
Gabor G Kovacs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9020275/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathologica, 2014, 128, 755-766.	7.7	1,060
2	Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain, 2019, 142, 1503-1527.	7.6	873
3	Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathologica, 2010, 119, 1-4.	7.7	854
4	Structure-based classification of tauopathies. Nature, 2021, 598, 359-363.	27.8	409
5	Invited review: Neuropathology of tauopathies: principles and practice. Neuropathology and Applied Neurobiology, 2015, 41, 3-23.	3.2	405
6	Genetic prion disease: the EUROCJD experience. Human Genetics, 2005, 118, 166-174.	3.8	391
7	Aging-related tau astrogliopathy (ARTAG): harmonized evaluation strategy. Acta Neuropathologica, 2016, 131, 87-102.	7.7	380
8	Nomenclature for neuropathologic subtypes of frontotemporal lobar degeneration: consensus recommendations. Acta Neuropathologica, 2009, 117, 15-18.	7.7	377
9	Staging of Neurofibrillary Pathology in Alzheimer's Disease: A Study of the BrainNet Europe Consortium. Brain Pathology, 2008, 18, 484-496.	4.1	361
10	Multiple sclerosis deep grey matter: the relation between demyelination, neurodegeneration, inflammation and iron. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 1386-1395.	1.9	280
11	Non-Alzheimer neurodegenerative pathologies and their combinations are more frequent than commonly believed in the elderly brain: a community-based autopsy series. Acta Neuropathologica, 2013, 126, 365-384.	7.7	264
12	Recombinant prion protein induces a new transmissible prion disease in wild-type animals. Acta Neuropathologica, 2010, 119, 177-187.	7.7	256
13	Mutations of the Prion Protein Gene. Journal of Neurology, 2002, 249, 1567-1582.	3.6	251
14	Staging/typing of Lewy body related α-synuclein pathology: a study of the BrainNet Europe Consortium. Acta Neuropathologica, 2009, 117, 635-652.	7.7	249
15	A Panâ€ <scp>E</scp> uropean Study of the <i>C9orf72</i> Repeat Associated with <scp>FTLD</scp> : Geographic Prevalence, Genomic Instability, and Intermediate Repeats. Human Mutation, 2013, 34, 363-373.	2.5	247
16	Prevalence of mixed pathologies in the aging brain. Alzheimer's Research and Therapy, 2014, 6, 82.	6.2	232
17	Cryo-EM structures of amyloid- \hat{l}^2 42 filaments from human brains. Science, 2022, 375, 167-172.	12.6	228
18	Molecular Pathological Classification of Neurodegenerative Diseases: Turning towards Precision Medicine. International Journal of Molecular Sciences, 2016, 17, 189.	4.1	223

2

#	Article	IF	CITATIONS
19	A walk through tau therapeutic strategies. Acta Neuropathologica Communications, 2019, 7, 22.	5.2	211
20	Distribution patterns of tau pathology in progressive supranuclear palsy. Acta Neuropathologica, 2020, 140, 99-119.	7.7	210
21	Consensus classification of human prion disease histotypes allows reliable identification of molecular subtypes: an inter-rater study among surveillance centres in Europe and USA. Acta Neuropathologica, 2012, 124, 517-529.	7.7	184
22	<i>TARDBP</i> variation associated with frontotemporal dementia, supranuclear gaze palsy, and chorea. Movement Disorders, 2009, 24, 1842-1847.	3.9	182
23	Peroxisomal alterations in Alzheimer's disease. Acta Neuropathologica, 2011, 122, 271-283.	7.7	176
24	Glial and Neuronal Tau Pathology in Tauopathies. Journal of Neuropathology and Experimental Neurology, 2014, 73, 81-97.	1.7	174
25	Neuropathological criteria of anti-IgLON5-related tauopathy. Acta Neuropathologica, 2016, 132, 531-543.	7.7	173
26	Globular glial tauopathies (GGT): consensus recommendations. Acta Neuropathologica, 2013, 126, 537-544.	7.7	168
27	Tauopathies. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 145, 355-368.	1.8	156
28	Biomarkers and diagnostic guidelines for sporadic Creutzfeldt-Jakob disease. Lancet Neurology, The, 2021, 20, 235-246.	10.2	151
29	Mixed Brain Pathologies in Dementia: The BrainNet Europe Consortium Experience. Dementia and Geriatric Cognitive Disorders, 2008, 26, 343-350.	1.5	148
30	Assessment of β-amyloid deposits in human brain: a study of the BrainNet Europe Consortium. Acta Neuropathologica, 2009, 117, 309-320.	7.7	143
31	Four-repeat tauopathies. Progress in Neurobiology, 2019, 180, 101644.	5.7	141
32	Natively unfolded tubulin polymerization promoting protein TPPP/p25 is a common marker of alpha-synucleinopathies. Neurobiology of Disease, 2004, 17, 155-162.	4.4	140
33	PART, a distinct tauopathy, different from classical sporadic Alzheimer disease. Acta Neuropathologica, 2015, 129, 757-762.	7.7	139
34	An antibody with high reactivity for disease-associated α-synuclein reveals extensive brain pathology. Acta Neuropathologica, 2012, 124, 37-50.	7.7	133
35	Molecular pathology of neurodegenerative diseases: principles and practice. Journal of Clinical Pathology, 2019, 72, 725-735.	2.0	130
36	Hippocampal Radial Glial Subtypes and Their Neurogenic Potential in Human Fetuses and Healthy and Alzheimer's Disease Adults. Cerebral Cortex, 2018, 28, 2458-2478.	2.9	128

#	Article	IF	CITATIONS
37	Prion Diseases: From Protein to Cell Pathology. American Journal of Pathology, 2008, 172, 555-565.	3.8	126
38	Non-Alzheimer's contributions to dementia and cognitive resilience in The 90+ Study. Acta Neuropathologica, 2018, 136, 377-388.	7.7	112
39	White Matter Tauopathy With Globular Glial Inclusions: A Distinct Sporadic Frontotemporal Lobar Degeneration. Journal of Neuropathology and Experimental Neurology, 2008, 67, 963-975.	1.7	111
40	Intracellular processing of disease-associated α-synuclein in the human brain suggests prion-like cell-to-cell spread. Neurobiology of Disease, 2014, 69, 76-92.	4.4	110
41	Concepts and classification of neurodegenerative diseases. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 145, 301-307.	1.8	109
42	Correlation of striatal dopamine transporter imaging with post mortem substantia nigra cell counts. Movement Disorders, 2014, 29, 1767-1773.	3.9	108
43	Microglia control the spread of neurotropic virus infection via P2Y12 signalling and recruit monocytes through P2Y12-independent mechanisms. Acta Neuropathologica, 2018, 136, 461-482.	7.7	108
44	Astrogliopathy predominates the earliest stage of corticobasal degeneration pathology. Brain, 2016, 139, 3237-3252.	7.6	107
45	Neuropathological consensus criteria for the evaluation of Lewy pathology in post-mortem brains: a multi-centre study. Acta Neuropathologica, 2021, 141, 159-172.	7.7	107
46	Genetic Creutzfeldt-Jakob disease associated with the E200K mutation: characterization of a complex proteinopathy. Acta Neuropathologica, 2011, 121, 39-57.	7.7	105
47	Distinct Patterns of Sirtuin Expression During Progression of Alzheimer's Disease. NeuroMolecular Medicine, 2014, 16, 405-414.	3.4	105
48	Management of a twenty-first century brain bank: experience in the BrainNet Europe consortium. Acta Neuropathologica, 2008, 115, 497-507.	7.7	101
49	Post-mortem assessment in vascular dementia: advances and aspirations. BMC Medicine, 2016, 14, 129.	5.5	99
50	Protein coding of neurodegenerative dementias: the neuropathological basis of biomarker diagnostics. Acta Neuropathologica, 2010, 119, 389-408.	7.7	98
51	Genesis of Mammalian Prions: From Non-infectious Amyloid Fibrils to a Transmissible Prion Disease. PLoS Pathogens, 2011, 7, e1002419.	4.7	98
52	Evaluating the Patterns of Aging-Related Tau Astrogliopathy Unravels Novel Insights Into Brain Aging and Neurodegenerative Diseases. Journal of Neuropathology and Experimental Neurology, 2017, 76, 270-288.	1.7	98
53	Neuropathology of white matter disease in Leber's hereditary optic neuropathy. Brain, 2004, 128, 35-41.	7.6	96
54	Immunohistochemistry for the Prion Protein: Comparison of Different Monoclonal Antibodies in Human Prion Disease Subtypes. Brain Pathology, 2002, 12, 1-11.	4.1	96

