
Matthew J Morra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9020546/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fate of the nonsteroidal, anti-inflammatory veterinary drug flunixin in agricultural soils and dairy manure. Environmental Science and Pollution Research, 2020, 27, 19746-19753.	5.3	4
2	Association between extracted copper and dissolved organic matter in dairy-manure amended soils. Environmental Pollution, 2019, 246, 1020-1026.	7.5	37
3	Transport of Potential Manure Hormone and Pharmaceutical Contaminants through Intact Soil Columns. Journal of Environmental Quality, 2019, 48, 47-56.	2.0	9
4	Pressurized liquid extraction of six tetracyclines from agricultural soils. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2019, 54, 35-40.	1.5	8
5	Dualâ€guild herbivory disrupts predatorâ€prey interactions in the field. Ecology, 2018, 99, 1089-1098.	3.2	20
6	Bioherbicidal activity of Sinapis alba seed meal extracts. Industrial Crops and Products, 2018, 115, 174-181.	5.2	26
7	Fate of tetracycline antibiotics in dairy manure-amended soils. Environmental Reviews, 2018, 26, 102-112.	4.5	34
8	The Influence of Microneedles on the Percutaneous Penetration of Selected Antihypertensive Agents: Diltiazem Hydrochloride and Perindopril Erbumine. Current Drug Delivery, 2018, 15, 1449-1458.	1.6	11
9	Sinapis alba seed meal as a feedstock for extracting the natural tyrosinase inhibitor 4-hydroxybenzyl alcohol. Industrial Crops and Products, 2018, 124, 505-509.	5.2	6
10	Estrogens: Properties, behaviors, and fate in dairy manure-amended soils. Environmental Reviews, 2017, 25, 452-462.	4.5	22
11	Glycerol hydrogenolysis using a Ni/Ceâ€Mg catalyst for improved ethanol and 1,2â€propanediol selectivities. Canadian Journal of Chemical Engineering, 2017, 95, 1332-1339.	1.7	7
12	Optimization of hydrolysis conditions for release of biopesticides from glucosinolates in Brassica juncea and Sinapis alba seed meal extracts. Industrial Crops and Products, 2017, 97, 354-359.	5.2	26
13	Environmental transport of endogenous dairy manure estrogens. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2017, 52, 817-822.	1.5	2
14	Co-Production of Ethanol and 1,2-Propanediol via Glycerol Hydrogenolysis Using Ni/Ce–Mg Catalysts: Effects of Catalyst Preparation and Reaction Conditions. Catalysts, 2017, 7, 290.	3.5	11
15	The Influence of Solid Microneedles on the Transdermal Delivery of Selected Antiepileptic Drugs. Pharmaceutics, 2016, 8, 33.	4.5	31
16	An ecological risk assessment of pesticides and fish kills in the Sixaola watershed, Costa Rica. Environmental Science and Pollution Research, 2016, 23, 5983-5991.	5.3	20
17	Optimizing the use of Sinapis alba seed meal extracts as a source of thiocyanate (SCNâ^') for the lactoperoxidase system. LWT - Food Science and Technology, 2016, 72, 416-422.	5.2	6
18	Reconstructing the history of mining and remediation in the Coeur d'Alene, Idaho Mining District using lake sediments. Chemosphere, 2015, 134, 319-327.	8.2	9

