List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9027593/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The landscape of genomic alterations across childhood cancers. Nature, 2018, 555, 321-327.	27.8	1,068
2	Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nature Genetics, 2003, 34, 148-150.	21.4	960
3	International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data. Blood, 2022, 140, 1200-1228.	1.4	814
4	Germline CBL mutations cause developmental abnormalities and predispose to juvenile myelomonocytic leukemia. Nature Genetics, 2010, 42, 794-800.	21.4	308
5	Prevalence, clinical characteristics, and prognosis of GATA2-related myelodysplastic syndromes in children and adolescents. Blood, 2016, 127, 1387-1397.	1.4	304
6	Hematopoietic stem cell transplantation (HSCT) in children with juvenile myelomonocytic leukemia (JMML): results of the EWOG-MDS/EBMT trial. Blood, 2005, 105, 410-419.	1.4	291
7	Mutations in CBL occur frequently in juvenile myelomonocytic leukemia. Blood, 2009, 114, 1859-1863.	1.4	260
8	The mutational spectrum of PTPN11 in juvenile myelomonocytic leukemia and Noonan syndrome/myeloproliferative disease. Blood, 2005, 106, 2183-2185.	1.4	247
9	Childhood cancer predisposition syndromes—A concise review and recommendations by the Cancer Predisposition Working Group of the Society for Pediatric Oncology and Hematology. American Journal of Medical Genetics, Part A, 2017, 173, 1017-1037.	1.2	200
10	How I treat juvenile myelomonocytic leukemia. Blood, 2015, 125, 1083-1090.	1.4	189
11	Plasma Levels and Gene Expression of Granulocyte Colony-Stimulating Factor, Tumor Necrosis Factor-î±, Interleukin (IL)-11², IL-6, IL-8, and Soluble Intercellular Adhesion Molecule-1 in Neonatal Early Onset Sepsis. Pediatric Research, 1998, 44, 469-477.	2.3	178
12	Somatic mutations and progressive monosomy modify SAMD9-related phenotypes in humans. Journal of Clinical Investigation, 2017, 127, 1700-1713.	8.2	129
13	Outcomes of patients with hematologic malignancies and COVID-19: a report from the ASH Research Collaborative Data Hub. Blood Advances, 2020, 4, 5966-5975.	5.2	124
14	Severe combined immunodeficiency due to defective binding of the nuclear factor of activated T cells in T lymphocytes of two male siblings. European Journal of Immunology, 1996, 26, 2119-2126.	2.9	119
15	RAS diseases in children. Haematologica, 2014, 99, 1653-1662.	3.5	117
16	Minimal requirements for the diagnosis, classification, and evaluation of the treatment of childhood acute lymphoblastic leukemia (ALL) in the "BFM family―cooperative group. Medical and Pediatric Oncology, 1992, 20, 497-505.	1.0	103
17	Classification of Childhood Aplastic Anemia and Myelodysplastic Syndrome. Hematology American Society of Hematology Education Program, 2011, 2011, 84-89.	2.5	103
18	Juvenile myelomonocytic leukemia: who's the driver at the wheel?. Blood, 2019, 133, 1060-1070.	1.4	100

CHARLOTTE M NIEMEYER

#	Article	IF	CITATIONS
19	Complex karyotype newly defined: the strongest prognostic factor in advanced childhood myelodysplastic syndrome. Blood, 2010, 116, 3766-3769.	1.4	99
20	Aberrant DNA methylation characterizes juvenile myelomonocytic leukemia with poor outcome. Blood, 2011, 117, 4871-4880.	1.4	94
21	RAS-pathway mutation patterns define epigenetic subclasses in juvenile myelomonocytic leukemia. Nature Communications, 2017, 8, 2126.	12.8	91
