
Belal F Yousif

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9023142/publications.pdf Version: 2024-02-01

RELAL E YOUSIE

#	Article	IF	CITATIONS
1	A review on the degradability of polymeric composites based on natural fibres. Materials & Design, 2013, 47, 424-442.	5.1	1,055
2	In State of Art: Mechanical and tribological behaviour of polymeric composites based on natural fibres. Materials & Design, 2013, 48, 14-24.	5.1	436
3	Flexural properties of treated and untreated kenaf/epoxy composites. Materials & Design, 2012, 40, 378-385.	5.1	269
4	Potential of kenaf fibres as reinforcement for tribological applications. Wear, 2009, 267, 1550-1557.	3.1	249
5	CNC-diesel engine performance and exhaust emission analysis with the aid of artificial neural network. Applied Energy, 2010, 87, 1661-1669.	10.1	201
6	Characteristics of kenaf fibre/epoxy composites subjected to thermal degradation. Polymer Degradation and Stability, 2013, 98, 2752-2759.	5.8	156
7	Influence of date palm fibre and graphite filler on mechanical and wear characteristics of epoxy composites. Materials & Design, 2014, 59, 264-273.	5.1	154
8	Fracture behaviour of bamboo fiber reinforced epoxy composites. Composites Part B: Engineering, 2017, 116, 186-199.	12.0	149
9	The potential of using date palm fibres as reinforcement for polymeric composites. Materials & Design, 2013, 43, 177-184.	5.1	134
10	Effect of betelnut fibres treatment and contact conditions on adhesive wear and frictional performance of polyester composites. Wear, 2010, 268, 1354-1370.	3.1	119
11	THE EFFECT OF OIL PALM FIBERS AS REINFORCEMENT ON TRIBOLOGICAL PERFORMANCE OF POLYESTER COMPOSITE. Surface Review and Letters, 2007, 14, 1095-1102.	1.1	99
12	A critical review on the manufacturing processes in relation to the properties of nanoclay/polymer composites. Journal of Composite Materials, 2013, 47, 1093-1115.	2.4	95
13	Polyester composite based on betelnut fibre for tribological applications. Tribology International, 2010, 43, 503-511.	5.9	94
14	Crude palm oil fuel for diesel-engines: Experimental and ANN simulation approaches. Energy, 2011, 36, 4871-4878.	8.8	94
15	Tribological studies of polyester reinforced with CSM 450-R-glass fiber sliding against smooth stainless steel counterface. Wear, 2006, 261, 443-452.	3.1	82
16	Adhesive Wear Performance of T-OPRP and UT-OPRP Composites. Tribology Letters, 2008, 32, 199-208.	2.6	81
17	Three-body abrasion on wear and frictional performance of treated betelnut fibre reinforced epoxy (T-BFRE) composite. Materials & Design, 2010, 31, 4514-4521.	5.1	80
18	Suitability of using coir fiber/polymeric composite for the design of liquid storage tanks. Materials & Design, 2012, 36, 847-853.	5.1	72

