Lori Ow Stevens

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/9023166/publications.pdf
Version: 2024-02-01

1	Experimental Studies of Group Selection: What Do They Tell US About Group Selection in Nature?. American Naturalist, 1997, 150, S59-S79.	2.1	253
2	Contextual Analysis of Models of Group Selection, Soft Selection, Hard Selection, and the Evolution of Altruism. American Naturalist, 1992, 140, 743-761.	2.1	242
3	Male-Killing, Nematode Infections, Bacteriophage Infection, and Virulence of Cytoplasmic Bacteria in the GenusWolbachia. Annual Review of Ecology, Evolution, and Systematics, 2001, 32, 519-545.	6.7	114
4	Why should parasite resistance be costly?. Trends in Parasitology, 2002, 18, 116-120.	3.3	110
5	Environmental Dependency of Inbreeding Depression: Implications for Conservation Biology. Conservation Biology, 1994, 8, 562-568.	4.7	107
6	Male-killingWolbachiain a flour beetle. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 1469-1473.	2.6	100
7	Multilevel Selection in Natural Populations of Impatiens capensis. American Naturalist, 1995, 145, 513-526.	2.1	94
8	Description of Triatoma mopan sp. n. from a cave in Belize (Hemiptera, Reduviidae, Triatominae). ZooKeys, 2018, 775, 69-95.	1.1	69
9	â€œKissing Bugsâ€: Potential Disease Vectors and Cause of Anaphylaxis. Clinical Infectious Diseases, 2010, 50, 1629-1634.	5.8	68

10 Description of Triatoma huehuetenanguensis sp. n., a potential Chagas disease vector (Hemiptera,) Tj ETQq0 00 rgB. /Overlock

11	A New Method for Forensic DNA Analysis of the Blood Meal in Chagas Disease Vectors Demonstrated Using Triatoma infestans from Chuquisaca, Bolivia. PLoS ONE, 2008, 3, e3585.	2.5	59
12	THE GENETICS AND EVOLUTION OF CANNIBALISM IN FLOUR BEETLES (GENUS <i>TRIBOLIUM</i>). Evolution; International Journal of Organic Evolution, 1989, 43, 169-179.	2.3	58
13	CONSEQUENCES OF INBREEDING ON INVERTEBRATE HOST SUSCEPTIBILITY TO PARASITIC INFECTION. Evolution; International Journal of Organic Evolution, 1997, 51, 2032-2039.	2.3	58
14	Environmental factors affecting reproductive incompatibility in flour beetles, genus Tribolium. Journal of Invertebrate Pathology, 1989, 53, 78-84.	3.2	54
15	Microsatellites Reveal a High Population Structure in Triatoma infestans from Chuquisaca, Bolivia. PLoS Neglected Tropical Diseases, 2008, 2, e202.	3.0	48
16	Vector Blood Meals and Chagas Disease Transmission Potential, United States. Emerging Infectious Diseases, 2012, 18, 646-649.	4.3	48
17	Multispecies Interactions Affect Cytoplasmic Incompatibility in Tribolium Flour Beetles. American Naturalist, 1992, 140, 642-653.	2.1	45
18	Ecohealth Interventions Limit Triatomine Reinfestation following Insecticide Spraying in La Brea, Guatemala. American Journal of Tropical Medicine and Hygiene, 2013, 88, 630-637.	1.4	44

Free-roaming Kissing Bugs, Vectors of Chagas Disease, Feed Often on Humans in the Southwest.
American Journal of Medicine, 2014, 127, 421-426.

Genetic diversity of Triatoma infestans (Hemiptera: Reduviidae) in Chuquisaca, Bolivia based on the mitochondrial cytochrome b gene. Memorias Do Instituto Oswaldo Cruz, 2005, 100, 753-760.
1.6

Behavioral Changes in Tribolium Beetles Infected with a Tepeworm: Variation in Effects Between Beetle
Species and Among Genetic Strains. American Naturalist, 1994, 143, 830-847.

The effect of population size on effective population size: an empirical study in the red flour
beetle<i>Tribolium castaneum</i>. Genetical Research, 1996, 68, 151-155.

