Paul F Agris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9023475/publications.pdf Version: 2024-02-01

DALLE F ACRIS

#	Article	IF	CITATIONS
1	The RNA modification database, RNAMDB: 2011 update. Nucleic Acids Research, 2011, 39, D195-D201.	14.5	701
2	tRNA's Wobble Decoding of the Genome: 40 Years of Modification. Journal of Molecular Biology, 2007, 366, 1-13.	4.2	458
3	The role of modifications in codon discrimination by tRNALysUUU. Nature Structural and Molecular Biology, 2004, 11, 1186-1191.	8.2	304
4	Decoding the genome: a modified view. Nucleic Acids Research, 2004, 32, 223-238.	14.5	302
5	Accurate Translation of the Genetic Code Depends on tRNA Modified Nucleosides. Journal of Biological Chemistry, 2002, 277, 16391-16395.	3.4	216
6	tRNA's modifications bring order to gene expression. Current Opinion in Microbiology, 2008, 11, 134-140.	5.1	213
7	Bringing order to translation: the contributions of transfer RNA anticodonâ€domain modifications. EMBO Reports, 2008, 9, 629-635.	4.5	194
8	Mechanism for expanding the decoding capacity of transfer RNAs by modification of uridines. Nature Structural and Molecular Biology, 2007, 14, 498-502.	8.2	168
9	Single atom modification (O → S) of tRNA confers ribosome binding. Rna, 1999, 5, 188-194.	3.5	119
10	Chemistry and structure of modified uridines in the anticodon, wobble position of transfer RNA are determined by thiolation. Journal of the American Chemical Society, 1987, 109, 7171-7177.	13.7	116
11	Functional Anticodon Architecture of Human tRNALys3 Includes Disruption of Intraloop Hydrogen Bonding by the Naturally Occurring Amino Acid Modification, t6A. Biochemistry, 2000, 39, 13396-13404.	2.5	109
12	Biological function of 2-thiouridine in Escherichia coli glutamic acid transfer ribonucleic acid. Biochemistry, 1973, 12, 4331-4337.	2.5	107
13	Chemical and Conformational Diversity of Modified Nucleosides Affects tRNA Structure and Function. Biomolecules, 2017, 7, 29.	4.0	104
14	Human tRNALys3UUU Is Pre-Structured by Natural Modifications for Cognate and Wobble Codon Binding through Keto–Enol Tautomerism. Journal of Molecular Biology, 2012, 416, 467-485.	4.2	103
15	Modified Nucleoside Dependent Watsonâ ^{°°} Crick and Wobble Codon Binding by tRNALysUUU Species. Biochemistry, 2000, 39, 13390-13395.	2.5	98
16	Naturally-occurring Modification Restricts the Anticodon Domain Conformational Space of tRNA Phe. Journal of Molecular Biology, 2003, 334, 901-918.	4.2	69
17	Modified Nucleotides in tRNALys and tRNAVal are Important for Translocation. Journal of Molecular Biology, 2004, 338, 439-444.	4.2	57
18	Synthesis and investigation of the 5-formylcytidine modified, anticodon stem and loop of the human mitochondrial tRNAMet. Nucleic Acids Research, 2008, 36, 6548-6557.	14.5	50