22	Constitutional <i>SAMD9L</i> mutations cause familial myelodysplastic syndrome and transient monosomy 7. Haematologica, 2018, 103, 427-437.	3.5	83
23	Analysis of risk factors influencing outcomes after cord blood transplantation in children with juvenile myelomonocytic leukemia: a EUROCORD, EBMT, EWOG-MDS, CIBMTR study. Blood, 2013, 122, 2135-2141.	1.4	79
24	Clinical evolution, genetic landscape and trajectories of clonal hematopoiesis in SAMD9/SAMD9L syndromes. Nature Medicine, 2021, 27, 1806-1817.	30.7	79
25	Congenital sideroblastic anemia due to mutations in the mitochondrial HSP70 homologue HSPA9. Blood, 2015, 126, 2734-2738.	1.4	78
26	Gene Expression–Based Classification As an Independent Predictor of Clinical Outcome in Juvenile Myelomonocytic Leukemia. Journal of Clinical Oncology, 2010, 28, 1919-1927.	1.6	74
27	THROMBOTECT – a randomized study comparing low molecular weight heparin, antithrombin and unfractionated heparin for thromboprophylaxis during induction therapy of acute lymphoblastic leukemia in children and adolescents. Haematologica, 2019, 104, 756-765.	3.5	74
28	Reduced-Intensity Delayed Intensification in Standard-Risk Pediatric Acute Lymphoblastic Leukemia Defined by Undetectable Minimal Residual Disease: Results of an International Randomized Trial (AIEOP-BFM ALL 2000). Journal of Clinical Oncology, 2018, 36, 244-253.	1.6	71
29	Frequency, Natural Course, and Outcome of Neonatal Neutropenia. Pediatrics, 2000, 106, 45-51.	2.1	69
30	Non-hematopoietic stem cell transplantation treatment of juvenile myelomonocytic leukemia: A retrospective analysis and definition of response criteria. Pediatric Blood and Cancer, 2007, 49, 629-633.	1.5	69
31	Myelodysplastic Syndrome in Children and Adolescents. Seminars in Hematology, 2008, 45, 60-70.	3.4	66
32	Intriguing response to azacitidine in a patient with juvenile myelomonocytic leukemia and monosomy 7. Blood, 2009, 113, 2867-2868.	1.4	64
33	Genotype-phenotype correlation in cases of juvenile myelomonocytic leukemia with clonal RAS mutations. Blood, 2008, 111, 966-967.	1.4	60
34	Bridging to transplant with azacitidine in juvenile myelomonocytic leukemia: a retrospective analysis of the EWOG-MDS study group. Blood, 2015, 125, 2311-2313.	1.4	60
35	Protection from UV light is an evolutionarily conserved feature of the haematopoietic niche. Nature, 2018, 558, 445-448.	27.8	59
36	Mitotic recombination and compound-heterozygous mutations are predominant NF1-inactivating mechanisms in children with juvenile myelomonocytic leukemia and neurofibromatosis type 1. Haematologica, 2010, 95, 320-323.	3.5	58

#	Article	IF	CITATIONS
37	JMML genomics and decisions. Hematology American Society of Hematology Education Program, 2018, 2018, 307-312.	2.5	52
38	Loss of B cells and their precursors is the most constant feature of GATA-2 deficiency in childhood myelodysplastic syndrome. Haematologica, 2016, 101, 707-716.	3.5	51
39	Germline Mutations in Components of the Ras Signaling Pathway in Noonan Syndrome and Related Disorders. Cell Cycle, 2006, 5, 1607-1611.	2.6	49
40	Down syndrome, transient myeloproliferative disorder, and infantile liver fibrosis. , 1998, 31, 159-165.		48
41	LIN28B overexpression defines a novel fetal-like subgroup of juvenile myelomonocytic leukemia. Blood, 2016, 127, 1163-1172.	1.4	48
