D Yu Borin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9020541/publications.pdf

Version: 2024-02-01

257450 302126 1,872 90 24 39 citations h-index g-index papers 93 93 93 939 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Magneto-mechanical properties of elastic hybrid composites. ChemistrySelect, 2022, 7, 1119-1140.	1.5	5
2	Magneto-elastic coupling as a key to microstructural response of magnetic elastomers with flake-like particles. Soft Matter, 2022, 18, 496-506.	2.7	7
3	FORC analysis of magnetically soft microparticles embedded in a polymeric elastic environment. Journal Physics D: Applied Physics, 2022, 55, 155001.	2.8	2
4	On the shear test of a MR elastomer under magnetic field applied at various angles. Smart Materials and Structures, 2022, 31, 025016.	3.5	5
5	Magnetoresistive and magnetocapacitive effects in magnetic elastomers. SN Applied Sciences, 2022, 4, .	2.9	6
6	Magnetization of magnetoactive elastomers under the assumption of breakable adhesion at the particle/matrix interface. Soft Matter, 2022, 18, 4667-4678.	2.7	1
7	Transient response of magnetorheological fluid on rapid change of magnetic field in shear mode. Scientific Reports, 2022, 12, .	3.3	8
8	Reversible and non-reversible motion of NdFeB-particles in magnetorheological elastomers. Journal of Intelligent Material Systems and Structures, 2021, 32, 3-15.	2.5	15
9	Magnetic Response of Magnetoactive Elastomers with Allowance for Slippage at the Particleâ€Matrix Interfaces. Advanced Theory and Simulations, 2021, 4, 2000327.	2.8	5
10	Magnetoviscosity of a Magnetic Fluid Based on Barium Hexaferrite Nanoplates. Materials, 2021, 14, 1870.	2.9	7
11	Ring-like structures in magnetoactive elastomers based on magnetic hard powder. Smart Materials and Structures, 2021, 30, 015023.	3.5	7
12	Characterization of a magnetic fluid exposed to a shear flow and external magnetic field using small angle laser scattering. Journal of Magnetism and Magnetic Materials, 2020, 497, 165959.	2.3	9
13	Training effect in magnetoactive elastomers due to undermagnetization of magnetically hard filler. Physica B: Condensed Matter, 2020, 578, 411866.	2.7	16
14	Elastic stress in ferrogels with chain aggregates. Journal of Magnetism and Magnetic Materials, 2020, 498, 166126.	2.3	2
15	Internal structures and elastic properties of dense magnetic fluids. Journal of Magnetism and Magnetic Materials, 2020, 498, 166129.	2.3	5
16	Influence of the size of magnetic filler particles on the properties of hybrid magnetic elastomer with magnetically hard filler. Journal of Magnetism and Magnetic Materials, 2020, 498, 166071.	2.3	9
17	Negative coercivity of magnetic elastomers filled with magnetically hard particles. Journal of Magnetism and Magnetic Materials, 2020, 498, 166125.	2.3	10
18	Elastic properties of ferrogels with chain-like structures. Physica A: Statistical Mechanics and Its Applications, 2020, 545, 123723.	2.6	0

#	Article	IF	CITATIONS
19	Mesomagnetomechanics of hybrid elastomer composites: Magnetization of elastically trapped particles. Journal of Magnetism and Magnetic Materials, 2020, 499, 166249.	2.3	8
20	Magnetorheological Effect of Magnetoactive Elastomer with a Permalloy Filler. Polymers, 2020, 12, 2371.	4.5	15
21	Scale-dependent particle diffusivity and apparent viscosity in polymer solutions as probed by dynamic magnetic nanorheology. Soft Matter, 2020, 16, 7562-7575.	2.7	18
22	Internal structures and elastic properties of concentrated magnetorheological fluids. European Physical Journal: Special Topics, 2020, 229, 2967-2979.	2.6	2
23	Targeted patterning of magnetic microparticles in a polymer composite. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190256.	3.4	22
24	Basic magnetic properties of magnetoactive elastomers of mixed content. Smart Materials and Structures, 2020, 29, 075034.	3.5	20
25	Hybrid magnetic elastomers prepared on the basis of a SIEL-grade resin and their magnetic and rheological properties. ChemistrySelect, 2020, .	1.5	7
26	Investigation magnetorheological elastomer elastic deformations under the influence of vibration and electromagnetic load. MATEC Web of Conferences, 2020, 329, 03037.	0.2	0
27	Modeling the magnetomechanical behavior of a multigrain magnetic particle in an elastic environment. Soft Matter, 2019, 15, 4947-4960.	2.7	16
28	On anisotropic mechanical properties of heterogeneous magnetic polymeric composites. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180212.	3.4	15
29	Hybrid magnetoactive elastomer with a soft matrix and mixed powder. Archive of Applied Mechanics, 2019, 89, 105-117.	2.2	43
30	Stress induced by the striction of hybrid magnetoactive elastic composites. Journal of Magnetism and Magnetic Materials, 2019, 470, 85-88.	2.3	21
31	On the theory of hysteretic magnetostriction of soft ferrogels. Physica A: Statistical Mechanics and Its Applications, 2018, 498, 86-95.	2.6	8
32	On the oscillating shear rheometry of magnetorheological elastomers. Rheologica Acta, 2018, 57, 217-227.	2.4	24
33	Dynamic response of a sensor element made of magnetic hybrid elastomer with controllable properties. Journal of Magnetism and Magnetic Materials, 2018, 449, 77-82.	2.3	49
34	Effect of local elasticity of the matrix on magnetization loops of hybrid magnetic elastomers. Journal of Magnetism and Magnetic Materials, 2018, 459, 92-97.	2.3	17
35	Non-ergodic tube structures in magnetic gels and suspensions. Soft Matter, 2018, 14, 8537-8544.	2.7	13
36	Shear Elasticity of Magnetic Gels with Internal Structures. Sensors, 2018, 18, 2054.	3.8	14

