Ariana S Levitt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9028242/publications.pdf

Version: 2024-02-01

24 papers 3,482 citations

16 h-index 713466 21 g-index

25 all docs

25 docs citations

25 times ranked

3584 citing authors

#	Article	IF	CITATIONS
1	Wearable Smart Garment Devices for Passive Biomedical Monitoring. , 2021, , 85-128.		O
2	Electrically Conductive MXene-Coated Glass Fibers for Damage Monitoring in Fiber-Reinforced Composites. Journal of Carbon Research, 2020, 6, 64.	2.7	5
3	Efficiency measurement of the flexible onâ€body antenna at varying levels of stretch in a reverberation chamber. IET Microwaves, Antennas and Propagation, 2020, 14, 154-158.	1.4	17
4	MXeneâ∈Based Fibers, Yarns, and Fabrics for Wearable Energy Storage Devices. Advanced Functional Materials, 2020, 30, 2000739.	14.9	168
5	On the Effect of Sweat on Sheet Resistance of Knitted Conductive Yarns in Wearable Antenna Design. IEEE Antennas and Wireless Propagation Letters, 2020, 19, 542-546.	4.0	14
6	Bath Electrospinning of Continuous and Scalable Multifunctional MXeneâ€Infiltrated Nanoyarns. Small, 2020, 16, e2002158.	10.0	81
7	MXene Films: Scalable Manufacturing of Freeâ€Standing, Strong Ti ₃ C ₂ Ti> _x MXene Films with Outstanding Conductivity (Adv.) Tj ETC	2q ½1l @.78	843014 rgBT / 0
8	Hydrophobic and Stable MXene–Polymer Pressure Sensors for Wearable Electronics. ACS Applied Materials & Company: Interfaces, 2020, 12, 15362-15369.	8.0	161
9	3D knitted energy storage textiles using MXene-coated yarns. Materials Today, 2020, 34, 17-29.	14.2	103
10	Scalable Synthesis of Ti ₃ C ₂ T _{<i>x</i>} MXene. Advanced Engineering Materials, 2020, 22, 1901241.	3.5	468
11	MXene Composite and Coaxial Fibers with High Stretchability and Conductivity for Wearable Strain Sensing Textiles. Advanced Functional Materials, 2020, 30, 1910504.	14.9	308
12	Scalable Manufacturing of Freeâ€Standing, Strong Ti ₃ C ₂ T <i>>_x</i> MXene Films with Outstanding Conductivity. Advanced Materials, 2020, 32, e2001093.	21.0	613
13	Extraction of Knitted RFID Antenna Design Parameter from Transmission Line Measurements. , 2020, , .		2
14	Knittable and Washable Multifunctional MXeneâ€Coated Cellulose Yarns. Advanced Functional Materials, 2019, 29, 1905015.	14.9	239
15	Electrospun MXene/carbon nanofibers as supercapacitor electrodes. Journal of Materials Chemistry A, 2019, 7, 269-277.	10.3	464
16	MXene-conducting polymer electrochromic microsupercapacitors. Energy Storage Materials, 2019, 20, 455-461.	18.0	136
17	Selective Etching of Silicon from Ti ₃ SiC ₂ (MAX) To Obtain 2D Titanium Carbide (MXene). Angewandte Chemie - International Edition, 2018, 57, 5444-5448.	13.8	299
18	Effect of electrospinning processing variables on polyacrylonitrile nanoyarns. Journal of Applied Polymer Science, 2018, 135, 46404.	2.6	36

#	Article	IF	CITATIONS
19	Selective Etching of Silicon from Ti ₃ SiC ₂ (MAX) To Obtain 2D Titanium Carbide (MXene). Angewandte Chemie, 2018, 130, 5542-5546.	2.0	127
20	Highâ€Performance Biscrolled MXene/Carbon Nanotube Yarn Supercapacitors. Small, 2018, 14, e1802225.	10.0	158
21	Investigation of nanoyarn preparation by modified electrospinning setup. Journal of Applied Polymer Science, 2017, 134, .	2.6	32
22	Real-time detection of apnea via signal processing of time-series properties of RFID-based smart garments. , 2016, , .		11
23	An improved design of wearable strain sensor based on knitted RFID technology. , 2016, , .		19
24	Development of Thermochromic Pigment Based Sportswear for Detection of Physical Exhaustion. Fashion Practice, 2016, 8, 279-295.	0.8	10