
Madelon M Maurice

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/902283/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mutations and mechanisms of WNT pathway tumour suppressors in cancer. Nature Reviews Cancer, 2021, 21, 5-21.	28.4	235
2	Organoid-based modeling of intestinal development, regeneration, and repair. Cell Death and Differentiation, 2021, 28, 95-107.	11.2	60
3	mRNA spindle localization and mitotic translational regulation by CPEB1 and CPEB4. Rna, 2021, 27, 291-302.	3.5	19
4	Building a complex for destruction. Molecular Cell, 2021, 81, 3241-3243.	9.7	0
5	Wnt Signaling in 3D: Recent Advances in the Applications of Intestinal Organoids. Trends in Cell Biology, 2020, 30, 60-73.	7.9	64
6	NEDD4 and NEDD4L regulate Wnt signalling and intestinal stem cell priming by degrading LGR5 receptor. EMBO Journal, 2020, 39, e102771.	7.8	58
7	Mitochondria Define Intestinal Stem Cell Differentiation Downstream of a FOXO/Notch Axis. Cell Metabolism, 2020, 32, 889-900.e7.	16.2	90
8	<scp>RNF</scp> 43 truncations trap <scp>CK</scp> 1 to drive nicheâ€independent selfâ€renewal in cancer. EMBO Journal, 2020, 39, e103932.	7.8	31
9	R-spondins engage heparan sulfate proteoglycans to potentiate WNT signaling. ELife, 2020, 9, .	6.0	37
10	Anti-LRP5/6 VHHs promote differentiation of Wnt-hypersensitive intestinal stem cells. Nature Communications, 2019, 10, 365.	12.8	53
11	Wnt Signaling Directs Neuronal Polarity and Axonal Growth. IScience, 2019, 13, 318-327.	4.1	22
12	Three-dimensional analysis of single molecule FISH in human colon organoids. Biology Open, 2019, 8, .	1.2	9
13	TMEM59 potentiates Wnt signaling by promoting signalosome formation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3996-E4005.	7.1	36
14	Specific Labeling of Stem Cell Activity in Human Colorectal Organoids Using an ASCL2-Responsive Minigene. Cell Reports, 2018, 22, 1600-1614.	6.4	28
15	Variants in members of the cadherin–catenin complex, CDH1 and CTNND1, cause blepharocheilodontic syndrome. European Journal of Human Genetics, 2018, 26, 210-219.	2.8	34
16	Investigations of dynamic amyloid-like structures of the Wnt signalling pathway by solid-state NMR. Chemical Communications, 2018, 54, 3959-3962.	4.1	1
17	Syndecan-1 promotes Wnt/β-catenin signaling in multiple myeloma by presenting Wnts and R-spondins. Blood, 2018, 131, 982-994.	1.4	68
18	Tales from the crypt: intestinal niche signals in tissue renewal, plasticity and cancer. Open Biology, 2018, 8, .	3.6	96

