Qing Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9021756/publications.pdf

Version: 2024-02-01

62 papers	1,807 citations	331670 21 h-index	276875 41 g-index
papero		II IIIdox	5 maex
63 all docs	63 docs citations	63 times ranked	2255 citing authors

#	Article	lF	CITATIONS
1	Ultra-high surface area porous carbon from catechol rectification residue with excellent adsorption capacity for various organic pollutants. Separation and Purification Technology, 2022, 284, 120244.	7.9	4
2	In situ synthetic hierarchical porous MIL-53(Cr) as an efficient adsorbent for mesopores-controlled adsorption of tetracycline. Microporous and Mesoporous Materials, 2022, 332, 111667.	4.4	17
3	La/LaF3 co-modified MIL-53(Cr) as an efficient adsorbent for the removal of tetracycline. Journal of Hazardous Materials, 2022, 426, 128112.	12.4	16
4	Stability Mechanism of Low Temperature C ₂ H ₄ â€"SCR with Activated-Carbon-Supported MnO _{<i>x</i>} -Based Catalyst. ACS Omega, 2022, 7, 12004-12014.	3.5	2
5	Alâ€modified Mesoporous SiO ₂ â€matrixâ€supported Uniform CeO ₂ Nanodots with Superior Catalytic Efficiency in DCE Combustion. ChemistrySelect, 2022, 7, .	1.5	1
6	Amino-Functionalized Pore-Expanded MCM-41 for CO ₂ Adsorption: Effect of Alkyl Chain Length of the Template. Industrial & Engineering Chemistry Research, 2022, 61, 9331-9341.	3.7	6
7	Surrogate modeling-based multi-objective optimization for the integrated distillation processes. Chemical Engineering and Processing: Process Intensification, 2021, 159, 108224.	3.6	19
8	Construction of crystal defect sites in UiO-66 for adsorption of dimethyl phthalate and phthalic acid. Microporous and Mesoporous Materials, 2021, 312, 110778.	4.4	22
9	Selective addition of isobutene over ZrSiO4/SiO2-SO3H: Hydroacetoxylation versus dimerization. Catalysis Communications, 2021, 148, 106172.	3.3	3
10	Activated carbon prepared from catechol distillation residue for efficient adsorption of aromatic organic compounds from aqueous solution. Chemosphere, 2021, 269, 128750.	8.2	16
11	Silica-confined Ru highly dispersed on ZrO ₂ with enhanced activity and thermal stability in dichloroethane combustion. Nanoscale, 2021, 13, 10765-10770.	5.6	6
12	Design and Control for the Dimethyl Adipate Process with a Sideâ€Reactor Column Configuration. Chemical Engineering and Technology, 2021, 44, 1716-1725.	1.5	3
13	Role of brush-like additives in CO2 adsorbents for the enhancement of amine efficiency. Journal of Environmental Chemical Engineering, 2021, 9, 106709.	6.7	9
14	High-efficiency treatment of benzaldehyde residue using two-stage fluidized-bed/fixed-bed catalytic system. Environmental Technology (United Kingdom), 2020, 41, 2898-2906.	2.2	3
15	Precise fabrication of surface-reconstructed LaMnO3 perovskite with enhanced catalytic performance in CH4 oxidation. Applied Surface Science, 2020, 505, 144112.	6.1	34
16	Simultaneous shaping and confinement of metal–organic polyhedra in alginate-SiO ₂ spheres. Chemical Communications, 2020, 56, 14833-14836.	4.1	4
17	Mn/Co Redox Cycle Promoted Catalytic Performance of Mesoporous SiO 2 â€Confined Highly Dispersed LaMn x Co 1â€x O 3 Perovskite Oxides in nâ€Butylamine Combustion. ChemistrySelect, 2020, 5, 8504-8511.	1.5	2
18	Study on the Mechanism and Kinetics of Waste Polypropylene Cracking Oxidation over the Mn ₂ O ₃ /HY Catalyst by TG–MS and In Situ FTIR. Industrial & Engineering Chemistry Research, 2020, 59, 16569-16578.	3.7	6

