
David A Zaharoff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/902346/publications.pdf Version: 2024-02-01

ΠΛΥΙΟ Δ ΖΛΗΛΡΟΕΕ

#	Article	IF	CITATIONS
1	Intranasal Delivery of Thermostable Subunit Vaccine for Cross-Reactive Mucosal and Systemic Antibody Responses Against SARS-CoV-2. Frontiers in Immunology, 2022, 13, 858904.	4.8	5
2	Construction of heparan sulfate microarray for investigating the binding of specific saccharide sequences to proteins. Glycobiology, 2021, 31, 188-199.	2.5	16
3	Safety and Pharmacokinetics of Intravesical Chitosan/Interleukin-12 Immunotherapy in Murine Bladders. Bladder Cancer, 2021, , 1-11.	0.4	2
4	Localized Interleukin-12 for Cancer Immunotherapy. Frontiers in Immunology, 2020, 11, 575597.	4.8	210
5	Flow-Encoded Oxygen Control to Track the Time-Dependence of Molecular Changes Induced by Static or Cycling Hypoxia. Analytical Chemistry, 2019, 91, 15032-15039.	6.5	4
6	Design of a thrombin resistant human acidic fibroblast growth factor (hFGF1) variant that exhibits enhanced cell proliferation activity. Biochemical and Biophysical Research Communications, 2019, 518, 191-196.	2.1	8
7	Molecular mechanisms of heparin-induced modulation of human interleukin 12 bioactivity. Journal of Biological Chemistry, 2019, 294, 4412-4424.	3.4	23
8	Ultrasound-Stimulated Phase-Change Contrast Agents for Transepithelial Delivery of Macromolecules, Toward Gastrointestinal Drug Delivery. Ultrasound in Medicine and Biology, 2019, 45, 1762-1776.	1.5	17
9	Analyzing the effects of instillation volume on intravesical delivery using biphasic solute transport in a deformable geometry. Mathematical Medicine and Biology, 2019, 36, 139-156.	1.2	3
10	Effect of extension of the heparin binding pocket on the structure, stability, and cell proliferation activity of the human acidic fibroblast growth factor. Biochemistry and Biophysics Reports, 2018, 13, 45-57.	1.3	7
11	Tumor-derived granulocyte colony-stimulating factor diminishes efficacy of breast tumor cell vaccines. Breast Cancer Research, 2018, 20, 126.	5.0	25
12	Probing the role of proline â^'135 on the structure, stability, and cell proliferation activity of human acidic fibroblast growth factor. Archives of Biochemistry and Biophysics, 2018, 654, 115-125.	3.0	7
13	Engineering Opportunities in Cancer Immunotherapy: After Decades of Missteps and Delays, a Growing Immune-Oncology Market and Improved Cancer Treatment Outcomes Open New Prospects for Biomedical Engineers and Data Scientists. IEEE Pulse, 2018, 9, 8-11.	0.3	8
14	Strategic Directions in Immunoresponsive Biomaterials in Tissue Engineering . Tissue Engineering - Part A, 2017, 23, 1042-1043.	3.1	1
15	Modulation of Interleukin-12 activity in the presence of heparin. Scientific Reports, 2017, 7, 5360.	3.3	23
16	Immunological mechanisms of intravesical chitosan/interleukin-12 immunotherapy against murine bladder cancer. Oncolmmunology, 2017, 6, e1259050.	4.6	29
17	Effect of Chitosan Properties on Immunoreactivity. Marine Drugs, 2016, 14, 91.	4.6	42
18	Future directions in bladder cancer immunotherapy: towards adaptive immunity. Immunotherapy, 2016, 8, 351-365.	2.0	21