MADELON M MAURICE

#	Article	IF	CITATIONS
19	Molecular regulation and pharmacological targeting of the βâ€catenin destruction complex. British Journal of Pharmacology, 2017, 174, 4575-4588.	5.4	61
20	Loss of CYLD expression unleashes Wnt signaling in multiple myeloma and is associated with aggressive disease. Oncogene, 2017, 36, 2105-2115.	5.9	34
21	Visualization of a short-range Wnt gradient in the intestinal stem-cell niche. Nature, 2016, 530, 340-343.	27.8	425
22	Axin cancer mutants form nanoaggregates to rewire the Wnt signaling network. Nature Structural and Molecular Biology, 2016, 23, 324-332.	8.2	31
23	USP7 is essential for maintaining Rad18 stability and DNA damage tolerance. Oncogene, 2016, 35, 965-976.	5.9	65
24	Loss-of-Function Mutations in the WNT Co-receptor LRP6 Cause Autosomal-Dominant Oligodontia. American Journal of Human Genetics, 2015, 97, 621-626.	6.2	93
25	DEP domains: structurally similar but functionally different. Nature Reviews Molecular Cell Biology, 2014, 15, 357-362.	37.0	63
26	Wnt signalling induces accumulation of phosphorylated β-catenin in two distinct cytosolic complexes. Open Biology, 2014, 4, 140120.	3.6	41
27	Stabilization of the Transcription Factor Foxp3 by the Deubiquitinase USP7 Increases Treg-Cell-Suppressive Capacity. Immunity, 2013, 39, 259-271.	14.3	248
28	Canonical Wnt Signaling Negatively Modulates Regulatory T Cell Function. Immunity, 2013, 39, 298-310.	14.3	183
29	Deubiquitination of Dishevelled by Usp14 is required for Wnt signaling. Oncogenesis, 2013, 2, e64-e64.	4.9	90
30	Stochastic machines as a colocalization mechanism for scaffold protein function. FEBS Letters, 2013, 587, 1587-1591.	2.8	40
31	Large Extent of Disorder in Adenomatous Polyposis Coli Offers a Strategy to Guard Wnt Signalling against Point Mutations. PLoS ONE, 2013, 8, e77257.	2.5	46
32	Wnt Signaling through Inhibition of β-Catenin Degradation in an Intact Axin1 Complex. Cell, 2012, 149, 1245-1256.	28.9	747
33	Rac1 acts in conjunction with Nedd4 and Dishevelled-1 to promote maturation of cell-cell contacts. Journal of Cell Science, 2012, 125, 3430-42.	2.0	18
34	Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature, 2012, 488, 665-669.	27.8	791
35	Wnt/β-catenin signaling requires interaction of the Dishevelled DEP domain and C terminus with a discontinuous motif in Frizzled. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E812-20.	7.1	172
36	Determining Biophysical Protein Stability in Lysates by a Fast Proteolysis Assay, FASTpp. PLoS ONE, 2012, 7, e46147.	2.5	33

MADELON M MAURICE

#	Article	IF	CITATIONS
37	Critical Scaffolding Regions of the Tumor Suppressor Axin1 Are Natively Unfolded. Journal of Molecular Biology, 2011, 405, 773-786.	4.2	58
38	Messing up disorder: how do missense mutations in the tumor suppressor protein APC lead to cancer?. Molecular Cancer, 2011, 10, 101.	19.2	140
39	The various roles of ubiquitin in Wnt pathway regulation. Cell Cycle, 2010, 9, 3724-3733.	2.6	74
40	Loss of the Tumor Suppressor CYLD Enhances Wnt/β-Catenin Signaling through K63-Linked Ubiquitination of Dvl. Molecular Cell, 2010, 37, 607-619.	9.7	191
41	Mst4 and Ezrin Induce Brush Borders Downstream of the Lkb1/Strad/Mo25 Polarization Complex. Developmental Cell, 2009, 16, 551-562.	7.0	137
42	Wingless secretion requires endosome-to-Golgi retrieval of Wntless/Evi/Sprinter by the retromer complex. Nature Cell Biology, 2008, 10, 170-177.	10.3	227
43	In vivo role of lipid adducts on Wingless. Journal of Cell Science, 2008, 121, 1587-1592.	2.0	69
44	Proteome Changes Induced by Knock-Down of the Deubiquitylating Enzyme HAUSP/USP7. Journal of Proteome Research, 2007, 6, 4163-4172.	3.7	41
45	Hyperubiquitylation of wild-type p53 contributes to cytoplasmic sequestration in neuroblastoma. Cell Death and Differentiation, 2007, 14, 1350-1360.	11.2	47
46	FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP. Nature Cell Biology, 2006, 8, 1064-1073.	10.3	413
47	Loss of HAUSP-Mediated Deubiquitination Contributes to DNA Damage-Induced Destabilization of Hdmx and Hdm2. Molecular Cell, 2005, 18, 565-576.	9.7	247
48	Loss of HAUSP-Mediated Deubiquitination Contributes to DNA Damage-Induced Destabilization of Hdmx and Hdm2. Molecular Cell, 2005, 19, 143-144.	9.7	0
49	Thymic Selection and Peripheral Activation of CD8 T Cells by the Same Class I MHC/Peptide Complex. Journal of Immunology, 2004, 172, 699-708.	0.8	18
50	Class I negative CD8 T cells reveal the confounding role of peptide-transfer onto CD8 T cells stimulated with soluble H2-Kb molecules. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13735-13740.	7.1	52
51	The ubiquitin–proteasome pathway in thymocyte apoptosis: caspase-dependent processing of the deubiquitinating enzyme USP7 (HAUSP). Molecular Immunology, 2002, 39, 431-441.	2.2	41
52	How antibodies to a ubiquitous cytoplasmic enzyme may provoke joint-specific autoimmune disease. Nature Immunology, 2002, 3, 360-365.	14.5	322
53	Positive selection of an MHC class-I restricted TCR in the absence of classical MHC class I molecules. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 7437-7442.	7.1	35
54	Treatment with monoclonal anti-tumor necrosis factor ? antibody results in an accumulation of Th1 CD4+ T cells in the peripheral blood of patients with rheumatoid arthritis. Arthritis and Rheumatism, 1999, 42, 2166-2173.	6.7	82

