Lori Ow Stevens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9023166/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessing risk of vector transmission of Chagas disease through blood source analysis using LC-MS/MS for hemoglobin sequence identification. PLoS ONE, 2022, 17, e0262552.	2.5	1
2	Spatial epidemiology and adaptive targeted sampling to manage the Chagas disease vector Triatoma dimidiata. PLoS Neglected Tropical Diseases, 2022, 16, e0010436.	3.0	7
3	From e-voucher to genomic data: Preserving archive specimens as demonstrated with medically important mosquitoes (Diptera: Culicidae) and kissing bugs (Hemiptera: Reduviidae). PLoS ONE, 2021, 16, e0247068.	2.5	8
4	Catch me if you can: Under-detection of Trypanosoma cruzi (Kinetoplastea: Trypanosomatida) infections in Triatoma dimidiata s.l. (Hemiptera: Reduviidae) from Central America. Acta Tropica, 2021, 224, 106130.	2.0	3
5	Insights from a comprehensive study of Trypanosoma cruzi: A new mitochondrial clade restricted to North and Central America and genetic structure of Tcl in the region. PLoS Neglected Tropical Diseases, 2021, 15, e0010043.	3.0	5
6	Infestation dynamics of Triatoma dimidiata in highly deforested tropical dry forest regions of Guatemala. Memorias Do Instituto Oswaldo Cruz, 2020, 115, e200203.	1.6	6
7	Novel Evolutionary Algorithm Identifies Interactions Driving Infestation of Triatoma dimidiata, a Chagas Disease Vector. American Journal of Tropical Medicine and Hygiene, 2020, 103, 735-744.	1.4	4
8	Protein mass spectrometry detects multiple bloodmeals for enhanced Chagas disease vector ecology. Infection, Genetics and Evolution, 2019, 74, 103998.	2.3	4
9	Residual survival and local dispersal drive reinfestation by Triatoma dimidiata following insecticide application in Guatemala. Infection, Genetics and Evolution, 2019, 74, 104000.	2.3	12
10	Chagas Disease in Central America: Recent Findings and Current Challenges in Vector Ecology and Control. Current Tropical Medicine Reports, 2019, 6, 76-91.	3.7	14
11	Description of Triatoma huehuetenanguensis sp. n., a potential Chagas disease vector (Hemiptera,) Tj ETQq1 1	0.784314	rgBT_/Overlo
12	The role of natural selection in shaping genetic variation in a promising Chagas disease drug target: Trypanosoma cruzi trans-sialidase. Infection, Genetics and Evolution, 2018, 62, 151-159.	2.3	4
13	Vectors of diversity: Genome wide diversity across the geographic range of the Chagas disease vector Triatoma dimidiata sensu lato (Hemiptera: Reduviidae). Molecular Phylogenetics and Evolution, 2018, 120, 144-150.	2.7	22
14	Description of Triatoma mopan sp. n. from a cave in Belize (Hemiptera, Reduviidae, Triatominae). ZooKeys, 2018, 775, 69-95.	1.1	69
15	Implementation science: Epidemiology and feeding profiles of the Chagas vector Triatoma dimidiata prior to Ecohealth intervention for three locations in Central America. PLoS Neglected Tropical Diseases, 2018, 12, e0006952.	3.0	18
16	Protein mass spectrometry extends temporal blood meal detection over polymerase chain reaction in mouse-fed Chagas disease vectors. Memorias Do Instituto Oswaldo Cruz, 2018, 113, e180160.	1.6	4
17	Uncovering vector, parasite, blood meal and microbiome patterns from mixed-DNA specimens of the Chagas disease vector Triatoma dimidiata. PLoS Neglected Tropical Diseases, 2018, 12, e0006730.	3.0	38
