertension, 2004, 44, 390-391.	2.7	3
33	Postovariectomy Hypertension Is Linked to Increased Renal AT ₁ Receptor and Salt Sensitivity. Hypertension, 2003, 42, 1157-1163.	2.7	118
34	Urinary Angiotensinogen as an Indicator of Intrarenal Angiotensin Status in Hypertension. Hypertension, 2003, 41, 42-49.	2.7	225
35	Renal segmental microvascular responses to ANG II in AT _{1A} receptor null mice. American Journal of Physiology - Renal Physiology, 2003, 284, F538-F545.	2.7	61
36	Regulation of Intrarenal Angiotensin II in Hypertension. Hypertension, 2002, 39, 316-322.	2.7	344

#	Article	IF	Citations
37	RenalAT1Receptor Protein Expression During the Early Stage of Diabetes Mellitus. International Journal of Experimental Diabetes Research, 2002, 3, 97-108.	1.1	39
38	Urinary excretion of angiotensinogen reflects intrarenal angiotensinogen production. Kidney International, 2002, 61, 579-585.	5.2	231
39	Enhancement of Angiotensinogen Expression in Angiotensin II–Dependent Hypertension. Hypertension, 2001, 37, 1329-1335.	2.7	178
40	Review: Intrarenal angiotensin II levels in normal and hypertensive states. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2001, 2, S176-S184.	1.7	56
41	Expression of Angiotensinogen mRNA and Protein in Angiotensin II-Dependent Hypertension. Journal of the American Society of Nephrology: JASN, 2001, 12, 431-439.	6.1	219
42	Postmenopausal hypertension. Current Hypertension Reports, 2000, 2, 202-207.	3.5	34
43	Bradykinin <i>B₂</i> null mice are prone to renal dysplasia: gene-environment interactions in kidney development. Physiological Genomics, 2000, 3, 121-131.	2.3	48
44	Intrarenal Angiotensin II Augmentation in Angiotensin II Dependent Hypertension Hypertension Research, 2000, 23, 291-301.	2.7	61
45	Dynamic interaction between myogenic and TGF mechanisms in afferent arteriolar blood flow autoregulation. American Journal of Physiology - Renal Physiology, 2000, 279, F858-F865.	2.7	70
46	Regulation of Angiotensin II Type 1 Receptor mRNA and Protein in Angiotensin II–Induced Hypertension. Hypertension, 1999, 33, 340-346.	2.7	89
47	Early Onset Salt-Sensitive Hypertension in Bradykinin B ₂ Receptor Null Mice. Hypertension, 1999, 34, 176-180.	2.7	78
48	IMPACT OF CYCLO-OXYGENASE BLOCKADE ON JUXTAMEDULLARY MICROVASCULAR RESPONSES TO ANGIOTENSIN II IN RAT KIDNEY. Clinical and Experimental Pharmacology and Physiology, 1995, 22, 732-738.	1.9	21
49	Microvascular effects of atrial natriuretic peptide in rat cremaster. Peptides, 1992, 13, 1181-1185.	2.4	8
50	Renal Versus Hindquarter Hemodynamic Responses to Vasopressin in Conscious Rats. Journal of Cardiovascular Pharmacology, 1990, 16, 719-726.	1.9	6