List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9024038/publications.pdf Version: 2024-02-01

		12330	17105
315	17,111	69	122
papers	citations	h-index	g-index
319	319	319	5139
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Martensitic transformation, shape memory effect and superelasticity of Ti–Nb binary alloys. Acta Materialia, 2006, 54, 2419-2429.	7.9	811
2	Effect of cyclic deformation on the pseudoelasticity characteristics of Ti-Ni alloys. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1986, 17, 115-120.	1.4	588
3	Shape-memory materials and hybrid composites for smart systems: Part I Shape-memory materials. Journal of Materials Science, 1998, 33, 3743-3762.	3.7	489
4	Development of shape memory alloys ISIJ International, 1989, 29, 353-377.	1.4	449
5	Transformation pseudoelasticity and deformation behavior in a Ti-50.6at%Ni alloy. Scripta Metallurgica, 1981, 15, 287-292.	1.2	444
6	Effect of thermal cycling on the transformation temperatures of Tiî—,Ni alloys. Acta Metallurgica, 1986, 34, 2045-2051.	2.1	411
7	Deformation and transition behavior associated with theR-phase in Ti-Ni alloys. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1986, 17, 53-63.	1.4	396
8	Crystal structure of the martensite in Ti-49.2 at.%Ni alloy analyzed by the single crystal X-ray diffraction method. Acta Metallurgica, 1985, 33, 2049-2056.	2.1	374
9	Martensitic transformation and shape memory behavior in sputter-deposited TiNi-base thin films. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 273-275, 106-133.	5.6	363
10	Development and characterization of Ni-free Ti-base shape memory and superelastic alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 18-24.	5.6	333
11	Shape memory characteristics of Ti–22Nb–(2–8)Zr(at.%) biomedical alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 403, 334-339.	5.6	319
12	Mechanical Properties and Shape Memory Behavior of Ti-Nb Alloys. Materials Transactions, 2004, 45, 2443-2448.	1.2	314
13	Texture and shape memory behavior of Ti–22Nb–6Ta alloy. Acta Materialia, 2006, 54, 423-433.	7.9	245
14	Effect of specimen thickness on mechanical properties of polycrystalline aggregates with various grain sizes. Acta Metallurgica, 1979, 27, 855-862.	2.1	239
15	Lattice modulation and superelasticity in oxygen-added Î ² -Ti alloys. Acta Materialia, 2011, 59, 6208-6218.	7.9	223
16	Title is missing!. Journal of Materials Science, 1998, 33, 3763-3783.	3.7	218
17	Crystallography of martensitic transformation in Tiî—,Ni single crystals. Acta Metallurgica, 1987, 35, 2137-2144.	2.1	217
18	The shape memory mechanism associated with the martensitic transformation in Tiî—,Ni alloys—I. Self-accommodation. Acta Metallurgica, 1989, 37, 1873-1884.	2.1	215

#	Article	IF	CITATIONS
19	Fatigue life of Ti–50 at.% Ni and Ti–40Ni–10Cu (at.%) shape memory alloy wires. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 273-275, 658-663.	5.6	208
20	Mechanism of the <i>A_s</i> Temperature Increase by Pre-deformation in Thermoelastic Alloys. Materials Transactions, JIM, 1993, 34, 919-929.	0.9	205
21	Shape Memory Behavior of Ti–22Nb–(0.5–2.0)O(at%) Biomedical Alloys. Materials Transactions, 2005, 46, 852-857.	1.2	200
22	Shape memory properties of Ti–Nb–Mo biomedical alloys. Acta Materialia, 2010, 58, 4212-4223.	7.9	197
23	Ageing-induced two-stage R-phase transformation in Ti–50.9at.%Ni. Acta Materialia, 2004, 52, 487-499.	7.9	193
24	Shape memory behavior of Ti–Ta and its potential as a high-temperature shape memory alloy. Acta Materialia, 2009, 57, 1068-1077.	7.9	189
25	Mechanical Properties of a Ti-Nb-Al Shape Memory Alloy. Materials Transactions, 2004, 45, 1077-1082.	1.2	182
26	Effect of Ta addition on shape memory behavior of Ti–22Nb alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 417, 120-128.	5.6	174
27	The R-phase transition and associated shape memory mechanism in Ti-Ni single crystals. Acta Metallurgica, 1988, 36, 181-192.	2.1	163
28	The habit plane and transformation strains associated with the martensitic transformation in Ti-Ni single crystals. Scripta Metallurgica, 1984, 18, 883-888.	1.2	161
29	Effect of nano-scaled precipitates on shape memory behavior of Ti-50.9at.%Ni alloy. Acta Materialia, 2005, 53, 4545-4554.	7.9	160
30	Composition dependent crystallography of α ″-martensite in Ti–Nb-based β-titanium alloy. Philosophical Magazine, 2007, 87, 3325-3350.	1.6	155
31	Origin of {332} twinning in metastable \hat{I}^2 -Ti alloys. Acta Materialia, 2014, 64, 345-355.	7.9	143
32	Self-accommodation in Ti–Nb shape memory alloys. Acta Materialia, 2009, 57, 4054-4064.	7.9	141
33	Effect of mechanical cycling on the pseudoelasticity characteristics of Tiî—,Ni and Tiî—,Niî—,Cu alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1995, 203, 187-196.	5.6	132
34	Mechanical Properties and Shape Memory Behavior of Ti-Mo-Ga Alloys. Materials Transactions, 2004, 45, 1090-1095.	1.2	131
35	Crystal Structure, Transformation Strain, and Superelastic Property of Ti–Nb–Zr and Ti–Nb–Ta Alloys. Shape Memory and Superelasticity, 2015, 1, 107-116.	2.2	131
36	Shape memory thin film of Tiî—,Ni formed by sputtering. Thin Solid Films, 1993, 228, 210-214.	1.8	130