#	Article	IF	CITATIONS
55	Interlaboratory Comparison of Assessments of Alzheimer Disease-Related Lesions: A Study of the BrainNet Europe Consortium. Journal of Neuropathology and Experimental Neurology, 2006, 65, 740-757.	1.7	95
56	Risk of Alzheimer's Disease Biological Misdiagnosis Linked to Cerebrospinal Collection Tubes. Journal of Alzheimer's Disease, 2012, 31, 13-20.	2.6	94
57	Rare mutations in SQSTM1 modify susceptibility to frontotemporal lobar degeneration. Acta Neuropathologica, 2014, 128, 397-410.	7.7	93
58	Amyloid-β pathology and cerebral amyloid angiopathy are frequent in iatrogenic Creutzfeldt-Jakob disease after dural grafting. Swiss Medical Weekly, 2016, 146, w14287.	1.6	89
59	Age-dependent formation of TMEM106B amyloid filaments in human brains. Nature, 2022, 605, 310-314.	27.8	88
60	<i>TBK1</i> Mutation Spectrum in an Extended European Patient Cohort with Frontotemporal Dementia and Amyotrophic Lateral Sclerosis. Human Mutation, 2017, 38, 297-309.	2.5	87
61	αâ€5ynuclein RTâ€QuIC assay in cerebrospinal fluid of patients with dementia with Lewy bodies. Annals of Clinical and Translational Neurology, 2019, 6, 2120-2126.	3.7	87
62	Inter-laboratory comparison of neuropathological assessments of β-amyloid protein: a study of the BrainNet Europe consortium. Acta Neuropathologica, 2008, 115, 533-546.	7.7	86
63	Olfactory Receptors in Non-Chemosensory Organs: The Nervous System in Health and Disease. Frontiers in Aging Neuroscience, 2016, 8, 163.	3.4	86
64	Dura mater is a potential source of $A^{\hat{l}2}$ seeds. Acta Neuropathologica, 2016, 131, 911-923.	7.7	85
65	A peculiar constellation of tau pathology defines a subset of dementia in the elderly. Acta Neuropathologica, 2011, 122, 205-222.	7.7	80
66	Subcellular Localization of Disease-Associated Prion Protein in the Human Brain. American Journal of Pathology, 2005, 166, 287-294.	3.8	77
67	Sequential stages and distribution patterns of aging-related tau astrogliopathy (ARTAG) in the human brain. Acta Neuropathologica Communications, 2018, 6, 50.	5.2	77
68	Impaired myelination of the human hippocampal formation in Down syndrome. International Journal of Developmental Neuroscience, 2012, 30, 147-158.	1.6	75
69	Assessment of α-Synuclein Pathology: A Study of the BrainNet Europe Consortium. Journal of Neuropathology and Experimental Neurology, 2008, 67, 125-143.	1.7	73
70	Molecular Pathology of Human Prion Diseases. International Journal of Molecular Sciences, 2009, 10, 976-999.	4.1	73
71	Astroglia and Tau: New Perspectives. Frontiers in Aging Neuroscience, 2020, 12, 96.	3.4	73
72	A New Mechanism for Transmissible Prion Diseases. Journal of Neuroscience, 2012, 32, 7345-7355.	3.6	72

#	Article	IF	CITATIONS
73	Dopamine transporter imaging in autopsyâ€eonfirmed Parkinson's disease and multiple system atrophy. Movement Disorders, 2012, 27, 65-71.	3.9	72
74	Endonuclease G mediates α-synuclein cytotoxicity during Parkinson's disease. EMBO Journal, 2013, 32, 3041-3054.	7.8	71
75	Plasma and cerebrospinal fluid tau and neurofilament concentrations in rapidly progressive neurological syndromes: a neuropathologyâ€based cohort. European Journal of Neurology, 2017, 24, 1326.	3.3	71
76	Endocannabinoids modulate cortical development by configuring Slit2/Robo1 signalling. Nature Communications, 2014, 5, 4421.	12.8	70
77	Beyond the synucleinopathies: alpha synuclein as a driving force in neurodegenerative comorbidities. Translational Neurodegeneration, 2019, 8, 28.	8.0	70
78	Nucleus-specific alteration of raphe neurons in human neurodegenerative disorders. NeuroReport, 2003, 14, 73-76.	1.2	69
79	Association of Cerebrospinal Fluid Prion Protein Levels and the Distinction Between Alzheimer Disease and Creutzfeldt-Jakob Disease. JAMA Neurology, 2015, 72, 267.	9.0	69
80	Developmental Expression and Dysregulation of miR-146a and miR-155 in Down's Syndrome and Mouse Models of Down's Syndrome and Alzheimer's Disease. Current Alzheimer Research, 2017, 14, 1305-1317.	1.4	69
81	Complement activation in human prion disease. Neurobiology of Disease, 2004, 15, 21-28.	4.4	68
82	Involvement of the Endosomal-Lysosomal System Correlates With Regional Pathology in Creutzfeldt-Jakob Disease. Journal of Neuropathology and Experimental Neurology, 2007, 66, 628-636.	1.7	68
83	Fatal Prion Disease in a Mouse Model of Genetic E200K Creutzfeldt-Jakob Disease. PLoS Pathogens, 2011, 7, e1002350.	4.7	68
84	Protein astrogliopathies in human neurodegenerative diseases and aging. Brain Pathology, 2017, 27, 675-690.	4.1	68
85	Current concepts of neuropathological diagnostics in practice: neurodegenerative diseases. , 2010, 29, 271-288.		68
86	Frequency of LATE neuropathologic change across the spectrum of Alzheimer's disease neuropathology: combined data from 13 community-based or population-based autopsy cohorts. Acta Neuropathologica, 2022, 144, 27-44.	7.7	67
87	mTOR Hyperactivation in Down Syndrome Hippocampus Appears Early During Development. Journal of Neuropathology and Experimental Neurology, 2014, 73, 671-683.	1.7	66
88	The brain-specific protein TPPP/p25 in pathological protein deposits of neurodegenerative diseases. Acta Neuropathologica, 2007, 113, 153-161.	7.7	65
89	ADEM-like presentation, anti-MOG antibodies, and MS pathology: TWO case reports. Neurology: Neuroimmunology and NeuroInflammation, 2017, 4, e335.	6.0	65
90	Tubulin polymerization promoting protein (TPPP/p25) as a marker for oligodendroglial changes in multiple sclerosis. Glia, 2010, 58, 1847-1857.	4.9	61