42	GATA2 monoallelic expression underlies reduced penetrance in inherited GATA2-mutated MDS/AML. Leukemia, 2018, 32, 2502-2507.	7.2	48
43	Chimaerism analyses and subsequent immunological intervention after stem cell transplantation in patients with juvenile myelomonocytic leukaemia. British Journal of Haematology, 2005, 129, 542-549.	2.5	45
44	Heterogeneity of GATA2-related myeloid neoplasms. International Journal of Hematology, 2017, 106, 175-182.	1.6	44
45	Criteria for evaluating response and outcome in clinical trials for children with juvenile myelomonocytic leukemia. Haematologica, 2015, 100, 17-22.	3.5	43
46	Wiskott–Aldrich syndrome presenting with a clinical picture mimicking juvenile myelomonocytic leukaemia. Pediatric Blood and Cancer, 2013, 60, 836-841.	1.5	42
47	Next-generation reference intervals for pediatric hematology. Clinical Chemistry and Laboratory Medicine, 2019, 57, 1595-1607.	2.3	42
48	Bone marrow immunophenotyping by flow cytometry in refractory cytopenia of childhood. Haematologica, 2015, 100, 315-323.	3.5	38
49	Synonymous GATA2 mutations result in selective loss of mutated RNA and are common in patients with GATA2 deficiency. Leukemia, 2020, 34, 2673-2687.	7.2	38
50	Clinical and Molecular Heterogeneity of RTEL1 Deficiency. Frontiers in Immunology, 2017, 8, 449.	4.8	35
51	International Consensus Definition of DNA Methylation Subgroups in Juvenile Myelomonocytic Leukemia. Clinical Cancer Research, 2021, 27, 158-168.	7.0	35
52	<i>RASA4</i> undergoes DNA hypermethylation in resistant juvenile myelomonocytic leukemia. Epigenetics, 2014, 9, 1252-1260.	2.7	34
53	A recurring mutation in the respiratory complex 1 protein NDUFB11 is responsible for a novel form of X-linked sideroblastic anemia. Blood, 2016, 128, 1913-1917.	1.4	33
54	Monosomy 7 in Pediatric Myelodysplastic Syndromes. Hematology/Oncology Clinics of North America, 2018, 32, 729-743.	2.2	32

#	Article	IF	CITATIONS
55	Intensification of Chemotherapy Does Not Improve Prognosis of Standard Risk Patients Undergoing Therapy for Acute Myelogenous Leukemia: Results of the Pediatric Clinical Trial AML-BFM 98 Blood, 2004, 104, 1793-1793.	1.4	32
56	Therapy with lowâ€dose azacitidine for <scp>MDS</scp> in children and young adults: a retrospective analysis of the <scp>EWOG</scp> â€ <scp>MDS</scp> study group. British Journal of Haematology, 2016, 172, 930-936.	2.5	31
57	Epithelioid hemangioendotheliomas of the liver and lung in children and adolescents. Pediatric Blood and Cancer, 2017, 64, e26675.	1.5	31
58	Pleuro-pulmonary blastoma: A case report and review of the literature. Medical and Pediatric Oncology, 1995, 25, 479-484.	1.0	30
59	MicroRNA fingerprints in juvenile myelomonocytic leukemia (JMML) identified miR-150-5p as a tumor suppressor and potential target for treatment. Oncotarget, 2016, 7, 55395-55408.	1.8	30
60	Response to upfront azacitidine in juvenile myelomonocytic leukemia in the AZA-JMML-001 trial. Blood Advances, 2021, 5, 2901-2908.	5.2	29
61	Gain-of-function mutations in RPA1 cause a syndrome with short telomeres and somatic genetic rescue. Blood, 2022, 139, 1039-1051.	1.4	29
62	Severe adverse events during sirolimus "offâ€label―therapy for vascular anomalies. Pediatric Blood and Cancer, 2021, 68, e28936.	1.5	28
