Toshiko Mizokuro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9025587/publications.pdf

Version: 2024-02-01

623734 642732 77 709 14 23 citations g-index h-index papers 79 79 79 663 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Triplet–triplet annihilation photon upconversion from diphenylhexatriene and ring-substituted derivatives in solution. Physical Chemistry Chemical Physics, 2022, 24, 11520-11526.	2.8	4
2	Highly photoluminescent poly(norbornene)s carrying platinum–acetylide complex moieties in their side chains: evaluation of oxygen sensing and TTA–UC. Polymer Chemistry, 2021, 12, 4829-4837.	3.9	5
3	Molecular arrangement in diphenylanthracene derivative films deposited under vacuum on in-plane oriented polythiophene films. Japanese Journal of Applied Physics, 2021, 60, 085504.	1.5	1
4	Oriented Thin Films of Insoluble Polythiophene Prepared by the Friction Transfer Technique. Polymers, 2021, 13, 2393.	4. 5	4
5	Triplet–triplet annihilation upconversion through triplet energy transfer at a nanoporous solid–liquid interface. Physical Chemistry Chemical Physics, 2020, 22, 17807-17813.	2.8	10
6	Photosynergetic Effects on Triplet–Triplet Annihilation Upconversion Processes in Solid Studied by Theory and Experiments. , 2020, , 147-170.		0
7	Liquid exfoliation of ethyl-terminated layered germanane. Japanese Journal of Applied Physics, 2019, 58, SIIB21.	1.5	3
8	Does Inactive Alkyl Chain Enhance Triplet–Triplet Annihilation of 9,10-Diphenylanthracene Derivatives?. Journal of Physical Chemistry C, 2018, 122, 5334-5340.	3.1	14
9	Oriented thin films of mixture of a low-bandgap polymer and a fullerene derivative prepared by friction-transfer method. Japanese Journal of Applied Physics, 2018, 57, 02CA06.	1.5	2
10	Enhanced phosphorescence properties of a Pt-porphyrin derivative fixed on the surface of nano-porous glass. Photochemical and Photobiological Sciences, 2018, 17, 622-627.	2.9	3
11	Synergetic Effects of Triplet–Triplet Annihilation and Directional Triplet Exciton Migration in Organic Crystals for Photon Upconversion. Journal of Physical Chemistry Letters, 2018, 9, 6638-6643.	4.6	23
12	Organic Photovoltaic Devices Based on Oriented <i>n</i> -Type Molecular Films Deposited on Oriented Polythiophene Films. Journal of Nanoscience and Nanotechnology, 2018, 18, 2702-2710.	0.9	4
13	Fabrication of n-buffer layers in organic devices by friction-transfer method. Molecular Crystals and Liquid Crystals, 2017, 653, 144-150.	0.9	1
14	Efficient triplet–triplet annihilation upconversion in binary crystalline solids fabricated <i>via</i> solution casting and operated in air. Materials Horizons, 2017, 4, 83-87.	12.2	82
15	Organic heterojunctions: Contact-induced molecular reorientation, interface states and charge re-distribution. Scientific Reports, 2016, 6, 21291.	3.3	35
16	Orientation of Rod-Shape Molecule, 2,2′-Bis [4-(Trifluoromethyl)Phenyl]-5,5′-Bithiazole in Films Deposited in a Vacuum on Oriented α-Sexithiophene Films. Molecular Crystals and Liquid Crystals, 2015, 621, 156-161.	0.9	2
17	Oriented Thin Films of the Low-Band-Gap Polymer PTB7 by Friction Transfer Method. Molecular Crystals and Liquid Crystals, 2015, 621, 118-123.	0.9	3
18	Polarized electroluminescent devices based on ultrathin \hat{l}_{\pm} -sexithiophene on oriented \hat{l}^2 -phase polyfluorene films. Japanese Journal of Applied Physics, 2014, 53, 01AC01.	1.5	3