#	Article	IF	CITATIONS
91	Tau pathology in Creutzfeldtâ€Jakob disease revisited. Brain Pathology, 2017, 27, 332-344.	4.1	61
92	Increased glucose metabolism and ATP level in brain tissue of Huntington's disease transgenic mice. FEBS Journal, 2008, 275, 4740-4755.	4.7	60
93	Differential overexpression of SERPINA3 in human prion diseases. Scientific Reports, 2017, 7, 15637.	3.3	58
94	The need to unify neuropathological assessments of vascular alterations in the ageing brain. Experimental Gerontology, 2012, 47, 825-833.	2.8	57
95	17q21.31 duplication causes prominent tau-related dementia with increased MAPT expression. Molecular Psychiatry, 2017, 22, 1119-1125.	7.9	57
96	TPPP/p25: from unfolded protein to misfolding disease: prediction and experiments. Biology of the Cell, 2004, 96, 701-711.	2.0	56
97	Linking pathways in the developing and aging brain with neurodegeneration. Neuroscience, 2014, 269, 152-172.	2.3	56
98	Neuropathology of the hippocampus in FTLDâ€₹au with Pick bodies: a study of the BrainNet Europe Consortium. Neuropathology and Applied Neurobiology, 2013, 39, 166-178.	3.2	54
99	Heroin abuse exaggerates age-related deposition of hyperphosphorylated tau and p62-positive inclusions. Neurobiology of Aging, 2015, 36, 3100-3107.	3.1	54
100	Nigral burden of αâ€ s ynuclein correlates with striatal dopamine deficit. Movement Disorders, 2008, 23, 1608-1612.	3.9	53
101	MAPT S305I mutation: implications for argyrophilic grain disease. Acta Neuropathologica, 2008, 116, 103-118.	7.7	52
102	Layer-specific activity of tissue non-specific alkaline phosphatase in the human neocortex. Neuroscience, 2011, 172, 406-418.	2.3	51
103	Stabilization of a Prion Strain of Synthetic Origin Requires Multiple Serial Passages. Journal of Biological Chemistry, 2012, 287, 30205-30214.	3.4	51
104	Cerebrospinal Fluid Collection Tubes: A Critical Issue for Alzheimer Disease Diagnosis. Clinical Chemistry, 2012, 58, 787-789.	3.2	50
105	Co-aggregation of pro-inflammatory S100A9 with α-synuclein in Parkinson's disease: ex vivo and in vitro studies. Journal of Neuroinflammation, 2018, 15, 172.	7.2	50
106	How a neuropsychiatric brain bank should be run: a consensus paper of Brainnet Europe II. Journal of Neural Transmission, 2007, 114, 527-537.	2.8	49
107	Intensity of human prion disease surveillance predicts observed disease incidence. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 1372-1377.	1.9	49
108	Disease-Associated Prion Protein in Vessel Walls. American Journal of Pathology, 2002, 161, 1979-1984.	3.8	47

#	Article	IF	CITATIONS
109	Creutzfeldt–Jakob disease and inclusion body myositis: Abundant diseaseâ€associated prion protein in muscle. Annals of Neurology, 2004, 55, 121-125.	5.3	47
110	Excretion of Transmissible Spongiform Encephalopathy Infectivity in Urine. Emerging Infectious Diseases, 2008, 14, 1406-1412.	4.3	46
111	Curcumin Labeling of Neuronal Fibrillar Tau Inclusions in Human Brain Samples. Journal of Neuropathology and Experimental Neurology, 2010, 69, 405-414.	1.7	46
112	The prion protein in human neurodegenerative disorders. Neuroscience Letters, 2002, 329, 269-272.	2.1	44
113	Mitochondrial diseases. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 145, 147-155.	1.8	44
114	Neuronal intranuclear (hyaline) inclusion disease and fragile X-associated tremor/ataxia syndrome: a morphological and molecular dilemma. Brain, 2017, 140, e51-e51.	7.6	43
115	Chronic Traumatic Encephalopathy (CTE) Is Absent From a European Community-Based Aging Cohort While Cortical Aging-Related Tau Astrogliopathy (ARTAG) Is Highly Prevalent. Journal of Neuropathology and Experimental Neurology, 2019, 78, 398-405.	1.7	43
116	Clinicopathological phenotype of codon 129 valine homozygote sporadic Creutzfeldt-Jakob disease. Neuropathology and Applied Neurobiology, 2000, 26, 463-472.	3.2	42
117	Identification of novel risk loci and causal insights for sporadic Creutzfeldt-Jakob disease: a genome-wide association study. Lancet Neurology, The, 2020, 19, 840-848.	10.2	42
118	Cross-seeding of prions by aggregated α-synuclein leads to transmissible spongiform encephalopathy. PLoS Pathogens, 2017, 13, e1006563.	4.7	42
119	Alpha-synuclein seeding shows a wide heterogeneity in multiple system atrophy. Translational Neurodegeneration, 2022, 11, 7.	8.0	42
120	Visualization of neuritic plaques in Alzheimer's disease by polarization-sensitive optical coherence microscopy. Scientific Reports, 2017, 7, 43477.	3.3	41
121	Genetic Creutzfeldt–Jakob disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 153, 219-242.	1.8	41
122	Evolving concepts in progressive supranuclear palsy and other 4-repeat tauopathies. Nature Reviews Neurology, 2021, 17, 601-620.	10.1	41
123	New classification of tauopathies. Revue Neurologique, 2018, 174, 664-668.	1.5	39
124	CpG and non-CpG Presenilin1 methylation pattern in course of neurodevelopment and neurodegeneration is associated with gene expression in human and murine brain. Epigenetics, 2020, 15, 781-799.	2.7	39
125	Damage of serotonergic axons and immunolocalization of Hsp27, Hsp72, and Hsp90 molecular chaperones after a single dose of MDMA administration in Dark Agouti rat: Temporal, spatial, and cellular patterns. Journal of Comparative Neurology, 2006, 497, 251-269.	1.6	38
126	Multisite Assessment of Aging-Related Tau Astrogliopathy (ARTAG). Journal of Neuropathology and Experimental Neurology, 2017, 76, 605-619.	1.7	38