#	Article	IF	CITATIONS
19	Frictional and wear performance of polyester composites based on coir fibres. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2009, 223, 51-59.	1.8	70
20	Morphological structures and tribological performance of unsaturated polyester based untreated/silane-treated halloysite nanotubes. Materials & Design, 2013, 48, 68-76.	5.1	61
21	Evaluation of glass fiber reinforced polyester composite for multi-pass abrasive wear applications. Wear, 2007, 262, 1140-1151.	3.1	56
22	Wear and frictional performance of betelnut fibre-reinforced polyester composite. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2009, 223, 183-194.	1.8	54
23	Role of silanized halloysite nanotubes on structural, mechanical properties and fracture toughness of thermoset nanocomposites. Materials & Design, 2014, 57, 279-288.	5.1	54
24	Wear and friction characteristics of CGRP composite under wet contact condition using two different test techniques. Wear, 2008, 265, 856-864.	3.1	53
25	Wear characteristics of thermoset composite under high stress three-body abrasive. Tribology International, 2010, 43, 2365-2371.	5.9	53
26	Hydrogen Energy Demand Growth Prediction and Assessment (2021–2050) Using a System Thinking and System Dynamics Approach. Applied Sciences (Switzerland), 2022, 12, 781.	2.5	52
27	An investigation on worn surfaces of chopped glass fibre reinforced polyester through SEM observations. Tribology International, 2008, 41, 331-340.	5.9	49
28	High-stress three-body abrasive wear of treated and untreated oil palm fibre-reinforced polyester composites. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2008, 222, 637-646.	1.8	46
29	Toughening of brittle polyester with functionalized halloysite nanocomposites. Composites Part B: Engineering, 2019, 160, 94-109.	12.0	46
30	Investigation on interfacial adhesion of date palm/epoxy using fragmentation technique. Materials & Design, 2014, 53, 928-937.	5.1	43
31	The effects of alkali treatment on the interfacial adhesion of bamboo fibres. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2010, 224, 139-148.	1.1	42
32	Tribological Evaluations of Polyester Composites Considering Three Orientations of CSM Glass Fibres Using BOR Machine. Applied Composite Materials, 2007, 14, 105-116.	2.5	40
33	Wear and frictional performance of polymeric composites aged in various solutions. Wear, 2011, 272, 97-104.	3.1	40
34	Betelnut fibres as an alternative to glass fibres to reinforce thermoset composites: A comparative study. Textile Reseach Journal, 2012, 82, 1107-1120.	2.2	40
35	Design consideration of low temperature differential double-acting Stirling engine for solar application. Renewable Energy, 2005, 30, 1923-1941.	8.9	37
36	Tribological Characteristics of Sustainable Fiber-Reinforced Thermoplastic Composites under Wet Adhesive Wear. Tribology Transactions, 2011, 54, 736-748.	2.0	35

#	Article	IF	CITATIONS
37	Mechanical and wear properties of oil palm and glass fibres reinforced polyester composites. International Journal of Precision Technology, 2009, 1, 213.	0.2	32
38	Effects of fillers on the fracture behaviour of particulate polyester composites. Journal of Strain Analysis for Engineering Design, 2010, 45, 67-78.	1.8	32
39	Design of newly fabricated tribological machine for wear and frictional experiments under dry/wet condition. Materials & Design, 2013, 48, 2-13.	5.1	32
40	EPOXY COMPOSITE BASED ON KENAF FIBERS FOR TRIBOLOGICAL APPLICATIONS UNDER WET CONTACT CONDITIONS. Surface Review and Letters, 2012, 19, 1250050.	1.1	30
41	Impact fracture behaviour of silane-treated halloysite nanotubes-reinforced unsaturated polyester. Engineering Failure Analysis, 2013, 35, 718-725.	4.0	28
42	Wet adhesive wear characteristics of untreated oil palm fibre-reinforced polyester and treated oil palm fibre-reinforced polyester composites using the pin-on-disc and block-on-ring techniques. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2010, 224, 123-131.	1.8	27
43	Adhesive Wear of Thermoplastic Composite Based on Kenaf Fibres. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2011, 225, 101-109.	1.8	27
44	Influence of graphene nanoplatelets on mechanical properties and adhesive wear performance of epoxy-based composites. Friction, 2021, 9, 856-875.	6.4	26
45	An artificial neural network for prediction of the friction coefficient of multi-layer polymeric composites in three different orientations. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2010, 224, 419-429.	2.1	22
46	The Effect of Treatment on Tribo-Performance of CFRP Composites. Recent Patents on Materials Science, 2009, 2, 67-74.	0.5	21
47	EFFECT OF OIL PALM FIBRES VOLUME FRACTION ON MECHANICAL PROPERTIES OF POLYESTER COMPOSITES. International Journal of Modern Physics B, 2010, 24, 4459-4470.	2.0	21
48	Replacing of glass fibres with seed oil palm fibres for tribopolymeric composites. Tribology - Materials, Surfaces and Interfaces, 2008, 2, 99-103.	1.4	20
49	A Comprehensive Review on Efficiency Enhancement of Solar Collectors Using Hybrid Nanofluids. Energies, 2022, 15, 1391.	3.1	15
50	TRIBOLOGICAL BEHAVIOUR OF KFRE COMPOSITE. International Journal of Modern Physics B, 2010, 24, 5589-5599.	2.0	14
51	ADHESIVE WEAR AND FRICTIONAL BEHAVIOR OF MULTILAYERED POLYESTER COMPOSITE BASED ON BETELNUT FIBER MATS UNDER WET CONTACT CONDITIONS. Surface Review and Letters, 2009, 16, 407-414.	1.1	13
52	Physical and mechanical properties of bamboo fibre/polyester composites subjected to moisture and hygrothermal conditions. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2019, 233, 1065-1079.	1.1	13
53	Fracture behaviour of glass fibre-reinforced polyester composite. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2009, 223, 83-89.	1.1	12
54	Characteristics of Kenaf Fiber Immersed in Different Solutions. Journal of Natural Fibers, 2012, 9, 207-218.	3.1	12