#	Article	IF	CITATIONS
19	Oriented blend films of poly(3-hexylthiophene) and [6,6]-phenyl-C61-butyric acid methyl ester fabricated by friction transfer method. Japanese Journal of Applied Physics, 2014, 53, 01AB05.	1.5	3
20	Orientation control of regioregularâ€poly(3â€dodecylthiophene) films formed by the frictionâ€transfer method and the performance of organic photovoltaic devices based on these films. Journal of Applied Polymer Science, 2014, 131, .	2.6	13
21	Polarized emission from ultra-thin \hat{l}_{\pm} -sexithiophene layers on oriented \hat{l}^2 -phase polyfluorene films. Thin Solid Films, 2014, 554, 180-183.	1.8	1
22	Fabrication of Oriented Thin Films Composed of Polyfluorene and Oligothiophene, and Application for Polarized White Light Emitting Devices. Journal of Physics: Conference Series, 2013, 417, 012002.	0.4	0
23	Orientation of \hat{l}_{\pm} -Sexithiophene on Friction-Transferred Polythiophene Film. Journal of Physical Chemistry B, 2012, 116, 189-193.	2.6	15
24	Orientation management of $\hat{l}\pm$ -sexithiophene layer for the application in organic photovoltaic devices. Organic Electronics, 2012, 13, 3130-3137.	2.6	13
25	White Polarized Electroluminescence Devices by Dye Deposition on Oriented Polyfluorene Films. Applied Physics Express, 2012, 5, 022103.	2.4	9
26	Oriented thin films of perylenetetracarboxylic diimide on frictiontransferred polymer films. Physics Procedia, 2011, 14, 119-123.	1.2	1
27	Oriented Polyfluorene Films Dye-Doped for Whitening of Polarized Electroluminescent Devices. Japanese Journal of Applied Physics, 2011, 50, 04DK20.	1.5	7
28	Oriented Polyfluorene Films Dye-Doped for Whitening of Polarized Electroluminescent Devices. Japanese Journal of Applied Physics, 2011, 50, 04DK20.	1.5	4
29	Electronic Properties of Cu-Phthalocyanine/Fullerene Planar and Bulk Hetereojunctions on PEDOT:PSS. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 1732-1737.	2.9	24
30	Graded doped structure fabricated by vacuum spray method to improve the luminance of polymer light-emitting diodes. Nano-Micro Letters, 2010, 1, 19.	27.0	1
31	Oriented Thin Films of Polyaniline by Friction Transfer Method. Molecular Crystals and Liquid Crystals, 2009, 505, 80/[318]-86/[324].	0.9	8
32	Graded doped structure fabricated by vacuum spray method to improve the luminance of polymer light-emitting diodes. Nano-Micro Letters, 2009, 1, 19-22.	27.0	4
33	Novel fabrication of nano-pattern with optical function by selective doping of dye vapor into novolac resin. Thin Solid Films, 2008, 516, 2411-2415.	1.8	1
34	Fabrication of polymer thin films with in-depth dye-dispersed structures by the vacuum spray method. Thin Solid Films, 2008, 516, 1663-1668.	1.8	12
35	Writable and erasable PPV medium by irradiation at 365Ânm. Thin Solid Films, 2008, 516, 2794-2799.	1.8	4
36	Spray Beam Analysis in Vacuum Spray Method for Deposition of Thin Organic Films. Japanese Journal of Applied Physics, 2008, 47, 425-431.	1.5	7

3

#	Article	IF	CITATIONS
37	Doped-Dye Orientation Relative to Oriented Polyfluorene Host Film. Japanese Journal of Applied Physics, 2008, 47, 416-419.	1.5	12
38	Whitening of Polymer Light-Emitting Diodes by Dispersing Vapor of an Orange Fluorescent Dye into a Blue-Emitting Polymer Film. Applied Physics Express, 2008, 1, 021804.	2.4	6
39	Fabrication of Waveguide Core by Dispersal of Compound with Higher Refractive Index by Vacuum Process. Japanese Journal of Applied Physics, 2007, 46, 1200-1204.	1.5	3
40	Vacuum Spray Method for Semiconductor Polymer Thin Film Preparation. Molecular Crystals and Liquid Crystals, 2006, 445, 27/[317]-33/[323].	0.9	3
41	Control of Gradient Structure of Dye Dispersed in Polymer Thin Films by Vacuum Spray Method. Japanese Journal of Applied Physics, 2006, 45, 231-233.	1.5	6
42	Pattern Doping into Non-Substituted Poly(p-phenylene vinylene) by a Simple Vacuum Process for a Multicolored Luminescence Medium. Polymer Journal, 2006, 38, 73-78.	2.7	0
43	Orientation Patterning of Liquid Crystals by UV-Irradiated Polysilane Oriented Films. Molecular Crystals and Liquid Crystals, 2006, 445, 119/[409]-124/[414].	0.9	3
44	Large-core polymer amplifier prepared by a simple vacuum process. , 2006, , .		0
45	Simple fabrication of waveguide core using a vacuum process. , 2006, 6117, 169.		0
46	en-subtitle=. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2006, 19, 35-40.	0.3	1
47	Fabrication of micropatterns with dyes in polymer films by selective doping of dye vapor in a vacuum. Polymers for Advanced Technologies, 2006, 17, 841-844.	3.2	6
48	Molecular doping of poly(p-phenylenevinylene) under vacuum for photovoltaic application. Thin Solid Films, 2006, 499, 110-113.	1.8	8
49	Molecular doping of photochromic dye into polymer substrates by the "vapor transportation method―and their photochromic behavior. Thin Solid Films, 2006, 499, 114-118.	1.8	9
50	Multicolored luminescent device based on non-substituted PPV. Thin Solid Films, 2006, 499, 410-414.	1.8	5
51	Crystallization behavior of bisphenol A polycarbonate with a simple vacuum process. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 2307-2313.	2.1	6
52	Crystallization of bisphenol-A polycarbonate by a vacuum process. Polymers for Advanced Technologies, 2005, 16, 67-69.	3.2	6
53	Dye Doping of Poly(p-phenylenevinylene)s by Vapor Transportation for Photovoltaic Application. Japanese Journal of Applied Physics, 2005, 44, 630-632.	1.5	1
54	Polymer Solar Cell Prepared by a Novel Vacuum Spray Method. Japanese Journal of Applied Physics, 2005, 44, 656-657.	1.5	18

