Ariana S Levitt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9028242/publications.pdf

Version: 2024-02-01

24 papers 3,482 citations

16 h-index 713466 21 g-index

25 all docs

25 docs citations

25 times ranked

3584 citing authors

#	Article	IF	CITATIONS
1	Scalable Manufacturing of Freeâ€Standing, Strong Ti ₃ C ₂ T <i>>_x</i> MXene Films with Outstanding Conductivity. Advanced Materials, 2020, 32, e2001093.	21.0	613
2	Scalable Synthesis of Ti ₃ C ₂ T _{<i>x</i>} MXene. Advanced Engineering Materials, 2020, 22, 1901241.	3.5	468
3	Electrospun MXene/carbon nanofibers as supercapacitor electrodes. Journal of Materials Chemistry A, 2019, 7, 269-277.	10.3	464
4	MXene Composite and Coaxial Fibers with High Stretchability and Conductivity for Wearable Strain Sensing Textiles. Advanced Functional Materials, 2020, 30, 1910504.	14.9	308
5	Selective Etching of Silicon from Ti ₃ SiC ₂ (MAX) To Obtain 2D Titanium Carbide (MXene). Angewandte Chemie - International Edition, 2018, 57, 5444-5448.	13.8	299
6	Knittable and Washable Multifunctional MXeneâ€Coated Cellulose Yarns. Advanced Functional Materials, 2019, 29, 1905015.	14.9	239
7	MXeneâ€Based Fibers, Yarns, and Fabrics for Wearable Energy Storage Devices. Advanced Functional Materials, 2020, 30, 2000739.	14.9	168
8	Hydrophobic and Stable MXene–Polymer Pressure Sensors for Wearable Electronics. ACS Applied Materials & Company: Interfaces, 2020, 12, 15362-15369.	8.0	161
9	Highâ€Performance Biscrolled MXene/Carbon Nanotube Yarn Supercapacitors. Small, 2018, 14, e1802225.	10.0	158
10	MXene-conducting polymer electrochromic microsupercapacitors. Energy Storage Materials, 2019, 20, 455-461.	18.0	136
11	Selective Etching of Silicon from Ti ₃ SiC ₂ (MAX) To Obtain 2D Titanium Carbide (MXene). Angewandte Chemie, 2018, 130, 5542-5546.	2.0	127
12	3D knitted energy storage textiles using MXene-coated yarns. Materials Today, 2020, 34, 17-29.	14.2	103
13	Bath Electrospinning of Continuous and Scalable Multifunctional MXeneâ€Infiltrated Nanoyarns. Small, 2020, 16, e2002158.	10.0	81
14	Effect of electrospinning processing variables on polyacrylonitrile nanoyarns. Journal of Applied Polymer Science, 2018, 135, 46404.	2.6	36
15	Investigation of nanoyarn preparation by modified electrospinning setup. Journal of Applied Polymer Science, 2017, 134, .	2.6	32
16	An improved design of wearable strain sensor based on knitted RFID technology. , 2016, , .		19
17	Efficiency measurement of the flexible onâ€body antenna at varying levels of stretch in a reverberation chamber. IET Microwaves, Antennas and Propagation, 2020, 14, 154-158.	1.4	17
18	On the Effect of Sweat on Sheet Resistance of Knitted Conductive Yarns in Wearable Antenna Design. IEEE Antennas and Wireless Propagation Letters, 2020, 19, 542-546.	4.0	14

#	Article	IF	CITATIONS
19	Real-time detection of apnea via signal processing of time-series properties of RFID-based smart garments. , 2016, , .		11
20	Development of Thermochromic Pigment Based Sportswear for Detection of Physical Exhaustion. Fashion Practice, 2016, 8, 279-295.	0.8	10
21	MXene Films: Scalable Manufacturing of Freeâ€Standing, Strong Ti ₃ C ₂ T <i>_x</i> MXene Films with Outstanding Conductivity (Adv.) Tj ET	Qq ½11.0 .7	843 3 14 rgBT /C
22	Electrically Conductive MXene-Coated Glass Fibers for Damage Monitoring in Fiber-Reinforced Composites. Journal of Carbon Research, 2020, 6, 64.	2.7	5
23	Extraction of Knitted RFID Antenna Design Parameter from Transmission Line Measurements. , 2020, , .		2
24	Wearable Smart Garment Devices for Passive Biomedical Monitoring., 2021,, 85-128.		0