#	Article	IF	CITATIONS
37	Cyclic stress-strain characteristics of Tiî—,Ni and Tiî—,Niî—,Cu shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1995, 202, 148-156.	5.6	129
38	SMA microgripper with integrated antagonism. Sensors and Actuators A: Physical, 2000, 83, 208-213.	4.1	129
39	Effects of Nb Addition on the Microstructure of Ti–Ni Alloys. Materials Transactions, JIM, 1992, 33, 337-345.	0.9	128
40	Novel Ti-base superelastic alloys with large recovery strain and excellent biocompatibility. Acta Biomaterialia, 2015, 17, 56-67.	8.3	123
41	Effect of ternary alloying elements on the shape memory behavior of Ti–Ta alloys. Acta Materialia, 2009, 57, 2509-2515.	7.9	117
42	Shape-memory effect and pseudoelasticity associated with the R-phase transition in Ti-50·5 at.% Ni single crystals. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1988, 57, 467-478.	0.6	113
43	Orientation dependence of β1 → β1′ stress-induced martensitic transformation in a Cu-Al-Ni alloy. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1988, 19, 915-923.	1.4	109
44	Mechanical behaviour associated with the premartensitic rhombohedral-phase transition in a Ti ₅₀ Ni ₄₇ Fe ₃ alloy. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1985, 50, 393-408.	0.6	106
45	Cyclic deformation behavior of a Ti–26 at.% Nb alloy. Acta Materialia, 2009, 57, 2461-2469.	7.9	103
46	Anomalous temperature dependence of the superelastic behavior of Ti–Nb–Mo alloys. Acta Materialia, 2011, 59, 1464-1473.	7.9	102
47	Nanodomain structure and its effect on abnormal thermal expansion behavior of a Ti–23Nb–2Zr–0.7Ta–1.2O alloy. Acta Materialia, 2013, 61, 4874-4886.	7.9	102
48	Lüders-like deformation observed in the transformation pseudoelasticity of a Tiî—,Ni alloy. Scripta Metallurgica, 1981, 15, 853-856.	1.2	100
49	Martensitic Transformation and Superelastic Properties of Ti-Nb Base Alloys. Materials Transactions, 2015, 56, 625-634.	1.2	97
50	Relationship between Texture and Macroscopic Transformation Strain in Severely Cold-Rolled Ti-Nb-Al Superelastic Alloy. Materials Transactions, 2004, 45, 1083-1089.	1.2	95
51	Interfacial defects in Ti–Nb shape memory alloys. Acta Materialia, 2008, 56, 3088-3097.	7.9	95
52	Effect of thermo-mechanical treatment on mechanical properties and shape memory behavior of Ti–(26–28)at.% Nb alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 839-843.	5.6	94
53	Superelastic properties of biomedical (Ti–Zr)–Mo–Sn alloys. Materials Science and Engineering C, 2015, 48, 11-20.	7.3	94
54	Energy-efficient miniature-scale heat pumping based on shape memory alloys. Smart Materials and Structures, 2016, 25, 085037.	3.5	92

#	Article	IF	CITATIONS
55	Strengthening of Ti-Ni shape-memory films by coherent subnanometric plate precipitates. Philosophical Magazine Letters, 1996, 74, 137-144.	1.2	90
56	SMA foil-based elastocaloric cooling: from material behavior to device engineering. Journal Physics D: Applied Physics, 2017, 50, 424003.	2.8	89
57	CHARACTERISTICS OF DEFORMATION AND TRANSFORMATION PSEUDOELASTICITY IN Ti-Ni ALLOYS. Journal De Physique Colloque, 1982, 43, C4-255-C4-260.	0.2	87
58	The shape memory mechanism associated with the martensitic transformation in Tiî—,Ni alloys—II. Variant coalescence and shape recovery. Acta Metallurgica, 1989, 37, 1885-1890.	2.1	87
59	Novel β-TiTaAl alloys with excellent cold workability and a stable high-temperature shape memory effect. Scripta Materialia, 2011, 64, 1114-1117.	5.2	80
60	Characteristics of Deformation and Transformation in Ti ₄₄ Ni ₄₇ Nb ₉ Shape Memory Alloy. Materials Transactions, JIM, 1992, 33, 346-353.	0.9	79
61	Shape memory microvalves based on thin films or rolled sheets. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 273-275, 784-788.	5.6	79
62	Anisotropy and Temperature Dependence of Young's Modulus in Textured TiNbAl Biomedical Shape Memory Alloy. Materials Transactions, 2005, 46, 1597-1603.	1.2	78
63	Effect of Nb content and heat treatment temperature on superelastic properties of Ti–24Zr–(8–12)Nb–2Sn alloys. Scripta Materialia, 2015, 95, 46-49.	5.2	78
64	My Experience with Ti–Ni-Based and Ti-Based Shape Memory Alloys. Shape Memory and Superelasticity, 2017, 3, 279-314.	2.2	77
65	Corrosion and Biocompatibility of Shape Memory Alloys. Zairyo To Kankyo/ Corrosion Engineering, 1991, 40, 834-844.	0.2	76
66	Effect of Heat Treatment on Shape Memory Behavior of Ti-rich Ti–Ni Thin Films. Materials Transactions, JIM, 1995, 36, 1349-1355.	0.9	76
67	Effect of Annealing Temperature on Microstructure and Shape Memory Characteristics of Ti–22Nb–6Zr(at%) Biomedical Alloy. Materials Transactions, 2006, 47, 505-512.	1.2	73
68	Martensitic transformation and shape memory properties of Ti–Ta–Sn high temperature shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 7238-7246.	5.6	73
69	On the origin of intergranular fracture in β phase shape memory alloys. Scripta Metallurgica, 1982, 16, 431-436.	1.2	71
70	Microstructure of Ti-48.2 at. Pct Ni shape memory thin films. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1997, 28, 1985-1991.	2.2	69
71	Texture of Ti–Ni rolled thin plates and sputter-deposited thin films. International Journal of Plasticity, 2000, 16, 1135-1154.	8.8	69
72	Cold workability and shape memory properties of novel Ti–Ni–Hf–Nb high-temperature shape memory alloys. Scripta Materialia, 2011, 65, 846-849.	5.2	68