63	Epigenetic silencing of AKAP12 in juvenile myelomonocytic leukemia. Epigenetics, 2016, 11, 110-119.	2.7	27
64	Impaired human hematopoiesis due to a cryptic intronic GATA1 splicing mutation. Journal of Experimental Medicine, 2019, 216, 1050-1060.	8.5	27
65	Favorable outcomes of hematopoietic stem cell transplantation in children and adolescents with Diamond-Blackfan anemia. Blood Advances, 2020, 4, 1760-1769.	5.2	27
66	A distinct CD38+CD45RA+ population of CD4+, CD8+, and double-negative T cells is controlled by FAS. Journal of Experimental Medicine, 2021, 218, .	8.5	25
67	Tracing the development of acute myeloid leukemia in CBL syndrome. Blood, 2014, 123, 1883-1886.	1.4	24
68	Hematopoietic stem cell transplantation in children and adolescents with GATA2-related myelodysplastic syndrome. Bone Marrow Transplantation, 2021, 56, 2732-2741.	2.4	24
69	Recurring mutations in <i>RPL15</i> are linked to hydrops fetalis and treatment independence in Diamond-Blackfan anemia. Haematologica, 2018, 103, 949-958.	3.5	22
70	Morphologic Differential Diagnosis of Juvenile Myelomonocytic Leukemia—Pitfalls Apart From Viral Infection. Journal of Pediatric Hematology/Oncology, 2009, 31, 380.	0.6	21
71	Transient apoptosis inhibition in donor stem cells improves hematopoietic stem cell transplantation. Journal of Experimental Medicine, 2017, 214, 2967-2983.	8.5	21
72	EBV-associated lymphoproliferative syndrome with a distinct 69 base-pair deletion in the LMP-1 oncogene. British Journal of Haematology, 1995, 91, 938-940.	2.5	20

#	Article	IF	CITATIONS
73	Unmistakable Morphology? Infantile Malignant Osteopetrosis Resembling Juvenile Myelomonocytic Leukemia in Infants. Journal of Pediatrics, 2015, 167, 486-488.	1.8	20
74	Current Treatment of Juvenile Myelomonocytic Leukemia. Journal of Clinical Medicine, 2021, 10, 3084.	2.4	20
75	Long-term serial xenotransplantation of juvenile myelomonocytic leukemia recapitulates human disease in Rag2-/-Âc-/- mice. Haematologica, 2016, 101, 597-606.	3.5	19
76	CREBBP is a target of epigenetic, but not genetic, modification in juvenile myelomonocytic leukemia. Clinical Epigenetics, 2016, 8, 50.	4.1	19
77	Hematopoietic stem cell transplantation for children with acute myeloid leukemia—results of the AML SCT-BFM 2007 trial. Leukemia, 2020, 34, 613-624.	7.2	19
78	LIN28B is over-expressed in specific subtypes of pediatric leukemia and regulates IncRNA H19. Haematologica, 2016, 101, e240-e244.	3.5	18
79	Expression of the Evi-1 gene in haemopoietic cells of children with juvenile myelomonocytic leukaemia and normal donors. British Journal of Haematology, 1997, 99, 882-887.	2.5	17
80	Sirolimus is highly effective for lymph leakage in microcystic lymphatic malformations with skin involvement. International Journal of Dermatology, 2017, 56, e72-e75.	1.0	17
81	TIMâ€3 deficiency presenting with two clonally unrelated episodes of mesenteric and subcutaneous panniculitisâ€ike Tâ€cell lymphoma and hemophagocytic lymphohistiocytosis. Pediatric Blood and Cancer, 2020, 67, e28302.	1.5	17
82	Hematopoietic Stem Cell Transplantation in Children and Young Adults with Secondary Myelodysplastic Syndrome and Acute Myelogenous Leukemia after Aplastic Anemia. Biology of Blood and Marrow Transplantation, 2014, 20, 425-429.	2.0	15