MATTHEW J MORRA

#	Article	IF	CITATIONS
19	Sinigrin and sinalbin quantification in mustard seed using high performance liquid chromatography–time-of-flight mass spectrometry. Journal of Food Composition and Analysis, 2014, 35, 120-126.	3.9	22
20	Simultaneous Quantification of Sinigrin, Sinalbin, and Anionic Glucosinolate Hydrolysis Products in Brassica juncea and Sinapis alba Seed Extracts Using Ion Chromatography. Journal of Agricultural and Food Chemistry, 2014, 62, 10687-10693.	5.2	31
21	Antioxidant Extraction from Mustard (<i>Brassica juncea</i>) Seed Meal Using Highâ€Intensity Ultrasound. Journal of Food Science, 2013, 78, E542-8.	3.1	59
22	Defatted mustard seed meal-based biopolymer film development. Food Hydrocolloids, 2012, 26, 118-125.	10.7	41
23	Mustard seed meal mixtures: management of Meloidogyne incognita on pepper and potential phytotoxicity. Journal of Nematology, 2011, 43, 7-15.	0.9	14
24	Glucosinolate preservation in stored Brassicaceae seed meals. Journal of Stored Products Research, 2010, 46, 98-102.	2.6	19
25	Selenium Biogeochemical Cycling and Fluxes in the Hyporheic Zone of a Mining-Impacted Stream. Environmental Science & Technology, 2010, 44, 4176-4183.	10.0	20
26	Nitrogen mineralization in soil incubated with 15N-labeled Brassicaceae seed meals. Applied Soil Ecology, 2010, 46, 73-80.	4.3	25
27	Ecology of Sulfateâ€Reducing Bacteria in an Ironâ€Dominated, Miningâ€Impacted Freshwater Sediment. Journal of Environmental Quality, 2009, 38, 675-684.	2.0	8
28	Brassicaceae Tissues as Inhibitors of Nitrification in Soil. Journal of Agricultural and Food Chemistry, 2009, 57, 7706-7711.	5.2	43
29	Pesticide sequestration in passive samplers (SPMDs): considerations for deployment time, biofouling, and stream flow in a tropical watershed. Journal of Environmental Monitoring, 2009, 11, 1866.	2.1	10
30	Seed Meals from Brassicaceae Oilseed Crops as Soil Amendments: Influence on Carrot Growth, Microbial Biomass Nitrogen, and Nitrogen Mineralization. Hortscience: A Publication of the American Society for Hortcultural Science, 2009, 44, 354-361.	1.0	41
31	Depositional Influences on Porewater Arsenic in Sediments of a Mining-Contaminated Freshwater Lake. Environmental Science & Technology, 2008, 42, 6823-6829.	10.0	19
32	Pesticide application practices, pest knowledge, and cost-benefits of plantain production in the Bribri-Cabécar Indigenous Territories, Costa Rica. Environmental Research, 2008, 108, 98-106.	7.5	48
33	Ionic Thiocyanate (SCN ^{â^'}) Production, Fate, and Phytotoxicity in Soil Amended with Brassicaceae Seed Meals. Journal of Agricultural and Food Chemistry, 2008, 56, 3912-3917.	5.2	33
34	Biofumigant Biomass, Nutrient Content, and Glucosinolate Response to Phosphorus. Journal of Plant Nutrition, 2008, 31, 743-757.	1.9	15
35	Imazamethabenz hydrolysis on oxide surfaces at several pH. Journal of Pesticide Sciences, 2008, 33, 376-382.	1.4	3
36	Metal(loid) Diagenesis in Mine-Impacted Sediments of Lake Coeur d'Alene, Idaho. Environmental Science & Technology, 2006, 40, 2537-2543.	10.0	40

MATTHEW J MORRA

#	Article	IF	CITATIONS
37	Ionic Thiocyanate (SCN-) Production from 4-Hydroxybenzyl Glucosinolate Contained inSinapis albaSeed Meal. Journal of Agricultural and Food Chemistry, 2005, 53, 8650-8654.	5.2	86
38	Toxicity of Isothiocyanates Produced by Glucosinolates in Brassicaceae Species to Black Vine Weevil Eggs. Journal of Agricultural and Food Chemistry, 1998, 46, 5318-5323.	5.2	58
39	Control of Soil-Borne Plant Pests Using Glucosinolate-Containing Plants. Advances in Agronomy, 1997, , 167-231.	5.2	448
40	Transformation of the Glucosinolate-Derived Allelochemicals Allyl Isothiocyanate and Allylnitrile in Soil. Journal of Agricultural and Food Chemistry, 1995, 43, 1935-1940.	5.2	104
41	Glucosinolate-containing plant tissues as bioherbicides. Journal of Agricultural and Food Chemistry, 1995, 43, 3070-3074.	5.2	178
42	Allelochemicals Produced during Sinigrin Decomposition in Soil. Journal of Agricultural and Food Chemistry, 1994, 42, 1030-1034.	5.2	68
43	Gas Chromatography of Allelochemicals Produced during Glucosinolate Degradation in Soil. Journal of Agricultural and Food Chemistry, 1994, 42, 2029-2034.	5.2	31
44	Ion chromatographic determination of thiocyanate ion in soils. Journal of Agricultural and Food Chemistry, 1991, 39, 1226-1228.	5.2	9
45	Allelochemicals produced during glucosinolate degradation in soil. Journal of Chemical Ecology, 1991, 17, 2021-2034.	1.8	169