#	Article	IF	CITATIONS
73	Effects of oxygen concentration and phase stability on nano-domain structure and thermal expansion behavior of Ti–Nb–Zr–Ta–O alloys. Acta Materialia, 2015, 100, 313-322.	7.9	68
74	Experimental investigation and thermodynamic calculation of the Ti-Ni-Cu shape memory alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2000, 31, 2423-2430.	2.2	67
75	Development of stress-optimised shape memory microvalves. Sensors and Actuators A: Physical, 1999, 72, 243-250.	4.1	65
76	Effect of Sn addition on stress hysteresis and superelastic properties of a Ti–15Nb–3Mo alloy. Scripta Materialia, 2014, 72-73, 29-32.	5.2	64
77	Shape memory effect and pseudoelasticity in a Tiî—,Ni single crystal. Scripta Metallurgica, 1983, 17, 1057-1062.	1.2	62
78	Intrinsic thermal-mechanical behaviour associated with the stress-induced martensitic transformation in NiTi. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1993, 167, 51-56.	5.6	62
79	Mechanical properties of Ti–Nb biomedical shape memory alloys containing Ge or Ga. Materials Science and Engineering C, 2005, 25, 426-432.	7.3	62
80	Lüders deformation in polycrystalline iron. Acta Metallurgica, 1978, 26, 1273-1281.	2.1	61
81	Effects of short time heat treatment on superelastic properties of a Ti–Nb–Al biomedical shape memory alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 870-874.	5.6	60
82	A TiNiPd thin film microvalve for high temperature applications. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 378, 205-209.	5.6	59
83	Mechanical Properties of Ti-Base Shape Memory Alloys. Materials Science Forum, 2003, 426-432, 3121-3126.	0.3	56
84	Room temperature aging behavior of Ti–Nb–Mo-based superelastic alloys. Acta Materialia, 2012, 60, 2437-2447.	7.9	56
85	Effect of Nb content on deformation behavior and shape memory properties of Ti–Nb alloys. Journal of Alloys and Compounds, 2013, 577, S435-S438.	5.5	54
86	Effect of specimen size on the flow stress of rod specimens of polycrystalline Cuî—,Al alloy. Scripta Metallurgica, 1979, 13, 447-449.	1.2	53
87	Shape Memory Characteristics of Sputter-Deposited Ti–Ni Thin Films. Materials Transactions, JIM, 1994, 35, 14-19.	0.9	53
88	Shape memory behavior and internal structure of Ti–Ni–Cu shape memory alloy thin films and their application for microactuators. Acta Materialia, 2009, 57, 441-452.	7.9	53
89	Effect of aging on shape memory behavior of Ti-51.3 At. pct ni thin films. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1996, 27, 3753-3759.	2.2	52
90	Effect of Zr Content on Phase Stability, Deformation Behavior, and Young's Modulus in Ti–Nb–Zr Alloys. Materials, 2020, 13, 476.	2.9	52

#	Article	IF	CITATIONS
91	Effect of {001}ã€`110〉 texture on superelastic strain of Ti–Nb–Al biomedical shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 865-869.	5.6	50
92	Effect of nitrogen addition and annealing temperature on superelastic properties of Ti–Nb–Zr–Ta alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 6844-6852.	5.6	50
93	Mechanical properties of Ti–Ni shape memory thin films formed by sputtering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 273-275, 754-757.	5.6	49
94	Stress-induced martensitic transformation in a Ti-Ni single crystal. Scripta Metallurgica, 1983, 17, 987-992.	1.2	48
95	Strain dependence of pseudoelastic hysteresis of NiTi. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1999, 30, 1275-1282.	2.2	48
96	Effect of randomness on ferroelastic transitions: Disorder-induced hysteresis loop rounding in Ti-Nb-O martensitic alloy. Physical Review B, 2010, 82, .	3.2	48
97	Stress-induced FCC ↔ HCP martensitic transformation in CoNi. Journal of Alloys and Compounds, 2004, 368, 157-163.	5.5	47
98	Antiphase boundary-like stacking fault in α″-martensite of disordered crystal structure in β-titanium shape memory alloy. Philosophical Magazine, 2010, 90, 3475-3498.	1.6	47
99	Effects of oxygen concentration and temperature on deformation behavior of Ti-Nb-Zr-Ta-O alloys. Scripta Materialia, 2016, 123, 55-58.	5.2	47
100	Stress-strain curves of sputter-deposited Ti-Ni thin films. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2000, 80, 967-980.	0.6	46
101	Potential of IrAl base alloys as ultrahigh-temperature smart coatings. Intermetallics, 2000, 8, 1081-1090.	3.9	46
102	Several Issues in the Development of Ti–Nb-Based Shape Memory Alloys. Shape Memory and Superelasticity, 2016, 2, 380-390.	2.2	46
103	Martensitic Transformation and Superelasticity of Ti-Nb-Pt Alloys. Materials Transactions, 2007, 48, 400-406.	1.2	45
104	Crystallographic orientation and stress-amplitude dependence of damping in the martensite phase in textured Ti–Nb–Al shape memory alloy. Acta Materialia, 2010, 58, 2535-2544.	7.9	44
105	Heating-induced martensitic transformation and time-dependent shape memory behavior of Ti–Nb–O alloy. Acta Materialia, 2014, 80, 317-326.	7.9	44
106	Changes in contact angles as a function of time on some pre-oxidized biomaterials. Journal of Materials Science: Materials in Medicine, 1992, 3, 306-312.	3.6	43
107	Thermodynamic analysis of ageing-induced multiple-stage transformation behaviour of NiTi. Philosophical Magazine, 2004, 84, 2083-2102.	1.6	43
108	Fabrication and characterization of Ti–Ni shape memory thin film using Ti/Ni multilayer technique. Science and Technology of Advanced Materials, 2005, 6, 678-683.	6.1	43

#	Article	IF	CITATIONS
109	Formation of nanocrystals with an identical orientation in sputter-deposited Ti Ni thin films. Philosophical Magazine Letters, 1996, 74, 395-404.	1.2	41
110	Effects of Several Factors on the Ductility of the Ti-Ni Alloy. Materials Science Forum, 1990, 56-58, 765-770.	0.3	40
111	Role of oxygen atoms in α″ martensite of Ti-20 at.% Nb alloy. Scripta Materialia, 2016, 112, 15-18.	5.2	40
112	Analysis of the thermomechanical behavior of Ti–Ni shape memory alloy thin films by bulging and nanoindentation procedures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 273-275, 727-732.	5.6	39
113	Deformation-induced martensite stabilisation in [100] single-crystalline Ni–Ti. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 612-616.	5.6	39
114	Miniaturized shape memory alloy pumps for stepping microfluidic transport. Sensors and Actuators B: Chemical, 2012, 165, 157-163.	7.8	39
115	Effect of Boron Concentration on Martensitic Transformation Temperatures, Stress for Inducing Martensite and Slip Stress of Ti-24 mol%Nb-3 mol%Al Superelastic Alloy. Materials Transactions, 2007, 48, 407-413.	1.2	38
116	SHAPE MEMORY EFFECT AND CYCLIC DEFORMATION BEHAVIOR OF Ti – Nb – N ALLOYS. Functional Materials Letters, 2009, 02, 79-82.	1.2	37
117	Optimum rolling ratio for obtaining {001}<110 > recrystallization texture in Ti–Nb–Al biomedical shape memory alloy. Materials Science and Engineering C, 2016, 61, 499-505.	7.3	37
118	Crystal Structure of γ ₂ ′ Martensite in Au-47.5 at%Cd Alloy. Materials Transactions, JIM, 1990, 31, 12-17.	0.9	36
119	Microactuators Using R-phase Transformation of Sputter-deposited Ti-47.3Ni Shape Memory Alloy Thin Films. Journal of Intelligent Material Systems and Structures, 2006, 17, 1049-1058.	2.5	36
120	Incompatibility and preferred morphology in the self-accommodation microstructure of β-titanium shape memory alloy. Philosophical Magazine, 2013, 93, 618-634.	1.6	36
121	Effect of annealing temperature on microstructure and superelastic properties of a Ti-18Zr-4.5Nb-3Sn-2Mo alloy. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 65, 716-723.	3.1	35
122	Crystallization process and shape memory properties of Ti–Ni–Zr thin films. Acta Materialia, 2009, 57, 1920-1930.	7.9	34
123	Deformation behaviour associated with the stress-induced martensitic transformation in Ti–Ni thin films and their thermodynamical modelling. Thin Solid Films, 1998, 324, 184-189.	1.8	33
124	Two-way shape memory effect of sputter-deposited thin films of Ti 51.3 at.% Ni. Thin Solid Films, 1998, 315, 305-309.	1.8	33
125	Thermodynamic modeling of the recovery strains of sputter-deposited shape memory alloys Ti–Ni and Ti–Ni–Cu thin films. Thin Solid Films, 2000, 372, 118-133.	1.8	32
126	Alloying process of sputter-deposited Ti/Ni multilayer thin films. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 699-702.	5.6	32

