
Sinead Collins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9027433/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phenotypic consequences of 1,000 generations of selection at elevated CO2 in a green alga. Nature, 2004, 431, 566-569.	27.8	337
2	Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change—A review. Global Change Biology, 2018, 24, 2239-2261.	9.5	285
3	Adaptation, extinction and global change. Evolutionary Applications, 2008, 1, 3-16.	3.1	258
4	How epigenetic mutations can affect genetic evolution: Model and mechanism. BioEssays, 2013, 35, 571-578.	2.5	209
5	The future of the northeast <scp>A</scp> tlantic benthic flora in a high <scp>CO</scp> ₂ world. Ecology and Evolution, 2014, 4, 2787-2798.	1.9	176
6	Evolutionary potential of marine phytoplankton under ocean acidification. Evolutionary Applications, 2014, 7, 140-155.	3.1	167
7	Phenotypic plasticity and evolutionary demographic responses to climate change: taking theory out to the field. Functional Ecology, 2013, 27, 967-979.	3.6	152
8	Plasticity predicts evolution in a marine alga. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141486.	2.6	152
9	Epigenetic mutations can both help and hinder adaptive evolution. Molecular Ecology, 2016, 25, 1856-1868.	3.9	144
10	Variation in plastic responses of a globally distributed picoplankton species to ocean acidification. Nature Climate Change, 2013, 3, 298-302.	18.8	133
11	Growth responses of a green alga to multiple environmental drivers. Nature Climate Change, 2015, 5, 892-897.	18.8	98
12	Epigenetic and Genetic Contributions to Adaptation in Chlamydomonas. Molecular Biology and Evolution, 2017, 34, 2285-2306.	8.9	97
13	Competition limits adaptation and productivity in a photosynthetic alga at elevated CO ₂ . Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 247-255.	2.6	81
14	Decreased photosynthesis and growth with reduced respiration in the model diatom <i>Phaeodactylum tricornutum</i> grown under elevated <scp>CO</scp> ₂ over 1800 generations. Global Change Biology, 2017, 23, 127-137.	9.5	73
15	FUNCTIONAL GENETIC DIVERGENCE IN HIGH CO ₂ ADAPTED <i>EMILIANIA HUXLEYI</i> POPULATIONS. Evolution; International Journal of Organic Evolution, 2013, 67, 1892-1900.	2.3	71
16	ADAPTATION TO DIFFERENT RATES OF ENVIRONMENTAL CHANGE IN <i>CHLAMYDOMONAS</i> . Evolution; International Journal of Organic Evolution, 2009, 63, 2952-2965.	2.3	69
17	Evolution of natural algal populations at elevated CO2. Ecology Letters, 2006, 9, 129-135.	6.4	67
18	Many Possible Worlds: Expanding the Ecological Scenarios in Experimental Evolution. Evolutionary Biology, 2011, 38, 3-14.	1.1	66

SINEAD COLLINS

#	Article	IF	CITATIONS
19	Environmental stability affects phenotypic evolution in a globally distributed marine picoplankton. ISME Journal, 2016, 10, 75-84.	9.8	66
20	Fundamental shift in vitamin B12 eco-physiology of a model alga demonstrated by experimental evolution. ISME Journal, 2015, 9, 1446-1455.	9.8	65
21	Changes in C uptake in populations of Chlamydomonas reinhardtii selected at high CO2. Plant, Cell and Environment, 2006, 29, 1812-1819.	5.7	63
22	Adaptive Walks Toward a Moving Optimum. Genetics, 2007, 176, 1089-1099.	2.9	63
23	Bridging the gap between omics and earth system science to better understand how environmental change impacts marine microbes. Global Change Biology, 2016, 22, 61-75.	9.5	58
24	Oxygen content of transmembrane proteins over macroevolutionary time scales. Nature, 2007, 445, 47-52.	27.8	57
25	Integrating physiological, ecological and evolutionary change: a Price equation approach. Ecology Letters, 2009, 12, 744-757.	6.4	57
26	Evolutionary consequences of multidriver environmental change in an aquatic primary producer. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9930-9935.	7.1	55
27	Evolution, Microbes, and Changing Ocean Conditions. Annual Review of Marine Science, 2020, 12, 181-208.	11.6	42
28	Company matters: The presence of other genotypes alters traits and intraspecific selection in an Arctic diatom under climate change. Global Change Biology, 2019, 25, 2869-2884.	9.5	34
29	Selective constraints on global plankton dispersal. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	34
30	Quality–quantity tradeâ€offs drive functional trait evolution in a model microalgal â€~climate change winner'. Ecology Letters, 2020, 23, 780-790.	6.4	32
31	Evolution on acid. Nature Geoscience, 2012, 5, 310-311.	12.9	29
32	Microbial evolutionary strategies in a dynamic ocean. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5943-5948.	7.1	29
33	Mucospheres produced by a mixotrophic protist impact ocean carbon cycling. Nature Communications, 2022, 13, 1301.	12.8	27
34	Growth rate evolution in improved environments under Prodigal Son dynamics. Evolutionary Applications, 2016, 9, 1179-1188.	3.1	23
35	Surviving Heatwaves: Thermal Experience Predicts Life and Death in a Southern Ocean Diatom. Frontiers in Marine Science, 2021, 8, .	2.5	17
36	The need for unrealistic experiments in global change biology. Current Opinion in Microbiology, 2022, 68, 102151.	5.1	16