18	The diversity of the Chagas parasite, Trypanosoma cruzi, infecting the main Central American vector, Triatoma dimidiata, from Mexico to Colombia. PLoS Neglected Tropical Diseases, 2017, 11, e0005878.	3.0	30

#	Article	IF	CITATIONS
19	Chagas disease vector blood meal sources identified by protein mass spectrometry. PLoS ONE, 2017, 12, e0189647.	2.5	13
20	Hypothesis testing clarifies the systematics of the main Central American Chagas disease vector, Triatoma dimidiata (Latreille, 1811), across its geographic range. Infection, Genetics and Evolution, 2016, 44, 431-443.	2.3	21
21	lf you've seen one worm, have you seen them all? Spatial, community, and genetic variability of tubificid communities in Montana. Freshwater Science, 2015, 34, 909-917.	1.8	1
22	Migration and Gene Flow Among Domestic Populations of the Chagas Insect Vector Triatoma dimidiata (Hemiptera: Reduviidae) Detected by Microsatellite Loci. Journal of Medical Entomology, 2015, 52, 419-428.	1.8	32
23	Annelid-Myxosporean Interactions. , 2015, , 217-234.		13
24	Hunting, Swimming, and Worshiping: Human Cultural Practices Illuminate the Blood Meal Sources of Cave Dwelling Chagas Vectors (Triatoma dimidiata) in Guatemala and Belize. PLoS Neglected Tropical Diseases, 2014, 8, e3047.	3.0	20
25	Sources of Blood Meals of Sylvatic Triatoma guasayana near Zurima, Bolivia, Assayed with qPCR and 12S Cloning. PLoS Neglected Tropical Diseases, 2014, 8, e3365.	3.0	12
26	Towards a phylogenetic approach to the composition of species complexes in the North and Central American Triatoma, vectors of Chagas disease. Infection, Genetics and Evolution, 2014, 24, 157-166.	2.3	16
27	Free-roaming Kissing Bugs, Vectors of Chagas Disease, Feed Often on Humans in the Southwest. American Journal of Medicine, 2014, 127, 421-426.	1.5	43
28	Household Model of Chagas Disease Vectors (Hemiptera: Reduviidae) Considering Domestic, Peridomestic, and Sylvatic Vector Populations. Journal of Medical Entomology, 2013, 50, 907-915.	1.8	12
29	Using real-time PCR and Bayesian analysis to distinguish susceptible tubificid taxa important in the transmission of Myxobolus cerebralis, the cause of salmonid whirling disease. International Journal for Parasitology, 2013, 43, 493-501.	3.1	6
30	Ecohealth Interventions Limit Triatomine Reinfestation following Insecticide Spraying in La Brea, Guatemala. American Journal of Tropical Medicine and Hygiene, 2013, 88, 630-637.	1.4	44
31	Assessing Linkages in Stream Habitat, Geomorphic Condition, and Biological Integrity Using a Generalized Regression Neural Network. Journal of the American Water Resources Association, 2013, 49, 415-430.	2.4	12
32	Novel polymerase chain reaction-restriction fragment length polymorphism assay to determine internal transcribed spacer-2 group in the Chagas disease vector, Triatoma dimidiata (Latreille, 1811). Memorias Do Instituto Oswaldo Cruz, 2013, 108, 395-398.	1.6	10
33	Vector Blood Meals and Chagas Disease Transmission Potential, United States. Emerging Infectious Diseases, 2012, 18, 646-649.	4.3	48
34	The Parasite that Causes Whirling Disease, <scp><i>M</i></scp> <i>yxobolus cerebralis</i> , is Genetically Variable Within and Across Spatial Scales. Journal of Eukaryotic Microbiology, 2012, 59, 80-87.	1.7	9