#	Article	IF	CITATIONS
127	Orthodontic Buccal Tooth Movement by Nickel-Free Titanium-Based Shape Memory and Superelastic Alloy Wire. Angle Orthodontist, 2006, 76, 1041-1046.	2.4	32
128	Microstructure and Mechanical Properties of Sputter-Deposited Ti-Ni Alloy Thin Films. Journal of Engineering Materials and Technology, Transactions of the ASME, 1999, 121, 2-8.	1.4	31
129	Effect of ageing on the transformation behaviour of Ti–49.5at.% Ni. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 617-621.	5.6	30
130	Effects of Si addition on superelastic properties of Ti–Nb–Al biomedical shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 835-838.	5.6	29
131	Formation of nanoscaled precipitates and their effects on the high-temperature shape-memory characteristics of a Ti50Ni15Pd25Cu10 alloy. Acta Materialia, 2012, 60, 5900-5913.	7.9	29
132	Effects of shot-peening on surface contact angles of biomaterials. Journal of Materials Science: Materials in Medicine, 1993, 4, 443-447.	3.6	28
133	Effect of Nitrogen Addition on Superelasticity of Ti-Zr-Nb Alloys. Materials Transactions, 2009, 50, 2726-2730.	1.2	28
134	Combined effects of work hardening and precipitation strengthening on the cyclic stability of TiNiPdCu-based high-temperature shape memory alloys. Acta Materialia, 2013, 61, 4797-4810.	7.9	28
135	Role of interstitial atoms in the microstructure and non-linear elastic deformation behavior of Ti–Nb alloy. Journal of Alloys and Compounds, 2013, 577, S404-S407.	5.5	28
136	A comparative study on the effects of the ω and α phases on the temperature dependence of shape memory behavior of a Ti–27Nb alloy. Scripta Materialia, 2015, 103, 37-40.	5.2	27
137	High strength Ti–Ni-based shape memory thin films. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 273-275, 745-748.	5.6	26
138	Phase Constitution and Mechanical Properties of Ti-(Cr, Mn)-Sn Biomedical Alloys. Materials Science Forum, 2010, 654-656, 2118-2121.	0.3	24
139	Crystal structure of orthorhombic martensite in TiNi-Cu and TiNi-Pd intermetallics. European Physical Journal Special Topics, 2003, 112, 727-730.	0.2	23
140	Effects of ternary additions on martensitic transformation of TiAu. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 383-386.	5.6	23
141	The Elastocaloric Effect in TiNi-based Foils. Materials Today: Proceedings, 2015, 2, S971-S974.	1.8	23
142	Effect of heat treatment condition on microstructure and superelastic properties of Ti24Zr10Nb2Sn. Journal of Alloys and Compounds, 2019, 782, 893-898.	5.5	23
143	Effect of Cu Addition on Shape Memory Behavior of Ti-18 mol%Nb Alloys. Materials Transactions, 2007, 48, 414-421.	1.2	22
144	<i>In Vitro</i> Biocompatibility of Ni-Free Ti-Based Shape Memory Alloys for Biomedical Applications. Materials Transactions, 2010, 51, 1944-1950.	1.2	22

#	Article	IF	CITATIONS
145	Effect of Cu addition on the high temperature shape memory properties of Ti50Ni25Pd25 alloy. Journal of Alloys and Compounds, 2013, 577, S383-S387.	5.5	22
146	Stress induced martensitic transformation and shape memory effect in Zr-Nb-Sn alloys. Scripta Materialia, 2019, 162, 412-415.	5.2	22
147	Macroscopic stress–strain curve, local strain band behavior and the texture of NiTi thin sheets. Smart Materials and Structures, 2009, 18, 055003.	3.5	21
148	Ti-content and annealing temperature dependence of deformation characteristics of TiXNi(92â^'X)Cu8 shape memory alloys. Acta Materialia, 1998, 46, 2729-2740.	7.9	20
149	β型ãƒã,¿ãƒ³å½¢çжè ^{···} 憶å•́金. Keikinzoku/Journal of Japan Institute of Light Metals, 2005, 55, 613-617.	0.4	20
150	Pseudoelastic Properties of Cold-Rolled TiNbAl Alloy. Materials Science Forum, 2005, 475-479, 2323-2328.	0.3	20
151	Effect of B addition on the microstructure and superelastic properties of a Ti-26Nb alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 644, 85-89.	5.6	20
152	Ageing behavior of Ti–6Cr–3Sn β titanium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 530, 504-510.	5.6	19
153	Effect of Annealing Temperature on Microstructure and Superelastic Properties of Ti-Au-Cr-Zr Alloy. Materials Transactions, 2015, 56, 404-409.	1.2	18
154	Orientation dependence of the deformation modes in a γl′ martensite single crystal in Cuî—,Alî—,Ni alloy. Scripta Metallurgica, 1983, 17, 745-750.	1.2	17
155	Dynamic Characteristics of Diaphragm Microactuators Utilizing Sputter-Deposited TiNi Shape-Memory Alloy Thin Films. Materials Science Forum, 2002, 394-395, 467-474.	0.3	17
156	Effects of Grain Size and Specimen Thickness on Mechanical Properties of Polycrystalline Copper and Copper-Aluminum Alloy. Transactions of the Japan Institute of Metals, 1978, 19, 438-444.	0.5	16
157	Phase equilibria in the pseudobinary Ti0.5Ni0.5-Ti0.5Cu0.5 system. Journal of Phase Equilibria and Diffusion, 2000, 21, 227-234.	0.3	16
158	Texture and Microstructure of Ti-Ni Melt-Spun Shape Memory Alloy Ribbons. Materials Transactions, 2004, 45, 214-218.	1.2	16
159	Comparison of shape memory characteristics of a Ti-50.9 At. Pct Ni alloy aged at 473 and 673 K. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 3301-3310.	2.2	16
160	Characterization of High-Speed Microactuator Utilizing Shape Memory Alloy Thin Films. Materials Science Forum, 2005, 475-479, 2037-2042.	0.3	16
161	Mechanical Properties of Ti-Nb Biomedical Shape Memory Alloys Containing 13- and 14-Group Elements. Materials Science Forum, 2005, 475-479, 2329-2332.	0.3	16
162	X-ray Diffraction Analysis of Ti-18 mol%Nb Based Shape Memory Alloys Containing 3d Transition Metal Elements. Materials Transactions, 2006, 47, 1209-1213.	1.2	16