SINEAD COLLINS

#	Article	IF	CITATIONS
37	Mode of resistance to viral lysis affects host growth across multiple environments in the marine picoeukaryote <i>Ostreococcus tauri</i> . Environmental Microbiology, 2016, 18, 4628-4639.	3.8	14
38	The evolution of trait correlations constrains phenotypic adaptation to high CO ₂ in a eukaryotic alga. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210940.	2.6	14
39	Thermal trait variation may buffer Southern Ocean phytoplankton from anthropogenic warming. Global Change Biology, 2022, 28, 5755-5767.	9.5	13
40	Virus Resistance Is Not Costly in a Marine Alga Evolving under Multiple Environmental Stressors. Viruses, 2017, 9, 39.	3.3	12
41	Rewinding the tape: selection of algae adapted to high CO2 at current and pleistocene levels of CO2. Evolution; International Journal of Organic Evolution, 2006, 60, 1392-401.	2.3	10
42	Reduced growth with increased quotas of particulate organic and inorganic carbon in the coccolithophore <i>Emiliania huxleyi</i> under future ocean climate change conditions. Biogeosciences, 2020, 17, 6357-6375.	3.3	9
43	Multivariate trait analysis reveals diatom plasticity constrained to a reduced set of biological axes. ISME Communications, 2021, 1, .	4.2	9
44	Growth strategies of a model picoplankter depend on social milieu and <i>p</i> CO ₂ . Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211154.	2.6	8
45	A High-Throughput Assay for Quantifying Phenotypic Traits of Microalgae. Frontiers in Microbiology, 2021, 12, 706235.	3.5	8
46	Biodiversity of marine microbes is safeguarded by phenotypic heterogeneity in ecological traits. PLoS ONE, 2021, 16, e0254799.	2.5	7
47	Rapid evolution allows coexistence of highly divergent lineages within the same niche. Ecology Letters, 2022, 25, 1839-1853.	6.4	7
48	NEW MODEL SYSTEMS FOR EXPERIMENTAL EVOLUTION. Evolution; International Journal of Organic Evolution, 2013, 67, 1847-1848.	2.3	6
49	Predictability of thermal fluctuations influences functional traits of a cosmopolitan marine diatom. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212581.	2.6	5
50	Assessing the Influence of Adjacent Gene Orientation on the Evolution of Gene Upstream Regions in Arabidopsis thaliana. Genetics, 2010, 185, 695-701.	2.9	4
51	The role of changes in environmental quality in multitrait plastic responses to environmental and social change in the model microalga <i>Chlamydomonas reinhardtii</i> . Ecology and Evolution, 2021, 11, 1888-1901.	1.9	1
52	The Population Genetics and Evolutionary Potential of Diatoms. , 2022, , 29-57.		1
53	Fold or hold: experimental evolution <i>in vitro</i> . Journal of Evolutionary Biology, 2013, 26, 2123-2134.	1.7	0