35	Low prevalence of Chagas parasite infection in a nonhuman primate colony in Louisiana. Journal of the American Association for Laboratory Animal Science, 2012, 51, 443-7.	1.2	21
36	Kissing Bugs. The Vectors of Chagas. Advances in Parasitology, 2011, 75, 169-192.	3.2	31

#	Article	IF	CITATIONS
37	High genetic diversity in a single population of Triatoma sanguisuga (LeConte, 1855) inferred from two mitochondrial markers: Cytochrome b and 16S ribosomal DNA. Infection, Genetics and Evolution, 2011, 11, 671-677.	2.3	22
38	"Kissing Bugs― Potential Disease Vectors and Cause of Anaphylaxis. Clinical Infectious Diseases, 2010, 50, 1629-1634.	5.8	68
39	Enhanced detection of groundwater contamination from a leaking waste disposal site by microbial community profiles. Water Resources Research, 2010, 46, .	4.2	21
40	Local adaptation to biocontrol agents: A multi-objective data-driven optimization model for the evolution of resistance. Ecological Complexity, 2008, 5, 252-259.	2.9	4
41	A New Method for Forensic DNA Analysis of the Blood Meal in Chagas Disease Vectors Demonstrated Using Triatoma infestans from Chuquisaca, Bolivia. PLoS ONE, 2008, 3, e3585.	2.5	59
42	Microsatellites Reveal a High Population Structure in Triatoma infestans from Chuquisaca, Bolivia. PLoS Neglected Tropical Diseases, 2008, 2, e202.	3.0	48
43	PCR reveals significantly higher rates of Trypanosoma cruzi infection than microscopy in the Chagas vector, Triatoma infestans: High rates found in Chuquisaca, Bolivia. BMC Infectious Diseases, 2007, 7, 66.	2.9	38
44	A method for the identification of guinea pig blood meal in the Chagas disease vector, Triatoma infestans. Parasites and Vectors, 2007, 6, 1.	1.9	25
45	PHYSIOLOGICAL BASES OF GENETIC DIFFERENCES IN CANNIBALISM BEHAVIOR OF THE CONFUSED FLOUR BEETLE TRIBOLIUM CONFUSUM. Evolution; International Journal of Organic Evolution, 2007, 55, 797-806.	2.3	Ο
46	Using Geostatistics and Artificial Neural Networks to Determine the Location of a Contaminant Source. , 2006, , 1.		2
47	Genetic diversity of Triatoma infestans (Hemiptera: Reduviidae) in Chuquisaca, Bolivia based on the mitochondrial cytochrome b gene. Memorias Do Instituto Oswaldo Cruz, 2005, 100, 753-760.	1.6	43
48	Genetic Analysis of Benzoquinone Production in Tribolium confusum. Journal of Chemical Ecology, 2004, 30, 1035-1044.	1.8	36
49	A genetic linkage map for Tribolium confusum based on random amplified polymorphic DNAs and recombinant inbred lines. Insect Molecular Biology, 2003, 12, 517-526.	2.0	7
50	Geographical variation and sexual dimorphism of phenoloxidase levels in Japanese beetles (Popillia) Tj ETQq0 0	0 rgBT /Ov 2.6	erlogk 10 Tf 5
51	Why should parasite resistance be costly?. Trends in Parasitology, 2002, 18, 116-120.	3.3	110
52	Microbe inhibition by Tribolium flour beetles varies with beetle species, strain, sex, and microbe group. Journal of Chemical Ecology, 2002, 28, 1183-1190.	1.8	29
53	Male-Killing, Nematode Infections, Bacteriophage Infection, and Virulence of Cytoplasmic Bacteria in the GenusWolbachia. Annual Review of Ecology, Evolution, and Systematics, 2001, 32, 519-545.	6.7	114
54	PHYSIOLOGICAL BASES OF GENETIC DIFFERENCES IN CANNIBALISM BEHAVIOR OF THE CONFUSED FLOUR	2.3	18

BEETLE TRIBOLIUM CONFUSUM. Evolution; International Journal of Organic Evolution, 2001, 55, 797.

