Michele Trabucchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/902296/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prediction of coronary heart disease incidence in a general male population by circulating non-coding small RNA sRNY1-5p in a nested case–control study. Scientific Reports, 2021, 11, 1837.	3.3	1
2	Paternal multigenerational exposure to an obesogenic diet drives epigenetic predisposition to metabolic diseases in mice. ELife, 2021, 10, .	6.0	24
3	Systemic CLIP-seq analysis and game theory approach to model microRNA mode of binding. Nucleic Acids Research, 2021, 49, e66-e66.	14.5	2
4	Subcellular Heterogeneity of the microRNA Machinery. Trends in Genetics, 2019, 35, 15-28.	6.7	47
5	RNY (YRNA)-derived small RNAs regulate cell death and inflammation in monocytes/macrophages. Cell Death and Disease, 2018, 8, e2530-e2530.	6.3	57
6	Recent computational developments on CLIP-seq data analysis and microRNA targeting implications. Briefings in Bioinformatics, 2018, 19, 1290-1301.	6.5	25
7	Post-transcriptional gene silencing mediated by microRNAs is controlled by nucleoplasmic Sfpq. Nature Communications, 2017, 8, 1189.	12.8	68
8	From benchmarking HITS-CLIP peak detection programs to a new method for identification of miRNA-binding sites from Ago2-CLIP data. Nucleic Acids Research, 2017, 45, gkx007.	14.5	23
9	Viruses and miRNAs: More Friends than Foes. Frontiers in Microbiology, 2017, 8, 824.	3.5	181
10	Paternal obesity: how bad is it for sperm quality and progeny health?. Basic and Clinical Andrology, 2017, 27, 20.	1.9	44
11	Developmental epigenetic programming of adult germ cell death disease: Polycomb protein EZH2–miR-101 pathway. Epigenomics, 2016, 8, 1459-1479.	2.1	11
12	RNY-derived small RNAs as a signature of coronary artery disease. BMC Medicine, 2015, 13, 259.	5.5	32
13	Regulation of stimulus-inducible gene expression in myeloid cells. Seminars in Immunology, 2015, 27, 33-43.	5.6	5
14	Let-7b/c Enhance the Stability of a Tissue-Specific mRNA during Mammalian Organogenesis as Part of a Feedback Loop Involving KSRP. PLoS Genetics, 2012, 8, e1002823.	3.5	22
15	DICER- and AGO3-dependent generation of retinoic acid–induced DR2 Alu RNAs regulates human stem cell proliferation. Nature Structural and Molecular Biology, 2012, 19, 1168-1175.	8.2	64
16	KSRP, many functions for a single protein. Frontiers in Bioscience - Landmark, 2011, 16, 1787.	3.0	49
17	The role of KSRP in mRNA decay and microRNA precursor maturation. Wiley Interdisciplinary Reviews RNA, 2010, 1, 230-239.	6.4	56
18	KSRP Promotes the Maturation of a Group of miRNA Precuresors. Advances in Experimental Medicine and Biology, 2010, 700, 36-42.	1.6	20

MICHELE TRABUCCHI

#	Article	IF	CITATIONS
19	KSRP promotes the maturation of a group of miRNA precursors. Advances in Experimental Medicine and Biology, 2010, 700, 36-42.	1.6	11
20	How to control miRNA maturation? Co-activators and co-repressors take the stage. RNA Biology, 2009, 6, 536-540.	3.1	40
21	LPS induces KHâ€ŧype splicing regulatory proteinâ€dependent processing of microRNAâ€155 precursors in macrophages. FASEB Journal, 2009, 23, 2898-2908.	0.5	188
22	The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature, 2009, 459, 1010-1014.	27.8	588
23	Molecular characterization and comparative localization of the mRNAs encoding two glutamic acid decarboxylases (GAD65 and GAD67) in the brain of the african lungfish, <i>Protopterus annectens</i> . Journal of Comparative Neurology, 2008, 506, 979-988.	1.6	13
24	Identification of a set of KSRP target transcripts upregulated by PI3K-AKT signaling. BMC Molecular Biology, 2007, 8, 28.	3.0	53
25	The RNA-Binding Protein KSRP Promotes Decay of β-Catenin mRNA and Is Inactivated by PI3K-AKT Signaling. PLoS Biology, 2006, 5, e5.	5.6	132
26	Molecular Evolution of Somatostatin Genes. , 2004, , 47-64.		6
27	Characterization of the cDNA encoding a somatostatin variant in the chicken brain: Comparison of the distribution of the two somatostatin precursor mRNAs. Journal of Comparative Neurology, 2003, 461, 441-451.	1.6	35
28	Polygenic expression of somatostatin in the sturgeonAcipenser transmontanus: Molecular cloning and distribution of the mRNAs encoding two somatostatin precursors. Journal of Comparative Neurology, 2002, 443, 332-345.	1.6	37
29	Ontogeny of pituitary adenylate cyclase-activating polypeptide (PACAP) in the frog (Rana ridibunda) tadpole brain: Immunohistochemical localization and biochemical characterization. Journal of Comparative Neurology, 2001, 431, 11-27.	1.6	15
30	Immunohistochemical localization of atrial natriuretic factor and autoradiographic distribution of atrial natriuretic factor-binding sites in the brain of the cave salamanderHydromantes genei (Amphibia, Plethodontidae). Journal of Comparative Neurology, 2001, 437, 240-258.	1.6	3
31	Distribution of GAD-immunoreactive neurons in the diencephalon of the African lungfishProtopterus annectens: Colocalization of GAD and NPY in the preoptic area. , 2000, 419, 223-232.		16
32	Distribution of vasoactive intestinal peptide-like immunoreactivity in the brain and pituitary of the frog (Rana esculenta) during development. Brain Research, 1999, 851, 105-115.	2.2	3
33	Molecular cloning of the cDNAs and distribution of the mRNAs encoding two somatostatin precursors in the African lungfishProtopterus annectens. , 1999, 410, 643-652.		41
34	Neuropeptides in the Lungfish Brain: Phylogenetic Implicationa. Annals of the New York Academy of Sciences, 1998, 839, 53-59.	3.8	5
35	Localization of ANF and ANF Receptors in the Lungfish Brain. Annals of the New York Academy of Sciences, 1998, 839, 619-620.	3.8	0
36	Melanin-concentrating hormone system in the brain of the lungfishProtopterus annectens. , 1998, 390,		19

41-51.

3

#	Article	IF	CITATIONS
37	Immunocytochemical localization of enkephalins in the brain of the African lungfish,Protopterus annectens, provides evidence for differential distribution of Met-enkephalin and Leu-enkephalin. , 1998, 396, 275-287.		20
38	Autoradiographic distribution of neuropeptide tyrosine binding sites in the brain of the African lungfish, Protopterus annectens. Neuroscience Letters, 1998, 254, 5-8.	2.1	9
39	Immunocytochemical localization of somatostatin and autoradiographic distribution of somatostatin binding sites in the brain of the African lungfish,Protopterus annectens. , 1997, 388, 337-353.		31
40	Immunocytochemical localization of atrial natriuretic factor and autoradiographic distribution of atria natriuretic factor binding sites in the brain of the African lungfish,Protopterus annectens. , 1996, 375, 345-362.		18