#	Article	IF	CITATIONS
127	S100A9-Driven Amyloid-Neuroinflammatory Cascade in Traumatic Brain Injury as a Precursor State for Alzheimer's Disease. Scientific Reports, 2018, 8, 12836.	3.3	38
128	Neuronal intranuclear inclusion disease is genetically heterogeneous. Annals of Clinical and Translational Neurology, 2020, 7, 1716-1725.	3.7	38
129	Validation of the Movement Disorder Society Criteria for the Diagnosis of 4â€Repeat Tauopathies. Movement Disorders, 2020, 35, 171-176.	3.9	37
130	Heroin Abuse Is Characterized by Discrete Mesolimbic Dopamine and Opioid Abnormalities and Exaggerated Nuclear Receptor-Related 1 Transcriptional Decline with Age. Journal of Neuroscience, 2007, 27, 13371-13375.	3.6	36
131	[125I]SD-7015 reveals fine modalities of CB1 cannabinoid receptor density in the prefrontal cortex during progression of Alzheimer's disease. Neurochemistry International, 2012, 60, 286-291.	3.8	36
132	N-truncated Abeta starting with position four: early intraneuronal accumulation and rescue of toxicity using NT4X-167, a novel monoclonal antibody. Acta Neuropathologica Communications, 2013, 1, 56.	5.2	36
133	Critical role of somatostatin receptor 2 in the vulnerability of the central noradrenergic system: new aspects on Alzheimer's disease. Acta Neuropathologica, 2015, 129, 541-563.	7.7	36
134	Asymmetry of neurodegenerative disease-related pathologies: a cautionary note. Acta Neuropathologica, 2012, 123, 449-452.	7.7	35
135	Shared and Distinct Patterns of Oligodendroglial Response in α-Synucleinopathies and Tauopathies. Journal of Neuropathology and Experimental Neurology, 2016, 75, 1100-1109.	1.7	35
136	GABA _A receptor subunits in the human amygdala and hippocampus: Immunohistochemical distribution of 7 subunits. Journal of Comparative Neurology, 2018, 526, 324-348.	1.6	35
137	Early Selective Vulnerability of the CA2 Hippocampal Subfield in Primary Age-Related Tauopathy. Journal of Neuropathology and Experimental Neurology, 2021, 80, 102-111.	1.7	35
138	Neuropathological Variability within a Spectrum of <scp>NMDAR</scp> â€Encephalitis. Annals of Neurology, 2021, 90, 725-737.	5.3	35
139	Unclassifiable tauopathy associated with an A152T variation in MAPT exon 7. , 2011, 30, 3-10.		35
140	Interaction of TPPP/p25 protein with glyceraldehyde-3-phosphate dehydrogenase and their co-localization in Lewy bodies. FEBS Letters, 2006, 580, 5807-5814.	2.8	34
141	Prominent oligodendroglial response in surgical specimens of patients with temporal lobe epilepsy. , 2012, 31, 409-417.		34
142	Tau deposition patterns are associated with functional connectivity in primary tauopathies. Nature Communications, 2022, 13, 1362.	12.8	34
143	Predictors of cognitive impairment in primary age-related tauopathy: an autopsy study. Acta Neuropathologica Communications, 2021, 9, 134.	5.2	32
144	Classification of diseases with accumulation of Tau protein. Neuropathology and Applied Neurobiology, 2022, 48, .	3.2	32

#	Article	IF	CITATIONS
145	Neuropeptide S- and Neuropeptide S receptor-expressing neuron populations in the human pons. Frontiers in Neuroanatomy, 2015, 9, 126.	1.7	31
146	Ultrastructural Characteristics (or Evaluation) of Creutzfeldt-Jakob Disease and Other Human Transmissible Spongiform Encephalopathies or Prion Diseases. Ultrastructural Pathology, 2010, 34, 351-361.	0.9	30
147	Nonâ€neuronal cell responses differ between normal and Down syndrome developing brains. International Journal of Developmental Neuroscience, 2013, 31, 796-803.	1.6	30
148	Are comorbidities compatible with a molecular pathological classification of neurodegenerative diseases?. Current Opinion in Neurology, 2019, 32, 279-291.	3.6	30
149	Prominent Stress Response of Purkinje Cells in Creutzfeldt–Jakob Disease. Neurobiology of Disease, 2001, 8, 881-889.	4.4	29
150	β-CIT SPECT demonstrates reduced availability of serotonin transporters in patients with Fatal Familial Insomnia. Journal of Neural Transmission, 2002, 109, 1105-1110.	2.8	29
151	Deposition of C-terminally truncated Aβ species Aβ37 and Aβ39 in Alzheimer's disease and transgenic mouse models. Acta Neuropathologica Communications, 2016, 4, 24.	5.2	29
152	Novel AARS2 gene mutation producing leukodystrophy: a case report. Journal of Human Genetics, 2017, 62, 329-333.	2.3	29
153	Connexinâ€43 and aquaporinâ€4 are markers of ageingâ€related tau astrogliopathy (ARTAC)â€related astroglial response. Neuropathology and Applied Neurobiology, 2018, 44, 491-505.	3.2	29
154	TPPP/p25 in brain tumours: expression in non-neoplastic oligodendrocytes but not in oligodendroglioma cells. Acta Neuropathologica, 2007, 113, 213-215.	7.7	28
155	Patterns of Hippocampal Tau Pathology Differentiate Neurodegenerative Dementias. Dementia and Geriatric Cognitive Disorders, 2014, 38, 375-388.	1.5	28
156	A Genome Wide Association Study Links Glutamate Receptor Pathway to Sporadic Creutzfeldt-Jakob Disease Risk. PLoS ONE, 2015, 10, e0123654.	2.5	28
157	Single dose of MDMA causes extensive decrement of serotoninergic fibre density without blockage of the fast axonal transport in Dark Agouti rat brain and spinal cord. Neuropathology and Applied Neurobiology, 2007, 33, 193-203.	3.2	27
158	Secretagogin-dependent matrix metalloprotease-2 release from neurons regulates neuroblast migration. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2006-E2015.	7.1	27
159	New lexicon and criteria for the diagnosis of Alzheimer's disease. Lancet Neurology, The, 2011, 10, 298-299.	10.2	26
160	Atypical and Classical Forms of the Disease-Associated State of the Prion Protein Exhibit Distinct Neuronal Tropism, Deposition Patterns, and Lesion Profiles. American Journal of Pathology, 2013, 183, 1539-1547.	3.8	26
161	Clinicopathological description of two cases with <i>SQSTM1</i> gene mutation associated with frontotemporal dementia. Neuropathology, 2016, 36, 27-38.	1.2	26
162	Prediction of Autopsy Verified Neuropathological Change of Alzheimer's Disease Using Machine Learning and MRI. Frontiers in Aging Neuroscience, 2018, 10, 406.	3.4	26