#	Article	IF	CITATIONS
37	Magnetic properties of hybrid elastomers with magnetically hard fillers: rotation of particles. Smart Materials and Structures, 2017, 26, 035060.	3.5	42
38	Mobility investigations of magnetic nanoparticles in biocomposites. Materials Chemistry and Physics, 2017, 193, 364-370.	4.0	6
39	To the theory of elastic properties of isotropic magnetic gels. Effect of interparticle interaction. Smart Materials and Structures, 2017, 26, 095028.	3.5	2
40	Magnetoviscous effect in ferrofluids diluted with sheep blood. Journal of Magnetism and Magnetic Materials, 2017, 442, 383-390.	2.3	9
41	Modeling of magnetic hystereses in soft MREs filled with NdFeB particles. Smart Materials and Structures, 2017, 26, 105019.	3.5	56
42	Magnetic field angle dependent hysteresis of a magnetorheological suspension. Journal of Magnetism and Magnetic Materials, 2017, 443, 275-280.	2.3	8
43	Shear elasticity of isotropic magnetic gels. Physical Review E, 2017, 96, 022605.	2.1	10
44	A characterisation of the magnetically induced movement of NdFeB-particles in magnetorheological elastomers. Smart Materials and Structures, 2017, 26, 095018.	3.5	59
45	Hysteresis of ferrogels magnetostriction. Journal of Magnetism and Magnetic Materials, 2017, 431, 120-122.	2.3	12
46	Rotation of magnetic particles inside the polymer matrix of magnetoactive elastomers with a hard magnetic filler. Journal of Magnetism and Magnetic Materials, 2017, 431, 138-140.	2.3	23
47	Motion behaviour of magneto-sensitive elastomers controlled by an external magnetic field for sensor applications. Journal of Magnetism and Magnetic Materials, 2017, 431, 262-265.	2.3	45
48	Initial magnetic susceptibility of the diluted magnetopolymer elastic composites. Journal of Magnetism and Magnetic Materials, 2017, 431, 115-119.	2.3	5
49	Magnetoviscous effect in ferrofluids with different dispersion media. Journal of Magnetism and Magnetic Materials, 2016, 416, 110-116.	2.3	25
50	Hysteresis of the magnetic properties of soft magnetic gels. Soft Matter, 2016, 12, 6473-6480.	2.7	44
51	First-order reversal curve analysis of magnetoactive elastomers. RSC Advances, 2016, 6, 100407-100416.	3.6	51
52	Rheological characterisation and prediction of pumpability of strain-hardening cement-based-composites (SHCC) with and without addition of superabsorbent polymers (SAP) at various temperatures. Construction and Building Materials, 2016, 112, 581-594.	7.2	70
53	Bio-nano composite for remote melting. , 2015, , .		2
54	Effect of particle concentration on ferrogel magnetodeformation. Journal of Magnetism and Magnetic Materials, 2015, 377, 373-377.	2.3	36