PAUL F AGRIS

#	Article	IF	CITATIONS
19	The structure of the human tRNALys3 anticodon bound to the HIV genome is stabilized by modified nucleosides and adjacent mismatch base pairs. Nucleic Acids Research, 2009, 37, 3342-3353.	14.5	49
20	The uridine in "U-turn― Contributions to tRNA-ribosomal binding. Rna, 1999, 5, 503-511.	3.5	47
21	Anticodon Domain Modifications Contribute Order to tRNA for Ribosome-Mediated Codon Binding. Biochemistry, 2008, 47, 6117-6129.	2.5	42
22	TET1â€Mediated Oxidation of 5â€Formylcytosine (5fC) to 5 arboxycytosine (5caC) in RNA. ChemBioChem, 2017, 18, 72-76.	2.6	36
23	The importance of being modified: an unrealized code to RNA structure and function. Rna, 2015, 21, 552-554.	3.5	33
24	Role of Modified Nucleosides of Yeast tRNA ^{Phe} in Ribosomal Binding. Cell Biochemistry and Biophysics, 2000, 33, 241-252.	1.8	32
25	tRNA regulation of gene expression: Interactions of an mRNA 5'-UTR with a regulatory tRNA. Rna, 2006, 12, 1254-1261.	3.5	29
26	Modifications Modulate Anticodon Loop Dynamics and Codon Recognition of E. coli tRNAArg1,2. Journal of Molecular Biology, 2012, 416, 579-597.	4.2	29
27	Amino Acid Signature Enables Proteins to Recognize Modified tRNA. Biochemistry, 2014, 53, 1125-1133.	2.5	28
28	Experimental models of protein-RNA interaction: isolation and analyses of tRNA(Phe) and U1 snRNA-binding peptides from bacteriophage display libraries. The Protein Journal, 1999, 18, 425-435.	1.1	24
29	Solution structure of a synthetic peptide corresponding to a receptor binding region of FSH (hFSH- $\hat{1}^2$) Tj ETQq1 $\hat{1}$	l 0,78431 1.1	4 rgBT /Over
30	Discovery of Smallâ€Molecule Antibiotics against a Unique tRNAâ€Mediated Regulation of Transcription in Gramâ€Positive Bacteria. ChemMedChem, 2019, 14, 758-769.	3.2	19
31	Structure of the Trinucleotide D-acp ³ U-A with Coordinated Mg ²⁺ Demonstrates that Modified Nucleosides Contribute to Regional Conformations of RNA. Nucleosides & Nucleotides, 1996, 15, 1009-1028.	0.5	18
32	NMR-based Structural Analysis of Threonylcarbamoyl-AMP Synthase and Its Substrate Interactions. Journal of Biological Chemistry, 2015, 290, 20032-20043.	3.4	13
33	A Structural Basis for Restricted Codon Recognition Mediated by 2-thiocytidine in tRNA Containing a Wobble Position Inosine. Journal of Molecular Biology, 2020, 432, 913-929.	4.2	12
34	Immunochemical Analysis of an Arginine-Rich Systemic Lupus Erythematosus Autoepitope. Autoimmunity, 1993, 15, 231-236.	2.6	10
35	Orientation of the tRNA anticodon in the ribosomal P-site: Quantitative footprinting with U33-modified, anticodon stem and loop domains. Rna, 1999, 5, 1191-1199.	3.5	9
36	RNA Modified Uridines VI: Conformations of 3-[3-(S)-Amino-3-Carboxypropyl]Uridine (acp3U) from tRNA and 1-Methyl-3-[3-(S)-Amino-3-Carboxypropyl]Pseudouridine (m1acp3î ⁻) from rRNA. Nucleosides & Nucleotides, 1992, 11, 1683-1694.	0.5	8

PAUL F AGRIS

#	Article	IF	CITATIONS
37	RNA Modified Uridines VII: Chemical Synthesis and Initial Analysis of tRNA D-Loop Oligomers with Tandem Modified Uridines. Nucleosides & Nucleotides, 1995, 14, 143-165.	0.5	7
38	Synthesis and Properties of Uniquely Modified Oligoribonucleotides: Yeast Trna ^{Phe} Fragments with 6-Methyluridine and 5,6-Dimethyluridine at Site-Specific Positions. Nucleosides, Nucleotides and Nucleic Acids, 2000, 19, 515-531.	1.1	6
39	A New Promising Anti-Infective Agent Inhibits Biofilm Growth by Targeting Simultaneously a Conserved RNA Function That Controls Multiple Genes. Antibiotics, 2021, 10, 41.	3.7	6
40	Physical Chemistry of a Single tRNA-Modified Nucleoside Regulates Decoding of the Synonymous Lysine Wobble Codon and Affects Type 2 Diabetes. Journal of Physical Chemistry B, 2022, 126, 1168-1177.	2.6	6
41	Anti-Sm Autoantibodies of Systemic Lupus Erythematosus Cross React with Dietary Plant Proteins. Immunological Investigations, 1992, 21, 193-202.	2.0	5
42	Post-Transcriptional Modifications of RNA: Impact on RNA Function and Human Health. RNA Technologies, 2016, , 91-130.	0.3	4
43	Small-Molecule Antibiotics Inhibiting tRNA-Regulated Gene Expression Is a Viable Strategy for Targeting Gram-Positive Bacteria. Antimicrobial Agents and Chemotherapy, 2020, 65, .	3.2	4
44	Modified nucleoside-dependent transition metal binding to DNA analogs of the tRNA anticodon stem/loop domain. BioMetals, 1995, 8, 290-6.	4.1	3
45	Ribosome-independent anticodon to codon binding assessed by circular dichroism: Roles of base modifications, Mg2+ and $2\hat{a}\in^2$ OH. Biospectroscopy, 1996, 2, 205-217.	0.6	3
46	NMR and Paramagnetic Ion Substitution Locates a Modified-Nucleoside Dependent Metal Binding Site in DNA: Molecular Dynamics, Surface Charge and H2O Ordering. Magnetic Resonance in Chemistry, 1996, 34, S87-S96.	1.9	0