#	Article	IF	CITATIONS
55	ON THE EFFECT OF WOVEN GLASS FABRIC ORIENTATIONS ON WEAR AND FRICTION PROPERTIES OF POLYESTER COMPOSITE. Surface Review and Letters, 2007, 14, 489-497.	1.1	11
56	ADHESIVE WEAR PERFORMANCE OF CFRP MULTILAYERED POLYESTER COMPOSITES UNDER DRY/WET CONTACT CONDITIONS. Surface Review and Letters, 2008, 15, 919-925.	1.1	11
57	Wear behaviour and mechanism of different metals sliding against stainless steel counterface. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2014, 228, 692-704.	1.8	11
58	The Influence of Emulsified Water Fuel Containing Fresh Water Microalgae on Diesel Engine Performance, Combustion, Vibration and Emission. Energies, 2019, 12, 2546.	3.1	10
59	Tribological Studies of Bamboo Fibre Reinforced Epoxy Composites Using a BOD Technique. Polymers, 2021, 13, 2444.	4.5	10
60	An Investigation on Tensile, Compression and Flexural Properties of Natural Fibre Reinforced Polyester Composites. , 2007, , 619.		9
61	Performance analysis of journal bearings using ultrasonic reflection. Tribology International, 2013, 64, 78-84.	5.9	9
62	EFFECT OF WATER AS LUBRICANT ON FRICTION AND WEAR PROPERTIES OF CGRP COMPOSITE EVALUATED BY POD AND BOR TECHNIQUES. Surface Review and Letters, 2007, 14, 185-191.	1.1	8
63	On the mechanical properties of a treated betelnut fibre-reinforced polyester composite. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2010, 224, 1805-1814.	2.1	8
64	Correlation between Frictional Force, Interface Temperature and Specific Wear Rate of Fibre Polymer Composites. Advanced Materials Research, 0, 685, 45-49.	0.3	8
65	Wear and Friction Behaviour of CGRP and WGRP Composites Subjected to Dry Sliding. , 2005, , 31.		7
66	On the Effect of Counterface Materials on Interface Temperature and Friction Coefficient of GFRE Composite Under Dry Sliding Contact. American Journal of Applied Sciences, 2005, 2, 1533-1540.	0.2	7
67	On Tribo-Test Machine Integrating Pin-on-Disc and Block-on-Ring. Tribology Online, 2007, 2, 50-53.	0.9	6
68	Adhesive wear and frictional characteristics of UHMWPE and HDPE sliding against different counterfaces under dry contact condition. Tribology - Materials, Surfaces and Interfaces, 2010, 4, 78-85.	1.4	6
69	Biolubricants and the Potential of Waste Cooking Oil. Materials Forming, Machining and Tribology, 2016, , 125-143.	1.1	6
70	The Potential of Using Betelnut Fibres for Tribo-Polyester Composites Considering Three Different Orientations. , 2008, , .		5
71	Investigations on wear and frictional properties of kenaf fibre polyurethane composites under dry and wet contact conditions. International Journal of Precision Technology, 2011, 2, 375.	0.2	5
72	A review on the mechanical properties and machinability of natural fibre reinforced composites. International Journal of Precision Technology, 2013, 3, 152.	0.2	5