PCR reveals significantly higher rates of Trypanosoma cruzi infection than microscopy in the Chagas
23 vector, Triatoma infestans: High rates found in Chuquisaca, Bolivia. BMC Infectious Diseases, 2007, 7,
$2.9 \quad 38$ 66.

Uncovering vector, parasite, blood meal and microbiome patterns from mixed-DNA specimens of the
Chagas disease vector Triatoma dimidiata. PLoS Neglected Tropical Diseases, 2018, 12, e0006730.

Selection by Parasites on Components of Fitness in Tribolium Beetles: The Effect of Intraspecific
Competition. American Naturalist, 1995, 146, 795-813.

Genetic Analysis of Benzoquinone Production in Tribolium confusum. Journal of Chemical Ecology,
2004, 30, 1035-1044.

Effects of a Tapeworm Parasite on the Competition of Tribolium Beetles. Ecology, 1998, 79, 1093.
3.2

35

28 Genetic stability of cannibalism inTribolium confusum. Behavior Genetics, 1985, 15, 549-559.
2.1

33

> 29 Consequences of Inbreeding on Invertebrate Host Susceptibility to Parasitic Infection. Evolution;
> International Journal of Organic Evolution, 1997, 51, 2032.

Migration and Gene Flow Among Domestic Populations of the Chagas Insect Vector Triatoma dimidiata
30 (Hemiptera: Reduviidae) Detected by Microsatellite Loci. Journal of Medical Entomology, 2015, 52,
1.8

419-428.

31 Kissing Bugs. The Vectors of Chagas. Advances in Parasitology, 2011, 75, 169-192.
3.2

31

The Genetics and Evolution of Cannibalism in Flour Beetles (Genus tribolium). Evolution; International Journal of Organic Evolution, 1989, 43, 169.
2.3

30

The diversity of the Chagas parasite, Trypanosoma cruzi, infecting the main Central American vector,
Triatoma dimidiata, from Mexico to Colombia. PLoS Neglected Tropical Diseases, 2017, 11, e0005878.

Microbe inhibition by Tribolium flour beetles varies with beetle species, strain, sex, and microbe
group. Journal of Chemical Ecology, 2002, 28, 1183-1190.