83	Practical considerations for diagnosis and management of patients and carriers. Seminars in Hematology, 2017, 54, 69-74.	3.4	15
84	High-resolution pediatric reference intervals for 15 biochemical analytes described using fractional polynomials. Clinical Chemistry and Laboratory Medicine, 2021, 59, 1267-1278.	2.3	15
85	Epigenetic dysregulation of the erythropoietic transcription factor <i>KLF1</i> and the β-like globin locus in juvenile myelomonocytic leukemia. Epigenetics, 2017, 12, 715-723.	2.7	14
86	Stem Cell Transplantation for Diamond–Blackfan Anemia. A Retrospective Study on Behalf of the Severe Aplastic Anemia Working Party of the European Blood and Marrow Transplantation Group (EBMT). Transplantation and Cellular Therapy, 2021, 27, 274.e1-274.e5.	1.2	14
87	A novel classification of hematologic conditions in patients with Fanconi anemia. Haematologica, 2021, 106, 3000-3003.	3.5	14
88	Mutational Spectrum of Fanconi Anemia Associated Myeloid Neoplasms. Klinische Padiatrie, 2017, 229, 329-334.	0.6	13
89	The long non-coding RNA landscape in juvenile myelomonocytic leukemia. Haematologica, 2018, 103, e501-e504.	3.5	13
90	Daratumumab therapy for post-HSCT immune-mediated cytopenia: experiences from two pediatric cases and review of literature. Molecular and Cellular Pediatrics, 2021, 8, 5.	1.8	13

CHARLOTTE M NIEMEYER

#	Article	IF	CITATIONS
91	iPSC modeling of stage-specific leukemogenesis reveals BAALC as a key oncogene in severe congenital neutropenia. Cell Stem Cell, 2021, 28, 906-922.e6.	11.1	13
92	Genotype-phenotype association and variant characterization in Diamond-Blackfan anemia caused by pathogenic variants in <i>RPL35A</i> . Haematologica, 2021, 106, 1303-1310.	3.5	12
93	Association of unbalanced translocation der(1;7) with germline GATA2 mutations. Blood, 2021, 138, 2441-2445.	1.4	12
94	CircRNAs Dysregulated in Juvenile Myelomonocytic Leukemia: CircMCTP1 Stands Out. Frontiers in Cell and Developmental Biology, 2020, 8, 613540.	3.7	12
95	Chronic myeloproliferative disorders. , 0, , 571-598.		12
96	GFI136N as a therapeutic and prognostic marker for myelodysplastic syndrome. Experimental Hematology, 2016, 44, 590-595.e1.	0.4	11
97	Functional classification of RUNX1 variants in familial platelet disorder with associated myeloid malignancies. Leukemia, 2021, 35, 3304-3308.	7.2	11
98	Central venous catheter infection byAspergillus fumigatus in a patient with B-type non-Hodgkin lymphoma. , 1996, 27, 202-204.		9
99	Azacitidine is effective for targeting leukemia-initiating cells in juvenile myelomonocytic leukemia. Leukemia, 2019, 33, 1805-1810.	7.2	9
100	Clonal Mutational Landscape of Childhood Myelodysplastic Syndromes. Blood, 2015, 126, 1662-1662.	1.4	9
101	Noonan syndromeâ€associated myeloproliferative disorder with somatically acquired monosomy 7: impact on clinical decision making. British Journal of Haematology, 2019, 187, E83-E86.	2.5	8
102	Long non-coding RNAs as novel therapeutic targets in juvenile myelomonocytic leukemia. Scientific Reports, 2021, 11, 2801.	3.3	8
103	Haematological characteristics and spontaneous haematological recovery in Pearson syndrome. British Journal of Haematology, 2021, 193, 1283-1287.	2.5	8
104	Efficacy of Sirolimus in Patients Requiring Tracheostomy for Life-Threatening Lymphatic Malformation of the Head and Neck: A Report From the European Reference Network. Frontiers in Pediatrics, 2021, 9, 697960.	1.9	8