#	Article	IF	CITATIONS
163	Comparative Study of Ti- <i>x</i> Cr-3Sn Alloys for Biomedical Applications. Materials Transactions, 2011, 52, 1787-1793.	1.2	16
164	Ti-content dependence of transformation pseudoelastivity characteristics of TixNi(92â^'x)Cu8 shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 237, 79-86.	5.6	15
165	Internal structures and shape memory properties of sputter-deposited thin films of a Ti–Ni–Cu alloy. Acta Materialia, 2001, 49, 1921-1928.	7.9	15
166	Hardness and Aging of Ni ₂ MnGa Ferromagnetic Shape Memory Alloys. Materials Transactions, 2002, 43, 852-855.	1.2	15
167	Microstructures and martensitic transformation behavior of Ti–Ni–Sn alloys. Scripta Materialia, 2011, 65, 608-610.	5.2	15
168	The effect of Pd content on microstructure and shape-memory properties of Ti–Ni–Pd–Cu alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 602, 19-24.	5.6	15
169	Martensitic transformation behavior in Ni–Al and Ni–Al–Re melt-spun ribbons. Scripta Materialia, 2004, 50, 237-241.	5.2	14
170	TiNi-Base and Ti-Base Shape Memory Alloys. Materials Science Forum, 0, 561-565, 5-21.	0.3	14
171	Effect of heat treatment temperature on the microstructure and actuation behavior of a Ti–Ni–Cu thin film microactuator. Acta Materialia, 2010, 58, 6064-6071.	7.9	14
172	Effect of α phase precipitation on martensitic transformation and mechanical properties of metastable β Ti–6Cr–3Sn biomedical alloy. Journal of Alloys and Compounds, 2013, 577, S427-S430.	5.5	14
173	Morphological changes associated with the R-phase and martensitic transformations in Ti-Ni single crystals ISIJ International, 1989, 29, 423-429.	1.4	14
174	Effect of rolling reduction on the deformation texture and anisotropy of transformation strain in Ti–50.2at.%Ni thin plates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 273-275, 758-762.	5.6	13
175	Cold rolling of B2 intermetallics. Journal of Alloys and Compounds, 2000, 302, 266-273.	5.5	13
176	Characterization of phase transformations, long range order and thermal properties of Ni _{2} MnGa alloys. International Journal of Applied Electromagnetics and Mechanics, 2001, 12, 9-17.	0.6	13
177	Phase constitution of some intermetallics in continuous quaternary pillar phase diagrams. Journal of Phase Equilibria and Diffusion, 2001, 22, 394-399.	0.3	13
178	Phase Stability and Mechanical Properties of Ti-Ni Shape Memory Alloys Containing Platinum Group Metals. Materials Science Forum, 2003, 426-432, 2333-2338.	0.3	13
179	Texture Analysis and Properties of Rapidly Solidified Ti ₅₂ Ni ₃₈ Cu ₁₀ Shape Memory Alloy. Materials Transactions, 2004, 45, 208-213.	1.2	13
180	Effect of Nb Addition on Shape Memory Behavior of Ti–Mo–Ga Alloys. Materials Transactions, 2006, 47, 518-522.	1.2	13

#	Article	IF	CITATIONS
181	High-strength superelastic Ti–Ni microtubes fabricated by sputter deposition. Acta Materialia, 2008, 56, 2063-2072.	7.9	13
182	A Review of TiNiPdCu Alloy System for High Temperature Shape Memory Applications. Shape Memory and Superelasticity, 2015, 1, 85-106.	2.2	13
183	Cytocompatibility Evaluation of Ti-Ni and Ti-Mo-Al System Shape Memory Alloys. Materials Transactions, 2007, 48, 361-366.	1.2	12
184	Effect of Nb Content on Deformation Textures and Mechanical Properties of Ti-18Zr-Nb Biomedical Alloys. Materials Transactions, 2009, 50, 2721-2725.	1.2	12
185	Stress induced martensitic transformation kinetics of polycrystalline NiTi shape memory alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 378, 86-91.	5.6	11
186	Effect of boron addition on transformation behavior and tensile properties of Ti–Nb–Al alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 830-834.	5.6	11
187	Effect of Pd content on crystallization and shape memory properties of Ti–Ni–Pd thin films. International Journal of Smart and Nano Materials, 2011, 2, 9-21.	4.2	11
188	<title>Shape memory characteristics of sputter-deposited Ti-Ni-base thin films</title> . , 1995, 2441, 156.		10