#	Article	IF	CITATIONS
163	Hemoglobin mRNA Changes in the Frontal Cortex of Patients with Neurodegenerative Diseases. Frontiers in Neuroscience, 2018, 12, 8.	2.8	26
164	Distinctive cerebellar immunoreactivity for the prion protein in familial (E200K) Creutzfeldt-Jakob disease. Acta Neuropathologica, 2003, 105, 449-454.	7.7	25
165	Subcellular Distribution of Components of the Ubiquitin-Proteasome System in Non-diseased Human and Rat Brain. Journal of Histochemistry and Cytochemistry, 2006, 54, 263-267.	2.5	25
166	FTLD-TDP with motor neuron disease, visuospatial impairment and a progressive supranuclear palsy-like syndrome: broadening the clinical phenotype of TDP-43 proteinopathies. A report of three cases. BMC Neurology, 2011, 11, 50.	1.8	25
167	Genetic Creutzfeldt–Jakob disease with R208H mutation presenting as progressive supranuclear palsy. Movement Disorders, 2012, 27, 476-479.	3.9	25
168	Neuropathological assessments of the pathology in frontotemporal lobar degeneration with TDP43-positive inclusions: an inter-laboratory study by the BrainNet Europe consortium. Journal of Neural Transmission, 2015, 122, 957-972.	2.8	25
169	Prevalence of transactive response DNAâ€binding protein 43 (TDPâ€43) proteinopathy in cognitively normal older adults: systematic review and metaâ€analysis. Neuropathology and Applied Neurobiology, 2018, 44, 286-297.	3.2	25
170	Corticobasal degeneration. International Review of Neurobiology, 2019, 149, 87-136.	2.0	24
171	Metabotropic Glutamate Receptor 5 in Down's Syndrome Hippocampus During Development: Increased Expression in Astrocytes. Current Alzheimer Research, 2014, 11, 694-705.	1.4	24
172	Health professions and risk of sporadic Creutzfeldt–Jakob disease, 1965 to 2010. Eurosurveillance, 2012, 17, .	7.0	24
173	Prion disease with a 144 base pair insertion: unusual cerebellar prion protein immunoreactivity. Acta Neuropathologica, 2005, 110, 513-519.	7.7	23
174	Dopamine D2 receptor SPECT in corticobasal syndrome and autopsy-confirmed corticobasal degeneration. Parkinsonism and Related Disorders, 2013, 19, 222-226.	2.2	23
175	Protein kinase CÎ ³ antibodies and paraneoplastic cerebellar degeneration. Journal of Neuroimmunology, 2013, 256, 91-93.	2.3	23
176	Oligodendroglial Response in the Spinal Cord in TDP-43 Proteinopathy with Motor Neuron Involvement. Neurodegenerative Diseases, 2014, 14, 117-124.	1.4	23
177	A case of variably protease-sensitive prionopathy treated with doxycyclin. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 816-818.	1.9	23
178	Progressive Dopamine Transporter Binding Loss in Autopsy-Confirmed Corticobasal Degeneration. Journal of Parkinson's Disease, 2015, 5, 907-912.	2.8	22
179	Screening for α-synuclein immunoreactive neuronal inclusions in the hippocampus allows identification of atypical MSA (FTLD-synuclein). Acta Neuropathologica, 2015, 130, 299-301.	7.7	22
180	The physiological phosphorylation of tau is critically changed in fetal brains of individuals with Down syndrome. Neuropathology and Applied Neurobiology, 2018, 44, 314-327.	3.2	22

#	Article	IF	CITATIONS
181	Cellular reactions of the central nervous system. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 145, 13-23.	1.8	22
182	Identification of odors, faces, cities and naming of objects in patients with subjective cognitive decline, mild cognitive impairment and Alzheimer´s disease: a longitudinal study. International Psychogeriatrics, 2019, 31, 537-549.	1.0	22
183	Current Concepts of Mixed Pathologies in Neurodegenerative Diseases. Canadian Journal of Neurological Sciences, 2023, 50, 329-345.	0.5	22
184	Ultrastructural characterization of tryptophan hydroxylase 2-specific cortical serotonergic fibers and dorsal raphe neuronal cell bodies after MDMA treatment in rat. Psychopharmacology, 2011, 213, 377-391.	3.1	21
185	The ubiquitin–proteasome system in Creutzfeldt–Jakob and Alzheimer disease: Intracellular redistribution of components correlates with neuronal vulnerability. Neurobiology of Disease, 2005, 19, 427-435.	4.4	20
186	The α1, α2, α3, and γ2 subunits of GABA _A receptors show characteristic spatial and temporal expression patterns in rhombencephalic structures during normal human brain development. Journal of Comparative Neurology, 2016, 524, 1805-1824.	1.6	20
187	Distribution of intraneuronal immunoreactivity for the prion protein in human prion diseases. Acta Neuropathologica, 2002, 104, 320-326.	7.7	19
188	Increased 14-3-3 immunoreactivity in glial elements in patients with multiple sclerosis. Acta Neuropathologica, 2004, 107, 137-143.	7.7	19
189	The prion protein in human neuromuscular diseases. Journal of Pathology, 2004, 204, 241-247.	4.5	19
190	Cathepsin D SNP associated with increased risk of variant Creutzfeldt-Jakob disease. BMC Medical Genetics, 2008, 9, 31.	2.1	19
191	Detection of disease-associated α-synuclein in the cerebrospinal fluid: a feasibility study. , 2014, 33, 329-334.		19
192	Prion replication environment defines the fate of prion strain adaptation. PLoS Pathogens, 2018, 14, e1007093.	4.7	19
193	Genome-wide association study and functional validation implicates JADE1 in tauopathy. Acta Neuropathologica, 2022, 143, 33-53.	7.7	19
194	Serotonergic nuclei of the raphe are not affected in human ageing. NeuroReport, 2001, 12, 669-671.	1.2	18
195	Recovery and aging of serotonergic fibers after single and intermittent MDMA treatment in dark agouti rat. Journal of Comparative Neurology, 2011, 519, 2353-2378.	1.6	18
196	Intraneuronal Immunoreactivity for the Prion Protein Distinguishes a Subset of E200K Genetic From Sporadic Creutzfeldt-Jakob Disease. Journal of Neuropathology and Experimental Neurology, 2012, 71, 223-232.	1.7	18
197	Cerebellar dysfunction in a family harboring the PSEN1 mutation co-segregating with a Cathepsin D variant p.A58V. Journal of the Neurological Sciences, 2013, 326, 75-82.	0.6	18
198	Loss of Calbindin immunoreactivity in the dentate gyrus distinguishes Alzheimer's disease from other neurodegenerative dementias. Neuroscience Letters, 2014, 566, 137-141.	2.1	18