105	Sustained remission with azacitidine monotherapy and an aberrant precursor B″ymphoblast population in juvenile myelomonocytic leukemia. Pediatric Blood and Cancer, 2019, 66, e27905.	1.5	7
106	Upfront azacitidine (AZA) in juvenile myelomonocytic leukemia (JMML): Interim analysis of the prospective AZA-JMML-001 study Journal of Clinical Oncology, 2019, 37, 10031-10031.	1.6	7
107	Introduction: Genetic syndromes predisposing to myeloid neoplasia. Seminars in Hematology, 2017, 54, 57-59.	3.4	6
108	Refractory Cytopenia In Childhood (RCC) with Normal Karyotype Is Unlikely to Progress to Advanced MDS Under a Watch and Wait Strategy. Blood, 2010, 116, 4007-4007.	1.4	6

#	Article	IF	CITATIONS
109	Combinatorial effects of azacitidine and trametinib on <i>NRAS</i> â€mutated melanoma. Pediatric Blood and Cancer, 2022, 69, e29468.	1.5	6
110	Whole Genome <scp>MBD</scp> â€seq reveals different CpG methylation patterns in Azacytidineâ€treated Juvenile Myelomonocytic Leukaemia (<scp>JMML</scp>) patients. British Journal of Haematology, 2018, 182, 909-912.	2.5	4
111	Diamond-Blackfan Anemia Phenotype Caused By Deficiency of Adenosine Deaminase 2. Blood, 2017, 130, 874-874.	1.4	4
112	A common ancestral DNMT3A-mutated preleukemic clone giving rise to AML and MDS in an adolescent girl. Leukemia and Lymphoma, 2017, 58, 718-721.	1.3	3
113	Case Report: Hepatic Adenoma in a Child With a Congenital Extrahepatic Portosystemic Shunt. Frontiers in Pediatrics, 2020, 8, 501.	1.9	3
114	Functional assessment of two variants of unknown significance in <i>TEK</i> by endothelium-specific expression in zebrafish embryos. Human Molecular Genetics, 2021, 31, 10-17.	2.9	3
115	Phenotypes of Diamond Blackfan Anemia Patients with RPL35A Haploinsufficiency Due to 3q29 Deletion Compared with RPL35A Single Nucleotide Variants or Small Insertion/Deletions. Blood, 2018, 132, 3854-3854.	1.4	3
116	Impact of Somatic Mutations on the Outcome of Children and Adolescents with Therapy-Related Myelodysplastic Syndrome. Blood, 2016, 128, 3162-3162.	1.4	3
117	Guideline for management of non-Down syndrome neonates with a myeloproliferative disease on behalf of the I-BFM AML Study Group and EWOG-MDS. Haematologica, 2022, 107, 759-764.	3.5	3
118	Expression of Interferon Regulatory Factor 1 and 2 in Hematopoietic Cells of Children with Juvenile Myelomonocytic Leukemia. Leukemia and Lymphoma, 1999, 35, 507-511.	1.3	2
119	Molecular profile of inflammatory and megakaryocytic factors in pediatric myelodysplastic syndrome with acute myelofibrosis. Pediatric Blood and Cancer, 2018, 65, e27048.	1.5	2
120	The variable biological signature of refractory cytopenia of childhood (RCC), a retrospective EWOG-MDS study. Leukemia Research, 2021, 108, 106652.	0.8	2
121	Analysis of Ribosomal Protein Genes Associated with Diamond Blackfan Anemia (DBA) In German DBA Patients and Their Relatives. Blood, 2011, 118, 729-729.	1.4	2
122	Outcomes of Patients with Hematologic Malignancies and COVID-19 Infection: A Report from the ASH Research Collaborative Data Hub. Blood, 2020, 136, 7-8.	1.4	2
123	Treatment of Acute Immune Thrombocytopenia (ITP) in Childhood with a Single Dose of Intravenous Immunoglobulin. Pediatric Hematology and Oncology, 1997, 14, 91-92.	0.8	1