#	Article	IF	CITATIONS
55	Elastomer with magneto- and electrorheological properties. Journal of Intelligent Material Systems and Structures, 2015, 26, 1893-1898.	2.5	15
56	Tunable dynamic response of magnetic gels: Impact of structural properties and magnetic fields. Physical Review E, 2014, 90, 042311.	2.1	41
57	Structural control of elastic moduli in ferrogels and the importance of non-affine deformations. Journal of Chemical Physics, 2014, 141, 124904.	3.0	53
58	Mechanical Properties of Magnetoâ€Sensitive Elastomers in a Homogeneous Magnetic Field: Theory and Experiment. Macromolecular Symposia, 2014, 338, 96-107.	0.7	29
59	Advancing Towards Polyurethaneâ€Based Magnetorheological Composites. Advanced Engineering Materials, 2014, 16, 1270-1275.	3. 5	14
60	Magnetoactive elastomer based on magnetically hard filler: Synthesis and study of viscoelastic and damping properties. Polymer Science - Series A, 2014, 56, 603-613.	1.0	43
61	Stress relaxation in a ferrofluid with clustered nanoparticles. Journal of Physics Condensed Matter, 2014, 26, 406002.	1.8	15
62	Application of X-ray radioscopic methods for characterization of two-phase phenomena and solidification processes in metallic melts. European Physical Journal: Special Topics, 2013, 220, 63-77.	2.6	37
63	Hindrance of thermomagnetic convection by the magnetoviscous effect. International Journal of Heat and Mass Transfer, 2013, 60, 499-504.	4.8	17
64	Viscosity of liquid metal suspensions â€" experimental approaches and open issues. European Physical Journal: Special Topics, 2013, 220, 101-110.	2.6	9
65	Tuning the tensile modulus of magnetorheological elastomers with magnetically hard powder. Journal of Physics: Conference Series, 2013, 412, 012040.	0.4	50
66	A comparison between micro- and macro-structure of magnetoactive composites. Journal of Physics: Conference Series, 2013, 412, 012027.	0.4	17
67	Detection of the surface deformation of magneto-active composites using X-ray $\hat{l}\frac{1}{4}$ -tomography. Magnetohydrodynamics, 2013, 49, 494-498.	0.3	2
68	$X\hat{l}$ (CT analysis of magnetic field-induced phase transitions in magnetorheological elastomers. Smart Materials and Structures, 2012, 21, 105018.	3.5	102
69	X-ray micro-tomographic characterization of field-structured magnetorheological elastomers. Smart Materials and Structures, 2012, 21, 015005.	3.5	102
70	The level of cross-linking and the structure of anisotropic magnetorheological elastomers. Journal of Magnetism and Magnetic Materials, 2012, 324, 3452-3454.	2.3	65
71	Synergistic effect in magnetoelectrorheological fluids with a complex dispersed phase. Journal of Intelligent Material Systems and Structures, 2012, 23, 963-967.	2.5	3
72	Anisotropy of the magnetoviscous effect in ferrofluids containing nanoparticles exhibiting magnetic dipole interaction. Journal of Physics Condensed Matter, 2011, 23, 346002.	1.8	15

#	Article	IF	CITATIONS
7 3	SYNERGISTIC EFFECT IN MAGNETOELECTRORHEOLOGICAL FLUIDS WITH A COMPLEX DISPERSED PHASE. , 2011, ,.		0
74	RHEOLOGY OF NOVEL FERROFLUIDS., 2011,,.		0
75	Ferrofluid with clustered iron nanoparticles: Slow relaxation of rheological properties under joint action of shear flow and magnetic field. Journal of Magnetism and Magnetic Materials, 2011, 323, 1273-1277.	2.3	39
76	RHEOLOGY OF NOVEL FERROFLUIDS. International Journal of Modern Physics B, 2011, 25, 963-969.	2.0	10
77	Electrorheological fluids and magnetorheological suspensions. Journal of Physics Condensed Matter, 2010, 22, 320301.	1.8	0
78	Relaxation dynamics of the rheological properties of ferrofluids. Proceedings in Applied Mathematics and Mechanics, 2009, 9, 519-520.	0.2	4
79	Magnetorheological effect of magneto-active elastomers containing large particles. Journal of Physics: Conference Series, 2009, 149, 012098.	0.4	25
80	Rheology of a ferrofluid based on nanodisc cobalt particles. Journal Physics D: Applied Physics, 2009, 42, 205004.	2.8	30
81	Magnetic measurements on frozen ferrofluids as a method for estimating the magnetoviscous effect. Journal of Physics Condensed Matter, 2009, 21, 246002.	1.8	21
82	Positioning magnetorheological actuator. Journal of Physics: Conference Series, 2009, 149, 012075.	0.4	2
83	Usage of magneto-active elastomers in a bumper of a vehicle for front impact protection. Journal of Physics: Conference Series, 2009, 149, 012089.	0.4	8
84	Thermomagnetic convection influenced by the magnetoviscous effect. Journal of Physics: Conference Series, 2009, 149, 012105.	0.4	14
85	Influence of magnetic field on the rheological properties of liquid GalnSn alloy. Proceedings in Applied Mathematics and Mechanics, 2008, 8, 10943-10944.	0.2	0
86	Motion of ferroparticles inside the polymeric matrix in magnetoactive elastomers. Journal of Physics Condensed Matter, 2008, 20, 204121.	1.8	139
87	The damping device based on magnetoactive elastomer. Magnetohydrodynamics, 2007, 43, 437-444.	0.3	6
88	Magnetic Properties of Frozen Magneto-Active Elastomers. Solid State Phenomena, 0, 152-153, 190-193.	0.3	4
89	Surface influence on the stationary shear deformation of a magnetorheological fluid. European Physical Journal: Special Topics, 0 , 1 .	2.6	3
90	Magnetorheological effect in dense magnetic polymers. European Physical Journal: Special Topics, 0, , 1.	2.6	1