#	Article	IF	CITATIONS
199	Alpha-synuclein Aggregates in Labial Salivary Glands of Idiopathic Rapid Eye Movement Sleep Behavior Disorder. Sleep, 2018, 41, .	1.1	18
200	Atypical parkinsonism of progressive supranuclear palsy–parkinsonism (PSP-P) phenotype with rare variants in FBXO7 and VPS35 genes associated with Lewy body pathology. Acta Neuropathologica, 2019, 137, 171-173.	7.7	18
201	X-linked Hyper-IgM Syndrome Associated With a Rapid Course of Multifocal Leukoencephalopathy. Archives of Neurology, 2007, 64, 273.	4.5	17
202	Distribution of apoptosis-related proteins in sporadic Creutzfeldt–Jakob disease. Brain Research, 2010, 1323, 192-199.	2.2	17
203	Antibody 9D5 Recognizes Oligomeric Pyroglutamate Amyloid-β in a Fraction of Amyloid-β Deposits in Alzheimer's Disease without Cross-Reactivity with other Protein Aggregates. Journal of Alzheimer's Disease, 2012, 29, 361-371.	2.6	17
204	Neuropathology of Partial PGC-1α Deficiency Recapitulates Features of Mitochondrial Encephalopathies but Not of Neurodegenerative Diseases. Neurodegenerative Diseases, 2013, 12, 177-188.	1.4	17
205	Neurodegenerative proteinopathies associated with neuroinfections. Journal of Neural Transmission, 2021, 128, 1551-1566.	2.8	17
206	Inherited prion disease with A117V mutation of the prion protein gene: a novel Hungarian family. Journal of Neurology, Neurosurgery and Psychiatry, 2001, 70, 802-805.	1.9	16
207	α <scp>B</scp> â€crystallin and <scp>HSP27</scp> in glial cells in tauopathies. Neuropathology, 2014, 34, 517-526.	1.2	16
208	Familial early-onset dementia with complex neuropathologic phenotype and genomic background. Neurobiology of Aging, 2016, 42, 199-204.	3.1	16
209	Novel approach for accurate tissue-based protein colocalization and proximity microscopy. Scientific Reports, 2017, 7, 2668.	3.3	16
210	Alzheimer neuropathology without frontotemporal lobar degeneration hallmarks (<scp>TAR) Tj ETQq0 0 0 rgBT /C <scp>C</scp>ys139<scp>A</scp>rg. Brain Pathology, 2018, 28, 72-76.</scp>	Overlock 1 4.1	0 Tf 50 307 16
211	Proteomics-Enriched Prediction Model for Poor Neurologic Outcome in Cardiac Arrest Survivors*. Critical Care Medicine, 2020, 48, 167-175.	0.9	16
212	Diagnostic accuracy of cerebrospinal fluid biomarkers in genetic prion diseases. Brain, 2022, 145, 700-712.	7.6	16
213	Association Between Globular Glial Tauopathies and Frontotemporal Dementia—Expanding the Spectrum of Gliocentric Disorders. JAMA Neurology, 2021, 78, 1004.	9.0	16
214	Incidental corticobasal degeneration in a 76-year-old woman. , 2013, 32, 69-72.		16
215	Patterns of Tau and α-Synuclein Pathology in the Visual System. Journal of Parkinson's Disease, 2015, 5, 333-340.	2.8	15
216	Fulminant corticobasal degeneration: a distinct variant with predominant neuronal tau aggregates. Acta Neuropathologica, 2020, 139, 717-734.	7.7	15

#	Article	IF	CITATIONS
217	Histopathological comparison of Kearns-Sayre syndrome and PGC-1α-deficient mice suggests aÂnovel concept for vacuole formation in mitochondrial encephalopathy. Folia Neuropathologica, 2016, 1, 9-22.	1.2	15
218	Calretinin-immunoreactive unipolar brush cells in the developing human cerebellum. International Journal of Developmental Neuroscience, 2005, 23, 723-729.	1.6	14
219	Acute SSRI-induced anxiogenic and brain metabolic effects are attenuated 6 months after initial MDMA-induced depletion. Behavioural Brain Research, 2010, 207, 280-289.	2.2	14
220	Cerebrotendinous xanthomatosis with the c.379 <scp>C</scp> > <scp>T</scp> (p. <scp>R</scp> 127 <scp>W</scp>) mutation in the <scp><i>CYP27A1</i></scp> gene associated with premature ageâ€associated limbic tauopathy. Neuropathology and Applied Neurobiology, 2014, 40, 345-350.	3.2	14
221	Comparative anatomical distribution of neuronal calcium-binding protein (NECAB) 1 and -2 in rodent and human spinal cord. Brain Structure and Function, 2016, 221, 3803-3823.	2.3	14
222	A Fluorescent Oligothiophene-Bis-Triazine ligand interacts with PrP fibrils and detects SDS-resistant oligomers in human prion diseases. Molecular Neurodegeneration, 2016, 11, 11.	10.8	14
223	Secretagogin expression in the vertebrate brainstem with focus on the noradrenergic system and implications for Alzheimer's disease. Brain Structure and Function, 2019, 224, 2061-2078.	2.3	14
224	Mitochondrial respiratory chain deficiency correlates with the severity of neuropathology in sporadic Creutzfeldt-Jakob disease. Acta Neuropathologica Communications, 2020, 8, 50.	5.2	14
225	Aβ43 aggregates exhibit enhanced prion-like seeding activity in mice. Acta Neuropathologica Communications, 2021, 9, 83.	5.2	14
226	Progress in the development of early diagnosis and a drug with unique pharmacology to improve cancer therapy. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366, 3599-3617.	3.4	13
227	I716F AβPP Mutation Associates with the Deposition of Oligomeric Pyroglutamate Amyloid-β and α-Synucleinopathy with Lewy Bodies. Journal of Alzheimer's Disease, 2015, 44, 103-114.	2.6	13
228	Lysosomal response in relation to α-synuclein pathology differs between Parkinson's disease and multiple system atrophy. Neurobiology of Disease, 2018, 114, 140-152.	4.4	13
229	Filamentous Aggregation of Sequestosome-1/p62 in Brain Neurons and Neuroepithelial Cells upon Tyr-Cre-Mediated Deletion of the Autophagy Gene Atg7. Molecular Neurobiology, 2018, 55, 8425-8437.	4.0	13
230	Argyrophilic grain disease in individuals younger than 75 years: clinical variability in an underâ€recognized limbic tauopathy. European Journal of Neurology, 2020, 27, 1856-1866.	3.3	13
231	COllaborative Neuropathology NEtwork Characterizing ouTcomes of TBI (CONNECT-TBI). Acta Neuropathologica Communications, 2021, 9, 32.	5.2	13
232	Detection of astrocytic tau pathology facilitates recognition of chronic traumatic encephalopathy neuropathologic change. Acta Neuropathologica Communications, 2022, 10, 50.	5.2	13
233	Aging, the brain and human prion disease. Experimental Gerontology, 2002, 37, 603-605.	2.8	12
234	Increased incidence of genetic human prion disease in Hungary. Neurology, 2005, 65, 1666-1669.	1.1	12