#	Article	IF	CITATIONS
55	Interface Structures between Polymer Substrates and Fluorescent Dye-Doped Polymer Layers Formed by Vaporization in Vacuum. Japanese Journal of Applied Physics, 2005, 44, 509-513.	1.5	2
56	Fabrication of Fluorescence Micropatterns to Photoresists by Selective Doping of Fluorescent Dye Using Vapor Transportation Method. Japanese Journal of Applied Physics, 2005, 44, L1449-L1451.	1.5	8
57	Nanometer scale marker for fluorescent microscopy. Review of Scientific Instruments, 2005, 76, 073701.	1.3	16
58	Formation and characteristics of dispersion layers of organofluorine compounds in poly(methyl) Tj ETQq0 0 0 rg	BT /Overlo 2.5	ck 10 Tf 50 6
59	Doping of Photochromic Dye to Polymer Substrates by Vaporization of the Dye in a Vacuum. Molecular Crystals and Liquid Crystals, 2005, 430, 287-293.	0.9	3
60	Preparation of Smooth Polymer Thin Film Using Spray Method under Vacuum. Japanese Journal of Applied Physics, 2004, 43, 307-308.	1.5	10
61	Doping of functional materials into poly(p-phenylene vinylene) by the vapor transportation method. Applied Physics Letters, 2004, 85, 5155-5157.	3.3	27
62	Near-field optical microscope observation of dye-containing nano-domains. Journal of Microscopy, 2004, 213, 135-139.	1.8	6
63	Selective Doping of Photochromic Dye into Nanostructures of Diblock Copolymer Films by Vaporization in a Vacuum. Chemistry of Materials, 2004, 16, 3469-3475.	6.7	41
64	Fabrication of polymeric waveguides by using vapor transportation method., 2004,,.		3
65	Mapping the Distribution of Refractive Index in Photopolymer Film with Scanning Near-field Optical Microscopy. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2004, 17, 119-122.	0.3	1
66	Simple Fabrication of Optical Transportation Media Using a Vacuum Transportation Technique. Japanese Journal of Applied Physics, 2003, 42, L613-L615.	1.5	14
67	Addition of Functional Characteristics of Organic Photochromic Dye to Nano-Structures by Selective Doping on a Polymer Surface. Japanese Journal of Applied Physics, 2003, 42, L983-L985.	1.5	28
68	Conditions leading to the formation of polymer thin layers with densely dispersed organic dyes using the vapor transportation method with vacuum technique. , 2003, , .		8
69	A Formation of Organic Rewritable Optical Memory Media Using the Vapor Transportation Method. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2003, 16, 195-198.	0.3	7
70	A Novel Fabrication Method of Optical Transportation Media Using a Vacuum Transportation Techniques. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2003, 16, 199-202.	0.3	1
71	Crystallization of Bisphenol-A Polycarbonate by Using Vapor Transportation Methods. Polymer Journal, 2003, 35, 535-538.	2.7	6
72	A New Formation Method of a Polymer Thin Film with Organic Dyes Using Vacuum Technique Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2002, 15, 137-140.	0.3	5

Тоѕніко Мізокиго

#	Article	IF	CITATIONS
73	Improvement of electrical characteristics of silicon oxynitride layers by a platinum method. Applied Surface Science, 2002, 199, 248-253.	6.1	3
74	Experimental and theoretical studies on N 1s levels of silicon oxynitride films. Surface Science, 2002, 518, 72-80.	1.9	21
75	Mechanism of low temperature nitridation of silicon oxide layers by nitrogen plasma generated by low energy electron impact. Journal of Applied Physics, 1999, 85, 2921-2928.	2.5	17
76	Oxidation of silicon by perchloric acid. Applied Surface Science, 1998, 133, 287-292.	6.1	8
77	Nitridation of silicon oxide layers by nitrogen plasma generated by low energy electron impact. Applied Physics Letters, 1997, 71, 1978-1980.	3.3	45