189

#	Article	IF	CITATIONS
199	Phase Constituents of Ti-Cr-Au and Ti-Cr-Au-Zr Alloy Systems. Materials Science Forum, 2010, 654-656, 2122-2125.	0.3	8
200	Phase Constitution and Mechanical Property of Ti-Cr and Ti-Cr-Sn Alloys Containing 3D Transition Metal Elements. Advanced Materials Research, 0, 89-91, 307-312.	0.3	8
201	Crystallization behavior and microstructure of Ti–36Ni–7Sn (at.%) alloy ribbons. Scripta Materialia, 2011, 65, 611-614.	5.2	8
202	Cold Workability, Mechanical Properties, Pseoudoelastic and Shape Memory Response of Silver Added Ti-5Cr Alloys. Advanced Materials Research, 0, 409, 639-644.	0.3	8
203	Deformation Texture of Ti-26mol%Nb-3mol%Al β-Titanium Alloy. Materials Science Forum, 0, 706-709, 1899-1902.	0.3	8
204	Isothermal martensitic transformation behavior of Ti–Nb–O alloy. Materials Letters, 2019, 257, 126691.	2.6	8
205	Effect of Carbon Addition of Shape Memory Properties of TiNb Alloys. Materials Science Forum, 2010, 638-642, 2046-2051.	0.3	7
206	WEAR BEHAVIOR OF NITI THIN FILM AT MICRO-SCALE. International Journal of Modern Physics B, 2010, 24, 85-93.	2.0	7
207	Effect of Cold-Rolling Rate on Texture in Ti-Mo-Al-Zr Shape Memory Alloy. Materials Science Forum, 0, 738-739, 262-266.	0.3	7
208	Effect of cold rolling ratio on the nanoscale precipitation behavior of TiNiPdCu based high temperature shape memory alloys. Journal of Alloys and Compounds, 2014, 599, 212-218.	5.5	7
209	Effect of Sn Content on Phase Constitution and Mechanical Properties of Ti-Cr-Sn Shape Memory Alloys. Materials Today: Proceedings, 2015, 2, S825-S828.	1.8	7
210	Development of high temperature Ti-Ta shape memory alloys. , 2009, , .		7
211	STUDY OF FRACTURE IN Cu-Al-Ni SHAPE MEMORY BICRYSTALS. Journal De Physique Colloque, 1982, 43, C4-813-C4-818.	0.2	7
212	Recent Developments in Sputter-Deposited Ti-Ni-Base Shape Memory Alloy Thin Films. European Physical Journal Special Topics, 1997, 07, C5-275-C5-280.	0.2	6
213	Quantitative Analysis of Oxide Voltage and Field Dependence of Time-Dependent Dielectric Soft Breakdown and Hard Breakdown in Ultrathin Gate Oxides. Japanese Journal of Applied Physics, 2002, 41, 2426-2430.	1.5	6
214	Transformation Behavior of TiNiPt Thin Films Fabricated Using Melt Spinning Technique. Materials Research Society Symposia Proceedings, 2004, 842, 144.	0.1	6
215	Statistical Analysis of Soft and Hard Breakdown in 1.9–4.8-nm-thick Gate Oxides. IEEE Electron Device Letters, 2004, 25, 305-307.	3.9	6
216	Microstructures of Ti-48%Ni shape memory melt-spun ribbons. Transactions of Nonferrous Metals Society of China, 2006, 16, s92-s95.	4.2	6

#	Article	IF	CITATIONS
217	Martensitic Transformation Behavior and Shape Memory Properties of Ti–Ni–Pt Melt-Spun Ribbons. Materials Transactions, 2006, 47, 540-545.	1.2	6
218	EFFECT OF ANNEALING ON SHAPE MEMORY CHARACTERISTICS OF Ti-50.85at.%Ni ALLOY. Functional Materials Letters, 2008, 01, 209-213.	1.2	6
219	Effect of Nb Content on Plastic Deformation Behavior and Deformation Textures of Ti-Nb-Zr-Ta-O Alloy. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2008, 72, 970-974.	0.4	6
220	Mechanical stability of Si thin film deposited on a Ti–50.3Ni(at%) alloy. Journal of Alloys and Compounds, 2010, 497, L13-L16.	5.5	6
221	Crystallization and martensitic transformation behavior of Ti–Ni–Sn alloy ribbons. Intermetallics, 2012, 30, 51-56.	3.9	6
222	Martensitic transformation behavior of Ti–Ni–Sn alloys. Journal of Alloys and Compounds, 2013, 577, S200-S204.	5.5	6
223	Effect of Al addition on superelastic properties of Ti–Zr–Nb-based alloys. Functional Materials Letters, 2017, 10, 1740002.	1.2	6
224	Corrosion behavior, in vitro and in vivo biocompatibility of a newly developed Ti–16Nb–3Mo–1Sn superelastic alloy. Materials Science and Engineering C, 2019, 104, 109906.	7.3	6
225	Unusual strain recovery in γ1′ martensite single variant of Cuî—,Alî—,Ni alloy. Scripta Metallurgica, 1989, 23, 1329-1334.	1.2	5
226	<title>Stability of shape memory characteristics against cyclic deformation in Ti-Ni sputter-deposited thin films</title> . , 1995, , .		5
227	Recent developments in TiNi-based shape memory alloys. , 1998, , .		5
228	Effect of Ti Content on Nanometric Substructure and Shape Memory Property in Sputter-Deposited Ti-Rich Ti-Ni Thin Films. Materials Science Forum, 2000, 327-328, 175-178.	0.3	5
229	Effect of Ni-Content on Shape Memory Behavior of Ti-Rich Ti-Ni Melt-Spun Ribbons. Materials Science Forum, 2005, 475-479, 1925-1928.	0.3	5
230	Effect of Zr Content on Shape Memory Characteristics and Workability of Ti-Ni-Zr Alloy. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2008, 72, 152-157.	0.4	5
231	Grain refinement of a rapidly solidified Ti–30Ni–20Cu alloy by two-step annealing. Scripta Materialia, 2010, 63, 1001-1004.	5.2	5
232	Self-Accommodation Morphology in Ti-Nb-Al Shape Memory Alloy. Materials Science Forum, 2010, 654-656, 2154-2157.	0.3	5
233	Shape memory effect-induced crack closure in Si thin film deposited on a Ti–50.3Ni (at%) alloy substrate. Journal of Alloys and Compounds, 2010, 507, L8-L12.	5.5	5
234	Effect of Ageing on Mechanical and Shape Memory Properties of Ti-5Cr-4Ag Alloy. Key Engineering Materials, 0, 510-511, 111-117.	0.4	5