#	Article	IF	Citations
19	MINLP Optimization of Side-Reactor Column Configuration Based upon Improved Bat Algorithm. Industrial & Engineering Chemistry Research, 2020, 59, 5945-5955.	3.7	4
20	Facile improvement of amine dispersion in KIT-1 with the alkyl chains template for enhanced CO2 adsorption capacity. Journal of Solid State Chemistry, 2020, 290, 121531.	2.9	9
21	Selectively Etching Lanthanum to Engineer Surface Cobalt-Enriched LaCoO ₃ Perovskite Catalysts for Toluene Combustion. Industrial & Engineering Chemistry Research, 2020, 59, 10804-10812.	3.7	38
22	Quest for pore size effect on the catalytic property of defect-engineered MOF-808-SO4 in the addition reaction of isobutylene with ethylene glycol. Journal of Solid State Chemistry, 2019, 269, 9-15.	2.9	27
23	Iron-doped mesoporous silica, Fe-MCM-41, as an active Lewis acid catalyst for acidolysis of benzyl chloride with fatty acid. Journal of Porous Materials, 2019, 26, 261-269.	2.6	5
24	Facile construction of non-crystalline ZrO2 as an active yet durable catalyst for methane oxychlorination. Journal of Sol-Gel Science and Technology, 2019, 92, 163-172.	2.4	7
25	Modulating the basicity of Zn-MOF-74 <i>via</i> cation exchange with calcium ions. Dalton Transactions, 2019, 48, 14971-14974.	3.3	24
26	A Simple Strategy To Improve PEI Dispersion on MCM-48 with Long-Alkyl Chains Template for Efficient CO ₂ Adsorption. Industrial & Engineering Chemistry Research, 2019, 58, 10975-10983.	3.7	17
27	Construction of uniform nanodots CeO2 stabilized by porous silica matrix for 1,2-dichloroethane catalytic combustion. Chemical Engineering Journal, 2019, 370, 916-924.	12.7	42
28	A citric acid-assisted deposition strategy to synthesize mesoporous SiO ₂ -confined highly dispersed LaMnO ₃ perovskite nanoparticles for <i>n</i> -butylamine catalytic oxidation. RSC Advances, 2019, 9, 8454-8462.	3.6	12
29	CO ₂ Adsorption over Carbon Aerogels: the Effect of Pore and Surface Properties. ChemistrySelect, 2019, 4, 3161-3168.	1.5	15
30	Enhanced Light Olefin Production in Chloromethane Coupling over Mg/Ca Modified Durable HZSM-5 Catalyst. Industrial & Durable HZSM-5 (Satalyst. Industrial & Durable HZSM-5)	3.7	9
31	Polyethylenimine (PEI)-impregnated resin adsorbent with high efficiency and capacity for CO ₂ capture from flue gas. New Journal of Chemistry, 2019, 43, 18345-18354.	2.8	18
32	Organosilane-Assisted Synthesis of Hierarchical Porous ZSM-5 Zeolite as a Durable Catalyst for Light-Olefins Production from Chloromethane. Industrial & Engineering Chemistry Research, 2018, 57, 446-455.	3.7	25
33	Carbon Aerogels Synthesizd with Cetyltrimethyl Ammonium Bromide (CTAB) as a Catalyst and its Application for CO ₂ Capture. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 155-160.	1.2	5
34	Enhanced catalytic performance for light-olefins production from chloromethane over hierarchical porous ZSM-5 zeolite synthesized by a growth-inhibition strategy. Applied Surface Science, 2018, 435, 945-952.	6.1	33
35	Mesoporous Mn–Ti amorphous oxides: a robust low-temperature NH ₃ -SCR catalyst. Catalysis Science and Technology, 2018, 8, 6396-6406.	4.1	37
36	Rapid CO2 Adsorption over Hierarchical ZSM-5 with Controlled Mesoporosity. Industrial & Engineering Chemistry Research, 2018, 57, 16875-16883.	3.7	16

