
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9025365/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pepper mild mottle virus isolates from Peru induce severe symptoms in susceptible pepper plants and belong to the P1,2 pathotype. Tropical Plant Pathology, 2021, 46, 381-385.	1.5	4
2	Two viruses from Stylosanthes guianensis may represent a new genus within Potyviridae. Virus Research, 2021, 293, 198257.	2.2	1
3	Orthotospoviruses (Tospoviridae). , 2021, , 507-515.		2
4	Tobamoviruses of two new species trigger resistance in pepper plants harbouring functional L alleles. Journal of General Virology, 2021, 102, .	2.9	7
5	Low virus diversity and spread in wild Capsicum spp. accessions from Ecuador under natural inoculum pressure. Archives of Virology, 2021, 166, 1447-1453.	2.1	3
6	2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2021, 166, 3513-3566.	2.1	62
7	Chikungunya virus produced by a persistently infected mosquito cell line comprises a shorter genome and is non-infectious to mammalian cells. Journal of General Virology, 2021, 102, .	2.9	1
8	Molecular Characterization of Hovenia Dulcis-Associated Virus 1 (HDaV1) and 2 (HDaV2): New Tentative Species within the Order Picornavirales. Viruses, 2020, 12, 950.	3.3	5
9	2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2020, 165, 3023-3072.	2.1	184
10	Dynamic proteomic analysis of Aedes aegypti Aag-2 cells infected with Mayaro virus. Parasites and Vectors, 2020, 13, 297.	2.5	10
11	Biological and molecular characterization of tomato spotted wilt virus (TSWV) resistanceâ€breaking isolates from Argentina. Plant Pathology, 2019, 68, 1587-1601.	2.4	9
12	Taxonomy of the order Bunyavirales: second update 2018. Archives of Virology, 2019, 164, 927-941.	2.1	115
13	Taxonomy of the order Bunyavirales: update 2019. Archives of Virology, 2019, 164, 1949-1965.	2.1	285
14	A new virus found in garlic virus complex is a member of possible novel genus of the family Betaflexiviridae (order Tymovirales). PeerJ, 2019, 7, e6285.	2.0	20
15	An isolate of sweet potato chlorotic stunt virus from Brazil with a distinct genome organization. Archives of Virology, 2019, 164, 2175-2178.	2.1	0
16	Genome sequences of chikungunya virus isolates circulating in midwestern Brazil. Archives of Virology, 2019, 164, 1205-1208.	2.1	17
17	Tomato Chlorotic Spot Virus (TCSV) Putatively Incorporated a Genomic Segment of Groundnut Ringspot Virus (GRSV) Upon a Reassortment Event. Viruses, 2019, 11, 187.	3.3	8
18	Analyses of orthotospovirus populations and dispersion under different environmental conditions in Brazil and in the Dominican Republic. Tropical Plant Pathology, 2019, 44, 511-518.	1.5	3

#	Article	IF	CITATIONS
19	Sources of resistance to Potato virus Y and Pepper yellow mosaic virus in Solanum (section) Tj ETQq1 1 0.78431	4 rgBT 1.7	/Overlock 10 T
20	Dissecting the Subcellular Localization, Intracellular Trafficking, Interactions, Membrane Association, and Topology of Citrus Leprosis Virus C Proteins. Frontiers in Plant Science, 2018, 9, 1299.	3.6	45
21	The Sw-5 Gene Cluster: Tomato Breeding and Research Toward Orthotospovirus Disease Control. Frontiers in Plant Science, 2018, 9, 1055.	3.6	35
22	High-throughput sequencing reveals a novel closterovirus in arracacha (Arracacia xanthorrhiza). Archives of Virology, 2018, 163, 2547-2550.	2.1	2
23	Identification and genome analysis of tomato chlorotic spot virus and dsRNA viruses from coinfected vegetables in theÂDominican Republic by high-throughput sequencing. Virology Journal, 2018, 15, 24.	3.4	7