37	A method for the identification of guinea pig blood meal in the Chagas disease vector, Triatoma infestans. Parasites and Vectors, 2007, 6, 1.	1.9	25
38	Molecular evidence for singleWolbachiainfections among geographic strains of the flour beetleTribolium confusum. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 1065-1068.	2.6	22
39	High genetic diversity in a single population of Triatoma sanguisuga (LeConte, 1855) inferred from two mitochondrial markers: Cytochrome b and 16S ribosomal DNA. Infection, Genetics and Evolution, 2011, 11, 671-677.	2.3	22
40	Vectors of diversity: Genome wide diversity across the geographic range of the Chagas disease vector Triatoma dimidiata sensu lato (Hemiptera: Reduviidae). Molecular Phylogenetics and Evolution, 2018, 120, 144-150.	2.7	22
41	Enhanced detection of groundwater contamination from a leaking waste disposal site by microbial community profiles. Water Resources Research, 2010, 46, .	4.2	21
42	Hypothesis testing clarifies the systematics of the main Central American Chagas disease vector, Triatoma dimidiata (Latreille, 1811), across its geographic range. Infection, Genetics and Evolution, 2016, 44, 431-443.	2.3	21
43	Low prevalence of Chagas parasite infection in a nonhuman primate colony in Louisiana. Journal of the American Association for Laboratory Animal Science, 2012, 51, 443-7.	1.2	21
44	Variation in the Production and Distribution of Substituted Benzoquinone Compounds among Cenetic Strains of the Confused Flour Beetle, Tribolium confusum. Physiological and Biochemical Zoology, 2000, 73, 192-199.	1.5	20
45	Hunting, Swimming, and Worshiping: Human Cultural Practices Illuminate the Blood Meal Sources of Cave Dwelling Chagas Vectors (Triatoma dimidiata) in Guatemala and Belize. PLoS Neglected Tropical Diseases, 2014, 8, e3047.	3.0	20
46	PHYSIOLOGICAL BASES OF GENETIC DIFFERENCES IN CANNIBALISM BEHAVIOR OF THE CONFUSED FLOUR BEETLE TRIBOLIUM CONFUSUM. Evolution; International Journal of Organic Evolution, 2001, 55, 797.	2.3	18
47	Implementation science: Epidemiology and feeding profiles of the Chagas vector Triatoma dimidiata prior to Ecohealth intervention for three locations in Central America. PLoS Neglected Tropical Diseases, 2018, 12, e0006952.	3.0	18

```
55 Chagas disease vector blood meal sources identified by protein mass spectrometry. PLoS ONE, 2017, 12,
e0189647.

Household Model of Chagas Disease Vectors (Hemiptera: Reduviidae) Considering Domestic,
Peridomestic, and Sylvatic Vector Populations. Journal of Medical Entomology, 2013, 50, 907-915.

Assessing Linkages in Stream Habitat, Geomorphic Condition, and Biological Integrity Using a
58 Generalized Regression Neural Network. Journal of the American Water Resources Association, 2013,
\(2.4 \quad 12\)
49, 415-430.

59 Sources of Blood Meals of Sylvatic Triatoma guasayana near Zurima, Bolivia, Assayed with qPCR and
\(3.0 \quad 12\)
12S Cloning. PLoS Neglected Tropical Diseases, 2014, 8, e3365.

Residual survival and local dispersal drive reinfestation by Triatoma dimidiata following insecticide
application in Guatemala. Infection, Genetics and Evolution, 2019, 74, 104000.
2.3

12

Novel polymerase chain reaction-restriction fragment length polymorphism assay to determine
61 internal transcribed spacer-2 group in the Chagas disease vector, Triatoma dimidiata (Latreille, 1811 ).
1.6

Memorias Do Instituto Oswaldo Cruz, 2013, 108, 395-398.

62 A test of Hamilton's rule: cannibalism and relatedness in beetles. Animal Behaviour, 1995, 49, 545-547.
1.9

9
The Parasite that Causes Whirling Disease, <scp><i>M<|i></scp><i>yxobolus cerebralis</i>, is
63 Genetically Variable Within and Across Spatial Scales. Journal of Eukaryotic Microbiology, 2012, 59,
\(1.7 \quad 9\)
80-87.

From e-voucher to genomic data: Preserving archive specimens as demonstrated with medically
64 important mosquitoes (Diptera: Culicidae) and kissing bugs (Hemiptera: Reduviidae). PLoS ONE, 2021, 16,
2.5

8 e0247068.
\[
\begin{aligned}
& \text { A genetic linkage map for Tribolium confusum based on random amplified polymorphic DNAs and } \\
& \text { recombinant inbred lines. Insect Molecular Biology, 2003, 12,517-526. }
\end{aligned}
\]

Spatial epidemiology and adaptive targeted sampling to manage the Chagas disease vector Triatoma dimidiata. PLoS Neglected Tropical Diseases, 2022, 16, e0010436.
3.0

7

Using real-time PCR and Bayesian analysis to distinguish susceptible tubificid taxa important in the
67 transmission of Myxobolus cerebralis, the cause of salmonid whirling disease. International Journal
\(3.1 \quad 6\)
for Parasitology, 2013, 43, 493-501.
Infestation dynamics of Triatoma dimidiata in highly deforested tropical dry forest regions of
1.6 Guatemala. Memorias Do Instituto Oswaldo Cruz, 2020, 115, e200203.

Insights from a comprehensive study of Trypanosoma cruzi: A new mitochondrial clade restricted to
69 North and Central America and genetic structure of Tcl in the region. PLoS Neglected Tropical
\(3.0 \quad 5\)
Diseases, 2021, 15, e0010043.

Local adaptation to biocontrol agents: A multi-objective data-driven optimization model for the evolution of resistance. Ecological Complexity, 2008, 5, 252-259.

Novel Evolutionary Algorithm Identifies Interactions Driving Infestation of Triatoma dimidiata, a Chagas Disease Vector. American Journal of Tropical Medicine and Hygiene, 2020, 103, 735-744.

Effect of Antibiotics on the Productivity of Genetic Strains of Tribolium confusum and Tribolium

Catch me if you can: Under-detection of Trypanosoma cruzi (Kinetoplastea: Trypanosomatida)```