124	Gene Expression of the Hematopoietic Cell Phosphatase in Juvenile Myelomonocytic Leukemia. Leukemia and Lymphoma, 1999, 35, 491-499.	1.3	1
125	<i>NF1</i> Tumor Suppressor Gene Inactivation in Juvenile Myelomonocytic Leukemia: New Genetic Evidence and Consequences for Diagnostic Work-up. Blood, 2020, 136, 30-31.	1.4	1
126	PTPN11 Mutational Spectrum in Juvenile Myelomonocytic Leukemia and Noonan Syndrome Blood, 2004, 104, 3417-3417.	1.4	1

CHARLOTTE M NIEMEYER

#	Article	IF	CITATIONS
127	Recurrent 6pLOH Is the Most Common Somatic Lesion in Refractory Cytopenia of Childhood and Occurs Very Infrequently in Severe Aplastic Anemia. Blood, 2012, 120, 644-644.	1.4	1
128	Donor Leukocyte Infusion after Stem Cell Transplantation in Patients with Juvenile Myelomonocytic Leukemia Blood, 2004, 104, 5001-5001.	1.4	1
129	Is granulocyte colony-stimulating factor therapy a risk factor for myelodysplasia/leukemia in patients with congenital neutropenia?. Haematologica, 2005, 90, 2-3.	3.5	1
130	Aplastic anemia in adult and pediatric hematology. HemaSphere, 2019, 3, 9.	2.7	0
131	Novel Germ Line Mutations in the KRAS2 Gene Cause Noonan Syndrome and Deregulate Hematopoietic Cell Growth Blood, 2005, 106, 1602-1602.	1.4	Ο
132	Identification of New Rare Sequence Changes in RP Genes in Diamond-Blackfan Anemia and Association of the RPL5 and RPL11 Mutations with Craniofacial and Thumb Malformations. Blood, 2008, 112, 39-39.	1.4	0
133	Identification of Novel Mutations In Ribosomal Genes In Patients with Diamond Blackfan Anemia (DBA) In Germany and Genotype-Phenotype Correlation Analysis. Blood, 2010, 116, 2244-2244.	1.4	Ο
134	IER3 Expression in Childhood Myelodysplastic Syndrome,. Blood, 2011, 118, 3817-3817.	1.4	0
135	Mutations of the Spliceosome Complex Genes Occur In Adult Patients but Are Very Rare In Children with Myeloid Neoplasia. Blood, 2011, 118, 2797-2797.	1.4	0
136	High Incidence of Fanconi Anemia in Patients with a Morphological Picture Consistent with Refractory Cytopenia of Childhood. Blood, 2011, 118, 2780-2780.	1.4	0
137	Therapy-Related Myelodysplastic Syndrome Following Treatment for Childhood Acute Lymphoblastic Leukemia: Outcome of Patients Registered in the EWOG-MDS 98/06 Studies,. Blood, 2011, 118, 4130-4130.	1.4	0
138	Characteristics of Diamond Blackfan Anemia Patients with Unknown Genetic Defect. Blood, 2012, 120, 1267-1267.	1.4	0
139	Molecular Aberrations in 107 Children with Myelodysplastic Syndrome (MDS) Blood, 2012, 120, 2802-2802.	1.4	0
140	5-Azacytidine Reduces Leukemic Burden in a Xenograft Model of Juvenile Myelomonocytic Leukemia. Blood, 2015, 126, 1655-1655.	1.4	0
141	Functional Consequences of TCAB1 Mutations in Dyskeratosis Congenita. Blood, 2016, 128, 3890-3890.	1.4	0
142	5-Azacytidine Is Effective for Targeting Leukemia-Initiating Cells in Juvenile Myelomonocytic Leukemia. Blood, 2018, 132, 4342-4342.	1.4	0
143	Aberrant Histone Landscape in Juvenile Myelomonocytic Leukemia. Blood, 2021, 138, 4328-4328.	1.4	0
144	Cytogenetically cryptic <i>TNIP1-PDGFRB</i> and <i>PCM1-FGFR1</i> fusion leading to myeloid/lymphoid neoplasms with eosinophilia (MLN-eo) in children. Blood, 2021, 138, 4638-4638.	1.4	0

#	Article	IF	CITATIONS
145	RPA1 Gain of Function Causes Human Short Telomere Syndrome with Revertant Somatic Mosaicism. Blood, 2020, 136, 36-37.	1.4	0