24	The NSm proteins of phylogenetically related tospoviruses trigger Sw-5b–mediated resistance dissociated of their cell-to-cell movement function. Virus Research, 2017, 240, 25-34.	2.2	14
25	The functional analysis of distinct tospovirus movement proteins (NS M) reveals different capabilities in tubule formation, cell-to-cell and systemic virus movement among the tospovirus species. Virus Research, 2017, 227, 57-68.	2.2	33
26	Plant responses to tomato chlorotic mottle virus: Proteomic view of the resistance mechanisms to a bipartite begomovirus in tomato. Journal of Proteomics, 2017, 151, 284-292.	2.4	16
27	The complete genome of the tospovirus Zucchini lethal chlorosis virus. Virology Journal, 2016, 13, 123.	3.4	7
28	Cell death triggering and effector recognition by Swâ€5 SD NL proteins from resistant and susceptible tomato isolines to <i>Tomato spotted wilt virus</i> . Molecular Plant Pathology, 2016, 17, 1442-1454.	4.2	42
29	Homology modeling and molecular dynamics provide structural insights into tospovirus nucleoprotein. BMC Bioinformatics, 2016, 17, 489.	2.6	11
30	Biological and molecular characterization of a highly divergent johnsongrass mosaic virus isolate from Pennisetum purpureum. Archives of Virology, 2016, 161, 1981-1986.	2.1	3
31	Resistance to Tospoviruses in Vegetable Crops: Epidemiological and Molecular Aspects. Annual Review of Phytopathology, 2016, 54, 347-371.	7.8	98
32	Host-specific accumulation and temperature effects on the generation of dimeric viral RNA species derived from the S-RNA of members of the Tospovirus genus. Journal of General Virology, 2016, 97, 3051-3062.	2.9	12
33	The movement proteins (NSm) of distinct tospoviruses peripherally associate with cellular membranes and interact with homologous and heterologous NSm and nucleocapsid proteins. Virology, 2015, 478, 39-49.	2.4	50
34	Recessive Resistance Derived from Tomato cv. Tyking-Limits Drastically the Spread of Tomato Yellow Leaf Curl Virus. Viruses, 2015, 7, 2518-2533.	3.3	32
35	Fluorescence in situ hybridization analysis of endosymbiont genera reveals novel infection patterns in a tomato-infesting Bemisia tabaci population from Brazil. Tropical Plant Pathology, 2015, 40, 233-243.	1.5	6
36	The silencing suppressor (NSs) protein of the plant virus Tomato spotted wilt virus enhances heterologous protein expression and baculovirus pathogenicity in cells and lepidopteran insects. Archives of Virology, 2015, 160, 2873-2879.	2.1	12

#	Article	IF	CITATIONS
37	First Report of a Resistance-breaking Isolate of <i>Tomato spotted wilt virus</i> Infecting Sweet Pepper Harboring the <i>Tsw</i> Gene in Argentina. Plant Disease, 2015, 99, 1869.	1.4	13
38	The <i><scp>T</scp>omato spotted wilt virus</i> cellâ€toâ€cell movement protein (<scp>NS_M</scp>) triggers a hypersensitive response in <i><scp>S</scp>wâ€5</i> â€containing resistant tomato lines and in <i><scp>N</scp>icotiana benthamiana</i> transformed with the functional <i><scp>S</scp>wâ€5b</i> resistance gene copy. Molecular Plant Pathology, 2014, 15, 871-880.	4.2	72
39	The First Report of <i>Tomato chlorotic spot virus</i> (TCSV) Infecting Long Beans and Chili Peppers in the Dominican Republic. Plant Disease, 2014, 98, 1285-1285.	1.4	14
40	The complete genome sequence of a Brazilian isolate of yam mild mosaic virus. Archives of Virology, 2013, 158, 515-518.	2.1	9
41	Characterization of a novel tymovirus on tomato plants in Brazil. Virus Genes, 2013, 46, 190-194.	1.6	12