#	Article	IF	CITATIONS
235	Cathepsin D (C224T) Polymorphism in Sporadic and Genetic Creutzfeldt-Jakob Disease. Alzheimer Disease and Associated Disorders, 2010, 24, 104-107.	1.3	12
236	Molecular diagnosis of human prion disease. Expert Opinion on Medical Diagnostics, 2011, 5, 291-306.	1.6	12
237	Rapidly progressive dementia with thalamic degeneration and peculiar cortical prion protein immunoreactivity, but absence of proteinase K resistant PrP: a new disease entity?. Acta Neuropathologica Communications, 2013, 1, 72.	5.2	12
238	Tauopathy with hippocampal 4â€repeat tau immunoreactive spherical inclusions: a report of three cases. Brain Pathology, 2018, 28, 274-283.	4.1	12
239	α‣ynuclein antibody 5G4 identifies manifest and prodromal Parkinson's disease in colonic mucosa. Movement Disorders, 2018, 33, 1366-1368.	3.9	12
240	Accumulation of prion protein in the vagus nerve in creutzfeldt–jakob disease. Annals of Neurology, 2019, 85, 782-787.	5.3	12
241	Brain-wide genetic mapping identifies the indusium griseum as a prenatal target of pharmacologically unrelated psychostimulants. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25958-25967.	7.1	12
242	Practical Considerations in the Diagnosis of Mild Chronic Traumatic Encephalopathy and Distinction From Age-Related Tau Astrogliopathy. Journal of Neuropathology and Experimental Neurology, 2020, 79, 921-924.	1.7	12
243	A novel temporalâ€predominantÂneuroâ€astroglial tauopathyÂassociated with <i>TMEM106B</i> gene polymorphism in FTLD/ALSâ€TDP. Brain Pathology, 2021, 31, 267-282.	4.1	12
244	Combining Skin α‧ynuclein <scp>Realâ€Time Quakingâ€Induced Conversion</scp> and Circulating Neurofilament Light Chain to Distinguish Multiple System Atrophy and Parkinson's Disease. Movement Disorders, 2022, 37, 648-650.	3.9	12
245	α-Synuclein molecular behavior and nigral proteomic profiling distinguish subtypes of Lewy body disorders. Acta Neuropathologica, 2022, 144, 167-185.	7.7	12
246	Creutzfeldt-Jakob, Parkinson, Lewy Body Dementia and Alzheimer Diseases: From Diagnosis to Therapy. Central Nervous System Agents in Medicinal Chemistry, 2009, 9, 2-11.	1.1	11
247	Production of a monoclonal antibody, against human α-synuclein, in a subpopulation of C57BL/6J mice, presenting a deletion of the α-synuclein locus. Journal of Neuroscience Methods, 2010, 192, 268-276.	2.5	11
248	Bilateral Dentate Gyrus Structural Alterations in a Cat Associated With Hippocampal Sclerosis and Intraventricular Meningioma. Veterinary Pathology, 2015, 52, 1183-1186.	1.7	11
249	Atypical sporadic <scp>CJDâ€MM</scp> phenotype with white matter kuru plaques associated with intranuclear inclusion body and argyrophilic grain disease. Neuropathology, 2015, 35, 336-342.	1.2	11
250	Lack of age-related clinical progression in PGC-1α-deficient mice – implications for mitochondrial encephalopathies. Behavioural Brain Research, 2016, 313, 272-281.	2.2	11
251	Regenerating islet-derived 1α (REG-1α) protein increases tau phosphorylation in cell and animal models of tauopathies. Neurobiology of Disease, 2018, 119, 136-148.	4.4	11
252	Reply: LATE to the PART-y. Brain, 2019, 142, e48-e48.	7.6	11

#	Article	IF	CITATIONS
253	Experimental Motor Neuron Disease Induced in Mice with Long-Term Repeated Intraperitoneal Injections of Serum from ALS Patients. International Journal of Molecular Sciences, 2019, 20, 2573.	4.1	11
254	Multiple system agingâ€related tau astrogliopathy with complex proteinopathy in an oligosymptomatic octogenarian. Neuropathology, 2021, 41, 72-83.	1.2	11
255	Rationale for diagnosing human prion disease. World Journal of Biological Psychiatry, 2004, 5, 83-91.	2.6	10
256	Increased neuronal Rab5 immunoreactive endosomes do not colocalize with TDP-43 in motor neuron disease. Experimental Neurology, 2010, 225, 133-139.	4.1	10
257	Clinical stratification of subtypes of Alzheimer's disease. Lancet Neurology, The, 2012, 11, 839-841.	10.2	10
258	Extranodal marginal zone lymphoma of the CNS arising after a long-standing history of atypical white matter disease. Leukemia Research, 2012, 36, e155-e157.	0.8	10
259	Hereditary ATTR Amyloidosis in Austria: Prevalence and Epidemiological Hot Spots. Journal of Clinical Medicine, 2020, 9, 2234.	2.4	10
260	Diagnostic Accuracy of Prion Disease Biomarkers in latrogenic Creutzfeldt-Jakob Disease. Biomolecules, 2020, 10, 290.	4.0	10
261	Developmental patterns of DR6 in normal human hippocampus and in Down syndrome. Journal of Neurodevelopmental Disorders, 2013, 5, 10.	3.1	9
262	Non-motor Behavioral Alterations of PGC-1α-Deficient Mice – A Peculiar Phenotype With Slight Male Preponderance and No Apparent Progression. Frontiers in Behavioral Neuroscience, 2018, 12, 180.	2.0	9
263	Novel dominant MPAN family with a complex genetic architecture as a basis for phenotypic variability. Neurology: Genetics, 2020, 6, e515.	1.9	9
264	Clinicopathological Relationships in an Aged Case of DOORS Syndrome With a p.Arg506X Mutation in the ATP6V1B2 Gene. Frontiers in Neurology, 2020, 11, 767.	2.4	9
265	Novel crystalloid oligodendrogliopathy in hereditary spastic paraplegia. Acta Neuropathologica, 2012, 124, 583-591.	7.7	8
266	GABAA receptor subunit deregulation in the hippocampus of human foetuses with Down syndrome. Brain Structure and Function, 2017, 223, 1501-1518.	2.3	8
267	Alterations in GABAA Receptor Subunit Expression in the Amygdala and Entorhinal Cortex in Human Temporal Lobe Epilepsy. Journal of Neuropathology and Experimental Neurology, 2019, 78, 1022-1048.	1.7	8
268	Pyramidal system involvement in progressive supranuclear palsy – a clinicopathological correlation. BMC Neurology, 2019, 19, 42.	1.8	8
269	Globular Glial Tauopathy Type I Presenting as Atypical Progressive Aphasia, With Comorbid Limbic-Predominant Age-Related TDP-43 Encephalopathy. Frontiers in Aging Neuroscience, 2019, 11, 336.	3.4	8
270	Evaluation of Human Cerebrospinal Fluid Malate Dehydrogenase 1 as a Marker in Genetic Prion Disease Patients. Biomolecules, 2019, 9, 800.	4.0	8

#	Article	IF	CITATIONS
271	Clinical Neuropathology Practice News 3-2012: the "ABC" in AD–Ârevised and updated guideline for the neuropathologic assessment of AlzheimerÂ's disease. , 2012, 31, 116-118.		8
272	Patterns of Mixed Pathologies in Down Syndrome. Journal of Alzheimer's Disease, 2022, 87, 595-607.	2.6	8
273	Protracted course progressive supranuclear palsy. European Journal of Neurology, 2022, 29, 2220-2231.	3.3	8
274	The spectrum of disease and tau pathology of nodding syndrome in Uganda. Brain, 2023, 146, 954-967.	7.6	8
275	Adult mitochondrial DNA depletion syndrome with mild manifestations. Neurology International, 2013, 5, 9.	2.8	7
276	Sexually Dimorphic Expression of Reelin in the Brain of a Mouse Model of Alzheimer Disease. Journal of Molecular Neuroscience, 2017, 61, 359-367.	2.3	7
277	Understanding the Relevance of Aging-Related Tau Astrogliopathy (ARTAG). Neuroglia (Basel,) Tj ETQq1 1 0.7843	314 rgBT 0.9	/Overlock 10
278	Neither a Novel Tau Proteinopathy nor an Expansion of a Phenotype: Reappraising Clinicopathology-Based Nosology. International Journal of Molecular Sciences, 2021, 22, 7292.	4.1	7
279	Asymptomatic hyper-creatine-kinase-emia as sole manifestation of inclusion body myositis. Neurology International, 2013, 5, 11.	2.8	6
280	Clinical Neuropathology image 1-2015: Crystal-storing histiocytosis of the central nervous system. , 2015, 34, 4-5.		6
281	Can Creutzfeldt-Jakob disease unravel the mysteries of Alzheimer?. Prion, 2016, 10, 369-376.	1.8	6
282	The Spectrum of Tau Pathology in Human Prion Disease. , 2013, , 103-119.		6
283	Genetic Creutzfeldt-Jakob disease mimicking variant Creutzfeldt-Jakob disease. Journal of Neurology, Neurosurgery and Psychiatry, 2009, 80, 1410-1411.	1.9	5
284	Low ambient temperature reveals distinct mechanisms for MDMA-induced serotonergic toxicity and astroglial Hsp27 heat shock response in rat brain. Neurochemistry International, 2011, 59, 695-705.	3.8	5
285	Clinico-pathological correlations in neurodegeneration. Acta Neuropathologica, 2011, 122, 115-116.	7.7	5
286	Pellagra encephalopathy as a differential diagnosis for Creutzfeldt-Jakob disease. Metabolic Brain Disease, 2012, 27, 231-235.	2.9	5
287	Left ventricular hypertrabeculation/noncompaction coincidentally found in sporadic inclusion body myositis. International Journal of Cardiology, 2013, 168, 610-612.	1.7	5
288	Genetic Creutzfeldt-Jakob disease mimicking chronic inflammatory demyelinating polyneuropathy. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e173.	6.0	5