#	Article	IF	CITATIONS
55	Variation in the Production and Distribution of Substituted Benzoquinone Compounds among Genetic Strains of the Confused Flour Beetle, Tribolium confusum. Physiological and Biochemical Zoology, 2000, 73, 192-199.	1.5	20
56	Male-killingWolbachiain a flour beetle. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 1469-1473.	2.6	100
57	Design and Interpretation of Experimental Studies of Interdemic Selection: A Reply to Getty. American Naturalist, 1999, 154, 599-603.	2.1	12
58	Effects of a Tapeworm Parasite on the Competition of Tribolium Beetles. Ecology, 1998, 79, 1093.	3.2	35
59	EFFECTS OF A TAPEWORM PARASITE ON THE COMPETITION OFTRIBOLIUMBEETLES. Ecology, 1998, 79, 1093-1103.	3.2	30
60	CONSEQUENCES OF INBREEDING ON INVERTEBRATE HOST SUSCEPTIBILITY TO PARASITIC INFECTION. Evolution; International Journal of Organic Evolution, 1997, 51, 2032-2039.	2.3	58
61	Consequences of Inbreeding on Invertebrate Host Susceptibility to Parasitic Infection. Evolution; International Journal of Organic Evolution, 1997, 51, 2032.	2.3	33
62	Molecular evidence for singleWolbachiainfections among geographic strains of the flour beetleTribolium confusum. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 1065-1068.	2.6	22
63	Experimental Studies of Group Selection: What Do They Tell US About Group Selection in Nature?. American Naturalist, 1997, 150, S59-S79.	2.1	253
64	WolbachiaInfections in the Flour BeetleTribolium confusum:Evidence for a Common Incompatibility Type across Strains. Journal of Invertebrate Pathology, 1996, 67, 195-197.	3.2	16
65	The effect of population size on effective population size: an empirical study in the red flour beetle <i>Tribolium castaneum</i> . Genetical Research, 1996, 68, 151-155.	0.9	38
66	Multilevel Selection in Natural Populations of Impatiens capensis. American Naturalist, 1995, 145, 513-526.	2.1	94
67	A test of Hamilton's rule: cannibalism and relatedness in beetles. Animal Behaviour, 1995, 49, 545-547.	1.9	9
68	Selection by Parasites on Components of Fitness in Tribolium Beetles: The Effect of Intraspecific Competition. American Naturalist, 1995, 146, 795-813.	2.1	38
69	The Effect of Population Subdivision on the Rate of Spread of Parasite-Mediated Cytoplasmic Incompatibility. Journal of Theoretical Biology, 1994, 167, 81-87.	1.7	27
70	Environmental Dependency of Inbreeding Depression: Implications for Conservation Biology. Conservation Biology, 1994, 8, 562-568.	4.7	107
71	Behavioral Changes in Tribolium Beetles Infected with a Tepeworm: Variation in Effects Between Beetle Species and Among Genetic Strains. American Naturalist, 1994, 143, 830-847.	2.1	42
72	Cytoplasmically inherited parasites and reproductive success in Tribolium flour beetles. Animal Behaviour, 1993, 46, 305-310.	1.9	13

#	Article	IF	CITATIONS
73	Multispecies Interactions Affect Cytoplasmic Incompatibility in Tribolium Flour Beetles. American Naturalist, 1992, 140, 642-653.	2.1	45
74	Contextual Analysis of Models of Group Selection, Soft Selection, Hard Selection, and the Evolution of Altruism. American Naturalist, 1992, 140, 743-761.	2.1	242
75	The Genetics and Evolution of Cannibalism in Flour Beetles (Genus tribolium). Evolution; International Journal of Organic Evolution, 1989, 43, 169.	2.3	30
76	Mating prior to overwintering in the imported willow leaf beetle, Plagiodera versicolora (Coleoptera: Chrysomelidae). Ecological Entomology, 1989, 14, 219-223.	2.2	14
77	Environmental factors affecting reproductive incompatibility in flour beetles, genus Tribolium. Journal of Invertebrate Pathology, 1989, 53, 78-84.	3.2	54
78	THE GENETICS AND EVOLUTION OF CANNIBALISM IN FLOUR BEETLES (GENUS <i>TRIBOLIUM</i>). Evolution; International Journal of Organic Evolution, 1989, 43, 169-179.	2.3	58
79	Effect of Antibiotics on the Productivity of Genetic Strains of Tribolium confusum and Tribolium castaneum (Coleoptera: Tenebrionidae). Environmental Entomology, 1988, 17, 115-119.	1.4	3
80	Genetic stability of cannibalism inTribolium confusum. Behavior Genetics, 1985, 15, 549-559.	2.1	33