42	Identification of host proteins modulated by the virulence factor AC2 of Tomato chlorotic mottle virus inNicotiana benthamiana. Proteomics, 2013, 13, 1947-1960.	2.2	25
43	Dengue virus tetra-epitope peptide expressed in lettuce chloroplasts for potential use in dengue diagnosis. Applied Microbiology and Biotechnology, 2013, 97, 5721-5729.	3.6	23
44	Molecular characterization reveals Brazilian Tomato chlorosis virus to be closely related to a Greek isolate. Tropical Plant Pathology, 2013, 38, 332-336.	1.5	13
45	First Report of <i>Johnsongrass mosaic virus</i> (JGMV) Infecting <i>Pennisetum purpureum</i> in Brazil. Plant Disease, 2013, 97, 1003-1003.	1.4	12
46	Characterization of Bean Necrotic Mosaic Virus: A Member of a Novel Evolutionary Lineage within the Genus Tospovirus. PLoS ONE, 2012, 7, e38634.	2.5	48
47	Genetic diversity and recombination analysis of sweepoviruses from Brazil. Virology Journal, 2012, 9, 241.	3.4	38
48	A distinct tymovirus infecting Cassia hoffmannseggii in Brazil. Virus Genes, 2012, 45, 190-194.	1.6	11
49	Possible Host Adaptation as an Evolution Factor of <i>Cowpea aphidâ€borne mosaic virus</i> Deduced by Coat Protein Gene Analysis. Journal of Phytopathology, 2012, 160, 82-87.	1.0	11
50	Sequence determination and analysis of the NSs genes of two tospoviruses. Archives of Virology, 2012, 157, 591-596.	2.1	2
51	A silencing suppressor protein (NSs) of a tospovirus enhances baculovirus replication in permissive and semipermissive insect cell lines. Virus Research, 2011, 155, 259-267.	2.2	25
52	Search in Solanum (section Lycopersicon) germplasm for sources of broad-spectrum resistance to four Tospovirus species. Euphytica, 2011, 180, 307-319.	1.2	28
53	An RNA-dependent RNA polymerase gene of a distinct Brazilian tospovirus. Virus Genes, 2011, 43, 385-389.	1.6	17
54	Molecular characterization of the RNA-dependent RNA polymerase from groundnut ringspot virus (genus Tospovirus, family Bunyaviridae). Archives of Virology, 2011, 156, 1425-1429.	2.1	4

#	Article	IF	CITATIONS
55	A novel monopartite begomovirus infecting sweet potato in Brazil. Archives of Virology, 2011, 156, 1291-1294.	2.1	24
56	Multiple Resistance to <i>Meloidogyne</i> spp. and to Bipartite and Monopartite <i>Begomovirus</i> spp. in Wild <i>Solanum</i> (<i>Lycopersicon</i>) Accessions. Plant Disease, 2010, 94, 179-185.	1.4	22
57	Development of a locus-specific, co-dominant SCAR marker for assisted-selection of the Sw-5 (Tospovirus resistance) gene cluster in a wide range of tomato accessions. Molecular Breeding, 2010, 25, 133-142.	2.1	45
58	Genomic diversity of sweet potato geminiviruses in a Brazilian germplasm bank. Virus Research, 2010, 149, 224-233.	2.2	70
59	The N protein of Tomato spotted wilt virus (TSWV) is associated with the induction of programmed cell death (PCD) in Capsicum chinense plants, a hypersensitive host to TSWV infection. Virus Research, 2008, 137, 245-252.	2.2	26
60	Phenotypic Expression, Stability, and Inheritance of a Recessive Resistance to Monopartite Begomoviruses Associated with Tomato Yellow Leaf Curl Disease in Tomato. Phytopathology, 2008, 98, 618-627.	2.2	38
61	Alta incidência de Pepper yellow mosaic virus em tomateiro em região produtora no Distrito Federal. Tropical Plant Pathology, 2008, 33, 67-68.	1.5	3
62	The glycoprotein gene of Chrysanthemum stem necrosis virus and Zucchini lethal chlorosis virus and molecular relationship with other tospoviruses. Virus Genes, 2007, 35, 785-793.	1.6	7