DAVID A ZAHAROFF

#	Article	IF	CITATIONS
19	Intravesical chitosan/interleukin-12 immunotherapy induces tumor-specific systemic immunity against murine bladder cancer. Cancer Immunology, Immunotherapy, 2015, 64, 689-696.	4.2	37
20	Current status of autologous breast tumor cell-based vaccines. Expert Review of Vaccines, 2014, 13, 1439-1445.	4.4	19
21	Neoadjuvant immunotherapy with chitosan and interleukin-12 to control breast cancer metastasis. Oncolmmunology, 2014, 3, e968001.	4.6	32
22	Controlling chitosan-based encapsulation for protein and vaccine delivery. Biomaterials, 2014, 35, 4382-4389.	11.4	130
23	Efficient production and purification of recombinant human interleukin-12 (IL-12) overexpressed in mammalian cells without affinity tag. Protein Expression and Purification, 2014, 102, 76-84.	1.3	19
24	583 INTRAVESICAL IMMUNOTHERAPY WITH CHITOSAN AND INTERLEUKIN-12 INDUCES SYSTEMIC TUMOR-SPECIFIC IMMUNITY. Journal of Urology, 2013, 189, .	0.4	0
25	Nanotheranostics of Circulating Tumor Cells, Infections and Other Pathological Features <i>in Vivo</i> . Molecular Pharmaceutics, 2013, 10, 813-830.	4.6	59
26	Role of chitosan co-formulation in enhancing interleukin-12 delivery and antitumor activity. Biomaterials, 2013, 34, 3828-3836.	11.4	23
27	The effect of antigen encapsulation in chitosan particles on uptake, activation andÂpresentation by antigen presenting cells. Biomaterials, 2013, 34, 2359-2369.	11.4	110
28	Abstract 1224: Intratumoral chitosan/IL-12 neoadjuvant to tumor resection is safe and generates tumor specific immunity , 2013, , .		0
29	In vivo efficacy of a chitosan/IL-12 adjuvant system for protein-based vaccines. Biomaterials, 2011, 32, 926-932.	11.4	51
30	Intratumoral Immunotherapy of Established Solid Tumors With Chitosan/IL-12. Journal of Immunotherapy, 2010, 33, 697-705.	2.4	79
31	Intravesical Immunotherapy of Superficial Bladder Cancer with Chitosan/Interleukin-12. Cancer Research, 2009, 69, 6192-6199.	0.9	97
32	The Antitumor and Immunoadjuvant Effects of IFN- $\hat{l}\pm$ in Combination with Recombinant Poxvirus Vaccines. Clinical Cancer Research, 2009, 15, 2387-2396.	7.0	29
33	Exercise enhances vaccine-induced antigen-specific T cell responses. Vaccine, 2008, 26, 5407-5415.	3.8	33
34	Mechanistic Analysis of Electroporation-Induced Cellular Uptake of Macromolecules. Experimental Biology and Medicine, 2008, 233, 94-105.	2.4	48
35	Targeted Delivery of Murine IFN- <i>γ</i> Using a Recombinant Fowlpox Virus: NK Cell Recruitment to Regional Lymph Nodes and Priming of Tumor-Specific Host Immunity. Journal of Interferon and Cytokine Research, 2008, 28, 73-87.	1.2	13
36	Energy Restriction and Exercise Differentially Enhance Components of Systemic and Mucosal Immunity in Mice. Journal of Nutrition, 2008, 138, 115-122.	2.9	40

DAVID A ZAHAROFF

#	Article	IF	CITATIONS
37	Abstract B144: Obesity-induced impairments in innate and adaptive immune responses are differentially altered by exercise and dietary restriction , 2008, , .		0
38	Chitosan solution enhances both humoral and cell-mediated immune responses to subcutaneous vaccination. Vaccine, 2007, 25, 2085-2094.	3.8	289
39	Chitosan solution enhances the immunoadjuvant properties of GM-CSF. Vaccine, 2007, 25, 8673-8686.	3.8	53
40	Electric field-mediated transport of plasmid DNA in tumor interstitium in vivo. Bioelectrochemistry, 2007, 71, 233-242.	4.6	24
41	A single molecule detection method for understanding mechanisms of electric field-mediated interstitial transport of genes. Bioelectrochemistry, 2006, 69, 248-253.	4.6	13
42	Nonlinear Dependence of Hydraulic Conductivity on Tissue Deformation During Intratumoral Infusion. Annals of Biomedical Engineering, 2006, 34, 1173-1181.	2.5	48
43	Electric Fields in Tumors Exposed to External Voltage Sources: Implication for Electric Field-Mediated Drug and Gene Delivery. Annals of Biomedical Engineering, 2006, 34, 1564-1572.	2.5	26
44	Effects of pulse strength and pulse duration on in vitro DNA electromobility. Bioelectrochemistry, 2004, 62, 37-45.	4.6	27
45	Electric Fields Within Cells as a Function of Membrane Resistivity—A Model Study. IEEE Transactions on Nanobioscience, 2004, 3, 225-231.	3.3	21
46	Accelerated Immune Response to DNA Vaccines. DNA and Cell Biology, 2003, 22, 815-822.	1.9	26
47	Electromobility of plasmid DNA in tumor tissues during electric field-mediated gene delivery. Gene Therapy, 2002, 9, 1286-1290.	4.5	84

48 Interstitial transport of macromolecules. , 0, , 434-454.

3