#	Article	IF	CITATIONS
37	Solvent-Assisted Stepwise Redox Approach To Generate Zeolite NaA-Supported K ₂ O as Strong Base Catalyst for Michael Addition of Ethyl Acrylate with Ethanol. ACS Omega, 2018, 3, 10188-10197.	3.5	3
38	Structure Manipulation of Carbon Aerogels by Managing Solution Concentration of Precursor and Its Application for CO2 Capture. Processes, 2018, 6, 35.	2.8	9
39	Precisely fabricating Ce-O-Ti structure to enhance performance of Ce-Ti based catalysts for selective catalytic reduction of NO with NH3. Chemical Engineering Journal, 2018, 353, 930-939.	12.7	89
40	IS2R: A System for Refining Reverse Top-k Queries. , 2017, , .		2
41	Biogas Upgrading by Capturing CO ₂ in Non-aqueous Phase-Changing Diamine Solutions. Energy &	5.1	31
42	Quest for a structure-property relationship in sulfonated graphene catalysts for the additive esterification of carboxylic acids and olefins. Reaction Kinetics, Mechanisms and Catalysis, 2017, 122, 901-914.	1.7	7
43	Enhanced CO ₂ Adsorption Performance on Hierarchical Porous ZSM-5 Zeolite. Energy &	5.1	68
44	Finding Causality and Responsibility for Probabilistic Reverse Skyline Query Non-Answers., 2017,,.		1
45	CO2 Capture Using Solid Sorbents. , 2017, , 2349-2404.		0
46	Answering why-not and why questions on reverse top-k queries. VLDB Journal, 2016, 25, 867-892.	4.1	20
47	Finding Causality and Responsibility for Probabilistic Reverse Skyline Query Non-Answers. IEEE Transactions on Knowledge and Data Engineering, 2016, 28, 2974-2987.	5.7	6
48	Enhanced Adsorption Efficiency through Materials Design for Direct Air Capture over Supported Polyethylenimine. ChemSusChem, 2016, 9, 2796-2803.	6.8	82
49	Efficient group-by reverse skyline computation. World Wide Web, 2016, 19, 1023-1049.	4.0	4
50	Reverse k -nearest neighbor search in the presence of obstacles. Information Sciences, 2016, 330, 274-292.	6.9	15
51	Synthesis of Fe ₃ O ₄ /Polyacrylonitrile Composite Electrospun Nanofiber Mat for Effective Adsorption of Tetracycline. ACS Applied Materials & Samp; Interfaces, 2015, 7, 14573-14583.	8.0	256
52	CO2 Capture Using Solid Sorbents. , 2015, , 1-56.		2
53	Amine-functionalized low-cost industrial grade multi-walled carbon nanotubes for the capture of carbon dioxide. Journal of Energy Chemistry, 2014, 23, 111-118.	12.9	61
54	On efficient reverse skyline query processing. Expert Systems With Applications, 2014, 41, 3237-3249.	7.6	35

#	Article	IF	CITATIONS
55	Capturing CO ₂ into the Precipitate of a Phase-Changing Solvent after Absorption. Environmental Science & Environmen	10.0	100
56	Carbon Dioxide Capture with Polyethylenimine-Functionalized Industrial-Grade Multiwalled Carbon Nanotubes. Industrial & Engineering Chemistry Research, 2014, 53, 17468-17475.	3.7	39
57	Kinetics Studies of CO ₂ Adsorption/Desorption on Amine-Functionalized Multiwalled Carbon Nanotubes. Industrial & Description on Amine-Functionalized Multiwalled Carbon Nanotubes. Industrial & Description on Amine-Functionalized Multiwalled Carbon Nanotubes.	3.7	147
58	Enhanced Tolerance to Flue Gas Contaminants on Carbon Dioxide Capture Using Amine-Functionalized Multiwalled Carbon Nanotubes. Energy & Energy & 2014, 28, 6494-6501.	5.1	34
59	Adsorption of Carbon Dioxide by MIL-101(Cr): Regeneration Conditions and Influence of Flue Gas Contaminants. Scientific Reports, 2013, 3, 2916.	3.3	170
60	Towards multidimensional subspace skyline analysis. ACM Transactions on Database Systems, 2006, 31, 1335-1381.	2.8	96
61	Simultaneous disposal of acrylic acid (ester) wastewater and residue with high efficiency and low energy consumption., 0, 172, 368-376.		2
62	An effective selective catalytic reduction catalyst contains oxygen bridge for <scp> NO _x </scp> reduction based on low concentration of <scp> C ₃ H ₆ </scp> at mediumâ€low temperatures. International Journal of Energy Research, 0, , .	4.5	1