63	Molecular diversity of ecologically distinct Mal de RÃo Cuarto virus isolates based on restriction fragment length polymorphism (RFLPs) and genome sequence analysis of segments 1, 7, 9 and 10. Archives of Virology, 2007, 152, 1341-1351.	2.1	4
64	The fluctuation of transmission specificity and efficiency of Tomato spotted wilt virus by Frankliniella schultzei. Tropical Plant Pathology, 2007, 32, 439-439.	0.3	4
65	Synergistic Interaction Between Tomato chlorosis virus and Tomato spotted wilt virus Results in Breakdown of Resistance in Tomato. Phytopathology, 2006, 96, 1263-1269.	2.2	107
66	Papaya lethal yellowing virus (PLYV) infects Vasconcellea cauliflora. Tropical Plant Pathology, 2006, 31, 517-517.	0.3	11
67	Expression of a viral polymerase-bound host factor turns human cell lines permissive to a plant- and insect-infecting virus. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1175-1180.	7.1	31
68	The competence of four thrips species to transmit and replicate four tospoviruses. Plant Pathology, 2004, 53, 136-140.	2.4	78
69	Sequence Analysis of the Glycoproteins of Tomato Chlorotic Spot Virus and Groundnut Ringspot virus and Comparison with other Tospoviruses. Virus Genes, 2004, 29, 321-328.	1.6	13
70	The Plant Virus Tomato Spotted Wilt Tospovirus Activates the Immune System of Its Main Insect Vector, Frankliniella occidentalis. Journal of Virology, 2004, 78, 4976-4982.	3.4	73
71	Detection of three Allexivirus species infecting garlic in Brazil. Pesquisa Agropecuaria Brasileira, 2004, 39, 735-740.	0.9	23
72	Transcriptome characterization of the dimorphic and pathogenic fungusParacoccidioides brasiliensisby EST analysis. Yeast, 2003, 20, 263-271.	1.7	74

#	Article	IF	CITATIONS
73	Incidência de viroses e enfezamentos e estimativa de perdas causadas por molicutes em milho no Paraná. Pesquisa Agropecuaria Brasileira, 2003, 38, 19-25.	0.9	24
74	Erigeron Witches'-Broom Phytoplasma in Brazil Represents New Subgroup VII-B in 16S rRNA Gene Group VII, the Ash Yellows Phytoplasma Group. Plant Disease, 2002, 86, 1142-1148.	1.4	33
75	Pepper yellow mosaic virus, a new potyvirus in sweetpepper, Capsicum annuum. Archives of Virology, 2002, 147, 849-855.	2.1	38
76	Patchouli virus X, a new potexvirus from Pogostemon clabin. Annals of Applied Biology, 2002, 141, 267-274.	2.5	8
77	Design of a Polymerase Chain Reaction for Specific Detection of Corn Stunt Spiroplasma. Plant Disease, 2001, 85, 475-480.	1.4	31
78	Garlic viral complex: identification of Potyviruses and Carlavirus in Central Brazil. Tropical Plant Pathology, 2001, 26, 619-626.	0.3	37
79	Sequence diversity of NS M movement protein of tospoviruses. Archives of Virology, 2001, 146, 1267-1281.	2.1	47
80	Increase of Tospoviral Diversity in Brazil with the Identification of Two New Tospovirus Species, One from Chrysanthemum and One from Zucchini. Phytopathology, 1999, 89, 823-830.	2.2	89
81	Characterization of a Tospovirus Isolate of Iris Yellow Spot Virus Associated with a Disease in Onion Fields in Brazil. Plant Disease, 1999, 83, 345-350.	1.4	93
82	Distinct levels of relationships between tospovirus isolates. Archives of Virology, 1993, 128, 211-227.	2.1	83
83	Characterization of a Distinct Isolate of Tomato Spotted Wilt Virus (TSWV) from Impatiens sp. in The Netherlands. Journal of Phytopathology, 1992, 134, 133-151.	1.0	61
84	Comparison of Polyclonal Antisera in the Detection of Tomato Spotted Wilt Virus Using the Double Antibody Sandwich and Cocktail ELISA. Journal of Phytopathology, 1991, 132, 46-56.	1.0	27