MADELON M MAURICE

#	Article	IF	CITATIONS
55	Expression of the thioredoxin-thioredoxin reductase system in the inflamed joints of patients with rheumatoid arthritis. Arthritis and Rheumatism, 1999, 42, 2430-2439.	6.7	110
56	Expression of the thioredoxin–thioredoxin reductase system in the inflamed joints of patients with rheumatoid arthritis. , 1999, 42, 2430.		1
57	Characterization of the hyporesponsiveness of synovial T-cells in rheumatoid arthritis: Role of chronic oxidative stress. Drugs of Today, 1999, 35, 321.	1.1	7
58	CD28 co-stimulation is intact and contributes to prolongedex vivo survival of hyporesponsive synovial fluid T cells in rheumatoid arthritis. European Journal of Immunology, 1998, 28, 1554-1562.	2.9	15
59	Characterization of the hyporesponsiveness of synovial T cells in rheumatoid arthritis: role of chronic oxidative stress. Japanese Journal of Rheumatology, 1998, 8, 347-354.	0.0	Ο
60	Characterization of the hyporesponsiveness of synovial T cells in rheumatoid arthritis: role of chronic oxidative stress. Japanese Journal of Rheumatology, 1998, 8, 347-354.	0.0	0
61	Evidence for the role of an altered redox state in hyporesponsiveness of synovial T cells in rheumatoid arthritis. Journal of Immunology, 1997, 158, 1458-65.	0.8	104
62	Defective TCR-mediated signaling in synovial T cells in rheumatoid arthritis. Journal of Immunology, 1997, 159, 2973-8.	0.8	100
63	Joint-Derived T Cells in Rheumatoid Arthritis Proliferate to Antigens Present in Autologous Synovial Fluid. Scandinavian Journal of Rheumatology, 1995, 24, 169-177.	1.1	19
64	Heterogeneity of the circulating human CD4+ T cell population. Further evidence that the CD4+CD45RA-CD27- T cell subset contains specialized primed T cells. Journal of Immunology, 1995, 154, 17-25.	0.8	83
65	Simultaneous regulation of CD2 adhesion and signaling functions by a novel CD2 monoclonal antibody. Journal of Immunology, 1994, 152, 4425-32.	0.8	18
66	Epsteinâ€Barr virus DNA in Reedâ€Sternberg cells of Hodgkin's disease is frequently associated with CR2 (EBV receptor) expression. Histopathology, 1992, 21, 51-57.	2.9	17