#	Article	IF	CITATIONS
235	Effect of Zr Addition on Martensitic Transformation in TiMoSn Alloy. Advanced Materials Research, 0, 922, 137-142.	0.3	5
236	Deformation Behavior of Ti-4Au-5Cr-8Zr Superelastic Alloy With or Without Containing Ti3Au Precipitates. Materials Today: Proceedings, 2015, 2, S821-S824.	1.8	5
237	Shape Memory Effect and Superelasticity. , 2018, , 53-81.		5
238	Effect of Low-Temperature Aging on the R-Phase Transformation of a Ti-50.9at%Ni Alloy. Materials Science Forum, 2002, 394-395, 225-228.	0.3	4
239	Fabrication of TiNi-based shape memory alloy thin films by simultaneous multi-target sputtering method. European Physical Journal Special Topics, 2003, 112, 869-872.	0.2	4
240	Effect of Nb Content on Deformation Textures and Mechanical Properties of Ti-18Zr-Nb Biomedical Alloys. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2008, 72, 965-969.	0.4	4
241	Effect of Nitrogen Addition on Superelasticity of Ti-Zr-Nb Alloys. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2008, 72, 955-959.	0.4	4
242	Effect of Nitrogen Addition on Mechanical Property of Ti-Cr-Sn Alloy. Materials Science Forum, 2010, 654-656, 2126-2129.	0.3	4
243	Modelling Residual Strains During Cycling of Ti–Ni and Ti–Ni–Cu Shape Memory Alloys in a Pseudoelastic Range of Behaviour Conditions. Strain, 2011, 47, e457.	2.4	4
244	Martensitic transformation and superelastic properties of titanium alloys containing interstitial elements. Keikinzoku/Journal of Japan Institute of Light Metals, 2012, 62, 257-262.	0.4	4
245	Microstructure and martensitic transformation behavior of crystallized Ti–36Ni–7Sn (at%) alloy ribbons. Journal of Alloys and Compounds, 2013, 577, S195-S199.	5.5	4
246	Precipitation Behavior of Thermo-Mechanically Treated Ti50Ni20Au20Cu10 High-Temperature Shape-Memory Alloy. Shape Memory and Superelasticity, 2016, 2, 29-36.	2.2	4
247	Effect of N addition on nano-domain structure and mechanical properties of a meta-stable Ti-Zr based alloy. Scripta Materialia, 2021, 203, 114068.	5.2	4
248	Unique crystallization process in sputter-deposited ti-ni shape memory films. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 226-228, 53-55.	5.6	3
249	Effect of Heat Treatment on the Properties of Ti-25Ni-25Cu (at%) SMA Melt-Spun Ribbons. Materials Science Forum, 2002, 394-395, 495-498.	0.3	3
250	Factors for Controlling Martensitic Transformation Temperature of TiNi Shape Memory Alloy by Addition of Ternary Elements. Materials Research Society Symposia Proceedings, 2004, 842, 150.	0.1	3
251	Anisotropy in Elastic Properties of Textured TiNbAl Shape Memory Alloy. Materials Science Forum, 2005, 475-479, 1983-1986.	0.3	3
252	New Internalized Distraction Device for Craniofacial Plastic Surgery Using Ni-Free, Ti-Based Shape Memory Alloy. Journal of Craniofacial Surgery, 2010, 21, 1839-1842.	0.7	3

#	Article	IF	CITATIONS
253	Effect of Heat Treatment Condition on Texture in Ti-Mo-Al-Zr Shape Memory Alloy. Advanced Materials Research, 0, 922, 622-625.	0.3	3
254	A Focus on Biomedical Shape Memory and Superelastic Alloys. Shape Memory and Superelasticity, 2016, 2, 2-2.	2.2	3
255	Shape Memory Foil-Based Active Micro Damping for Portable Applications. , 2019, , .		3
256	Synthesis of nanotubular oxide on Ti–24Zr–10Nb–2Sn as a drug-releasing system to prevent the growth of Staphylococcus aureus. Chemical Papers, 2021, 75, 2441-2450.	2.2	3
257	Synthesis and Characterization of a Ti–Zrâ€Based Alloy with Ultralow Young's Modulus and Excellent Biocompatibility. Advanced Engineering Materials, 2022, 24, .	3.5	3
258	Stress-Optimised Shape Memory Devices for the Use in Microvalves. European Physical Journal Special Topics, 1997, 07, C5-597-C5-602.	0.2	3
259	Super-high strength shape memory thin films. European Physical Journal Special Topics, 2003, 112, 841-844.	0.2	3
260	Thermomechanical behaviour of FCC↔HCP martensitic transformation in CoNi. European Physical Journal Special Topics, 2003, 112, 1025-1028.	0.2	3
261	Coherent Subnanometric Plate Precipitates Formed during Crystallization of As-Sputtered Ti-Ni films. European Physical Journal Special Topics, 1997, 07, C5-221-C5-226.	0.2	2
262	Rolling Texture of α"-Phase in Ti-22mol%Nb-3mol%Al Biomedical Shape Memory Alloy. Materials Science Forum, 2007, 561-565, 1517-1520.	0.3	2
263	Effect of Rotation Speed on Transformation Behavior in Ti-48at%Ni Shape Memory Alloy Melt-Spun Ribbon. Materials Science Forum, 2007, 561-565, 1481-1484.	0.3	2
264	Crystallization behavior of cold worked Ti–30Ni–20Cu(at%) alloy ribbons. Intermetallics, 2010, 18, 1813-1817.	3.9	2
265	Effect of Zr Addition on Mechanical and Shape Memory Properties of Ti-5Mo-3Sn Alloys. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2015, 80, 37-44.	0.4	2
266	A novel method for fabrication of Ti24Zr10Nb2Sn alloy oxide nanotubes-chitosan nanocomposite films. Materials Letters, 2017, 205, 134-137.	2.6	2
267	Fabrication and Characterization of Shape Memory Alloys. , 2018, , 193-205.		2
268	Effect of Low-Temperature Crystallization on Shape Memory Behavior and Microstructure of Sputter-Deposited Ti-Ni Amorphous Thin Films. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2005, 69, 614-621.	0.4	1
269	Phase Constitution and Transformation Behavior of Ni ₂ MnGa-Cu ₂ MnAl Pseudobinary Intermetallic Compounds. Materials Science Forum, 2005, 475-479, 841-844.	0.3	1
270	Effect of Ti3Si on Texture in Ti-Nb Based Shape Memory Alloys. Materials Research Society Symposia Proceedings, 2006, 980, 50.	0.1	1