#	Article	IF	CITATIONS
73	Epoxy and Polyester Composites' Characteristics under Tribological Loading Conditions. Polymers, 2021, 13, 2230.	4.5	5
74	Tribological Investigation of Frictional Behaviour of Mild Steel Under Canola Bio-Lubricant Conditions. Tribology in Industry, 2020, 42, 481-493.	1.1	5
75	Fuzzy Logic based Model to Predict Maximum Oil-Film Pressure in Journal Bearing. Research Journal of Applied Sciences, Engineering and Technology, 2013, 6, 3871-3878.	0.1	4
76	Fabricating and Tensile Characteristics of Recycled Composite Materials. Journal of Applied Sciences, 2006, 6, 1380-1383.	0.3	4
77	Machinability of Polymeric Composites and Future Reinforcements—A Review. Journal of Materials Science and Chemical Engineering, 2022, 10, 40-72.	0.4	3
78	TRIBOLOGICAL CONSIDERATION IN ROLLER MILL MACHINES FOR AGRICULTURE APPLICATIONS. Surface Review and Letters, 2012, 19, 1250065.	1.1	2
79	The Effect of Treatment on Tribo-Performance of CFRP Composites. Recent Patents on Materials Science, 2010, 2, 67-74.	0.5	2
80	Tribological Behavior of Mild Steel under Canola Biolubricant Conditions. Advances in Tribology, 2021, 2021, 1-13.	2.1	2
81	ANN for Tribological Applications. , 2009, , .		1
82	Sustainable Composites. Advances in Materials Science and Engineering, 2013, 2013, 1-1.	1.8	1
83	Wear and Frictional Behaviour of Metals. Advanced Materials Research, 2014, 893, 430-435.	0.3	1
84	Two-Body Abrasion of Bamboo Fibre/Epoxy Composites. Materials Forming, Machining and Tribology, 2016, , 145-172.	1.1	1
85	The Effects of Load and Velocity on Friction and Interface Temperature of CGRP Sliding Against Smooth Stainless Steel. , 2006, , .		1
86	ON THE EFFECT OF COUNTERFACE MATERIALS ON TRIBO-BEHAVIOR OF STEEL WIRE SLIDING UNDER DRY CONTACT CONDITION. Surface Review and Letters, 2008, 15, 355-360.	1.1	0
87	New Technique Measuring Film Thickness for Tribological Machines. , 2009, , .		0
88	On the Development of Solar Drying System. , 2009, , .		0
89	Adhesive Wear Characteristics of Natural Fiber-Reinforced Composites. , 2013, , 61-97.		0
90	Influence of metal coating on sorghum milling process subjected to three body abrasion. International Journal of Precision Technology, 2015, 5, 27.	0.2	0

Belal F Yousif

#	Article	IF	CITATIONS
91	Tribological properties of biomass-basedÂcomposites. , 2017, , 225-257.		0
92	Tribological Characteristics of Commercial Metals. Research Journal of Applied Sciences, Engineering and Technology, 2020, 17, 122-128.	0.1	0
93	On the Effect of Roller Materials on the Power Window Mechanism From a Tribological Perspective. , 2008, , .		Ο
94	Kenaf Fibers for Tribo-Thermoplastic Composites. , 2009, , .		0
95	On Integration of Mirror Collector and Stirling Engine for Solar Power System. , 2010, , 521-531.		Ο
96	Multimedia Resources in Engineering Education. Materials Forming, Machining and Tribology, 2014, , 449-461.	1.1	0
97	Simulation of Fragmentation Technique Using ANSYS Software. Advances in Chemical and Materials Engineering Book Series, 2015, , 341-372.	0.3	О