#	Article	IF	CITATIONS
271	Transformation temperatures and shape memory characteristics of a Ti–45Ni–5Cu(at %) alloy annealed by Joule heating. Physica Scripta, 2010, T139, 014068.	2.5	1
272	Reply to â€~On substructure in titanium alloy martensite'. Philosophical Magazine, 2011, 91, 2079-2080.	1.6	1
273	Stability of Ti-Ta Base High Temperature Shape Memory Alloys. Materials Science Forum, 0, 706-709, 1921-1924.	0.3	1
274	Composition Dependence of Compatibility in Self-Accommodation Microstructure of β-Titanium Shape Memory Alloy. Advances in Science and Technology, 0, , .	0.2	1
275	Research and Development of Ti-Ni-base Shape Memory Alloys. Materia Japan, 2012, 51, 209-215.	0.1	1
276	Competition between invariant habit plane and compatible junction plane in TiNb-based shape memory alloy. Journal of Alloys and Compounds, 2013, 577, S92-S95.	5.5	1
277	The strain rate sensitivity behavior in Ti based shape memory alloys. Transactions of the Materials Research Society of Japan, 2013, 38, 545-548.	0.2	1
278	Basic Research and Development of Shape Memory Alloys. Materia Japan, 2014, 53, 197-208.	0.1	1
279	The Effect of Aging Temperature on Morphology of α Phase in Ti-3Mo-6Sn-5Zr Shape Memory Alloy. Materials Today: Proceedings, 2015, 2, S817-S820.	1.8	1
280	Role of Interstitial Oxygen Atom on Martensitic Transformation of Ti-Nb Alloy. Advances in Science and Technology, 0, , .	0.2	1
281	Martensitic Transformation Characteristics. , 2018, , 1-52.		1
282	Thermomechanical Treatment and Microstructure Control. , 2018, , 111-145.		1
283	Origin of As temperature increase by predeformation in Ti-Ni alloys. , 1994, , 1085-1088.		1
284	Shape memory behavior associated with a two-stage R-phase transformation in Ti-50.9at%Ni alloy. European Physical Journal Special Topics, 2003, 112, 697-700.	0.2	1
285	Ti-Ni SMA thin film microactuators made on a Si substrate. European Physical Journal Special Topics, 2001, 11, Pr8-407-Pr8-407.	0.2	1
286	Effect of Alloy Composition on Lattice Deformation Strain of TiNbAl Biomedical Shape Memory Alloy. IEEJ Transactions on Sensors and Micromachines, 2006, 126, 164-165.	0.1	1
287	Shape memory characteristics of Ti-Ni alloys with several specimen sizes from micrometer to millimeter. , 1996, , .		0
288	Effects of Cold Working and Heat Treatment on Transformation Temperature of Ti-41.7Ni-8.5Cu (at%) Shape Memory Alloy and Its Probabilistic Prediction. Zairyo/Journal of the Society of Materials Science, Japan, 2003, 52, 167-173.	0.2	0

#	Article	IF	CITATIONS
289	"Smart Materials― Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2005, 69, 567.	0.4	0
290	Martensitic Transformation Behavior and Shape Memory Properties of Ti-Ni-Pt Melt Spun Ribbon. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2005, 69, 628-633.	0.4	0
291	Orthodontic Tooth Movement in Rats Using Ni-Free Ti-Based Shape Memory Alloy Wire. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2008, 72, 503-509.	0.4	Ο
292	Effect of Annealing on Electronic Characteristics of HfSiON Films fabricated by Damascene Gate Process. ECS Transactions, 2009, 16, 521-526.	0.5	0
293	Fabrication and characterization of sputter-deposited TiNi superelastic microtubes. , 0, , 385-402.		Ο
294	Stress Amplitude Dependence of Internal Friction in TiNbAl Shape Memory Alloy. Materials Science Forum, 2010, 638-642, 2064-2067.	0.3	0
295	Formation Process of Triangular Morphology of Self-Accommodation Martensite in Ti-Nb-Al Shape Memory Alloy. MATEC Web of Conferences, 2015, 33, 06001.	0.2	0
296	Tensile test criterion of transformation-induced elasticity and plasticity alloys for load-displacement measurement. Journal of Alloys and Compounds, 2017, 711, 305-311.	5.5	0
297	Effect of Interstitial Alloying Elements on Shape Memory and Superelastic Properties. , 2018, , 83-109.		0
298	Unique Properties of Metastable Beta Ti Alloys Related to Martensitic Transformation. , 2018, , 147-180.		0
299	Biocompatibility of Superelastic Beta Ti Alloys. , 2018, , 181-191.		Ο
300	Position control of a SMA microgripper. European Physical Journal Special Topics, 2001, 11, Pr8-559-Pr8-564.	0.2	0
301	DMA Evaluation of Damping Properties of Shape Memory Alloys. The Proceedings of the JSME Annual Meeting, 2003, 2003.1, 255-256.	0.0	0
302	Probabilistic Estimation of the Degradation of Function and Strength of Ti-41.7Ni-8.5Cu (at%) Shape Memory Alloys under Thermo-Mechanical Cyclic Conditions. Zairyo/Journal of the Society of Materials Science, Japan, 2003, 52, 174-179.	0.2	0
303	Superelasticity and Mechanical Properties of Ti-Nb-Al Biomedical Alloy. Proceedings of the 1992 Annual Meeting of JSME/MMD, 2004, 2004, 503-504.	0.0	0
304	Shape Memory Properties of NiMnGa Particles Dispersed Smart Composites. Proceedings of the 1992 Annual Meeting of JSME/MMD, 2004, 2004, 497-498.	0.0	0
305	209 Shape Memory Properties of TiAu High Temperature Shape Memory Alloys. Proceedings of the 1992 Annual Meeting of JSME/MMD, 2006, 2006, 75-76.	0.0	0
306	216 Effect of Reduction Rate on Texture of Ti-26mol%Nb-3mol%Al. Proceedings of the 1992 Annual Meeting of JSME/MMD, 2006, 2006, 89-90.	0.0	0

#	Article	IF	CITATIONS
307	2107 Texture Formation of Ti-Nb-Al Shape Memory Alloys. The Proceedings of the JSME Annual Meeting, 2007, 2007.1, 151-152.	0.0	0
308	2108 Superelastic Behavior of AuTi-18Co Alloys. The Proceedings of the JSME Annual Meeting, 2007, 2007.1, 153-154.	0.0	0
309	1014 Mechanical Properties of Ti-Mo Based Shape Memory Alloys. The Proceedings of the JSME Annual Meeting, 2008, 2008.1, 41-42.	0.0	0
310	1003 Ti-Ni Superelastic Microtubes Fabricated by Sputter-deposition Method. The Proceedings of the JSME Annual Meeting, 2008, 2008.1, 19-20.	0.0	0
311	1012 Effect of annealing temperature on the texture in wire of Ti-Nb-Al superelastic alloy. The Proceedings of the JSME Annual Meeting, 2008, 2008.1, 37-38.	0.0	0
312	212 The Microstructure and Mechanical Properties of Ti-Au-Ta and Ti-Au-Cr-Ta Biomedical Alloys. The Proceedings of the Materials and Processing Conference, 2013, 2013.21, _212-1212-2	0.0	0
313	Antiphase Boundary Like Defect Inside α″-Martensite in Ti-Nb-Al Shape Memory Alloy. , 0, , 335-340.		0
314	The Surface and Interface of Shape Memory Alloys Hyomen Kagaku, 1994, 15, 467-472.	0.0	0
315	Acoustic Emission Study of Ti–Ni Shape-Memory Alloy in Loading–Unloading. Springer Proceedings in Physics, 2017, , 155-162.	0.2	0