#	Article	IF	CITATIONS
289	Protein-Based Neuropathology and Molecular Classification of Human Neurodegenerative Diseases. Focus on Structural Biology, 2009, , 251-272.	0.1	5
290	Psoriasis, bulbar involvement, and diarrhea in late myoclonic epilepsy with ragged-red fibers-syndrome due to the m.8344A > G tRNA (Lys) mutation. Iranian Journal of Neurology, 2017, 16, 45-49.	0.5	5
291	Enhanced expression of autophagyâ€related p62 without increased deposits of neurodegenerationâ€associated proteins in glioblastoma and surrounding tissue – An autopsyâ€based study. Brain Pathology, 2022, 32, e13058.	4.1	5
292	Rapid Progression of Amyotrophic Lateral Sclerosis in an Acromegalic Patient After Surgical Resection of a Growth Hormone-Producing Pituitary Adenoma. Neurologist, 2010, 16, 315-318.	0.7	4
293	Nigral Tau pathology and striatal amyloid-β deposition does not correlate with striatal dopamine deficit in Alzheimer's disease. Journal of Neural Transmission, 2012, 119, 1545-1549.	2.8	4
294	Comorbidities. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 145, 573-577.	1.8	4
295	Predominant neurological phenotype in a Hungarian family with two novel mutations in the XPA gene—case series. Neurological Sciences, 2020, 41, 125-129.	1.9	4
296	The autophagic marker p62 highlights Alzheimer type II astrocytes in metabolic/hepatic encephalopathy. Neuropathology, 2020, 40, 358-366.	1.2	4
297	Thorn-shaped astrocytes in the depth of cortical sulci in Western Pacific ALS/Parkinsonism-Dementia complex. Acta Neuropathologica, 2020, 140, 591-593.	7.7	4
298	Gaucher cells are not associated with $\hat{l}\pm$ -synuclein neuropathology in infants. , 2016, 35, 122-128.		4
299	Immunostaining for ubiquitin: efficient pretreatment. Neuropathology and Applied Neurobiology, 2003, 29, 174-177.	3.2	3
300	Case report Adult, isolated respiratory chain complex IV deficiency with minimal manifestations. Folia Neuropathologica, 2015, 2, 153-157.	1.2	3
301	Variable expression of mitochondrial complex IV in the course of nigral intracellular accumulation of α-synuclein. Parkinsonism and Related Disorders, 2021, 90, 57-61.	2.2	3
302	Practical approach to diagnosis. , 2014, , 55-69.		3
303	Clinical Neuropathology image 6-2018: Metastasis of breast carcinoma to meningioma. , 2018, 37, 252-253.		3
304	Amyotrophic lateral sclerosis and frontotemporal lobar degeneration. , 2014, , 209-248.		3
305	Contribution of neuropathology to the understanding of human prion disease. Folia Neuropathologica, 2004, 42 Suppl A, 69-76.	1.2	3
306	Prion diseases: a primer for general pathologists. Diagnostic Histopathology, 2011, 17, 217-224.	0.4	2

#	Article	IF	CITATIONS
307	Coâ€incidental <i>C9orf72</i> expansion mutationâ€related frontotemporal lobar degeneration pathology and sporadic Creutzfeldtâ^Jakob disease. European Journal of Neurology, 2021, 28, 1009-1015.	3.3	2
308	Dream Enactment Behavior Disorder Associated with Pallidoâ€Nigroâ€Luysian Degeneration and Tau Proteinopathy. Movement Disorders Clinical Practice, 2021, 8, 594-599.	1.5	2
309	Human prion diseases. , 0, , 176-194.		2
310	Affection of the Respiratory Muscles in Combined Complex I and IV Deficiency. The Open Neurology Journal, 2017, 11, 1-6.	0.4	2
311	Clinical Neuropathology image 6-2014: Corpora amylacea replacing cornu ammonis (CACA). , 2014, 33, 378-379.		2
312	Clinical Neuropathology image 5-2014: α-synuclein pathology in the ependyma in Parkinson's diseas 2014, 33, 328.	e.,	2
313	Neurodegenerative diseases linked to trinucleotide repeats. , 2014, , 195-208.		2
314	Globular glial inclusions unveil enigmas of <i><scp>MAPT</scp></i> mutations. Neuropathology and Applied Neurobiology, 2017, 43, 191-193.	3.2	1
315	Introduction. Brain Pathology, 2017, 27, 627-628.	4.1	1
316	Preface. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 145, ix.	1.8	1
317	Neuropathology-driven Whole-genome Sequencing Study Points to Novel Candidate Genes for Healthy Brain Aging. Alzheimer Disease and Associated Disorders, 2019, 33, 7-14.	1.3	1
318	Corpus Callosum Hyperintensity in Normal Pressure Hydrocephalus After Ventriculoperitoneal Shunt. Neurology, 2021, 96, 1096-1097.	1.1	1
319	The Discovery of αâ€5ynuclein in Lewy Pathology of Parkinson's Disease: The Inspiration of a Revolution. Movement Disorders Clinical Practice, 2021, 8, 1189-1193.	1.5	1
320	Histotype-Dependent Oligodendroglial PrP Pathology in Sporadic CJD: A Frequent Feature of the M2C "Strain― Viruses, 2021, 13, 1796.	3.3	1
321	Tauopathies. , 2014, , 109-148.		1
322	Acquired Neuromyotonia Precipitated by Thyroid Surgery and Associated with Antiacetylcholine Receptor Antibodies. European Neurology, 2006, 55, 222-224.	1.4	0
323	Long-term clinical improvement of progressive multifocal leukoencephalopathy associated with prominent inflammatory response and follicular lymphoma. Leukemia and Lymphoma, 2011, 52, 2190-2192.	1.3	Ο
324	Complex tauopathies vs. tangle predominant dementia. Acta Neuropathologica, 2011, 122, 517-517.	7.7	0

#	Article	IF	CITATIONS
325	First Scientific Session. Neuropathology and Applied Neurobiology, 2013, 39, 7-26.	3.2	О
326	Pathological and biochemical investigation of a woman diagnosed with genetic <scp>C</scp> reutzfeldt– <scp>J</scp> akob disease shortly after parturition. Neuropathology and Applied Neurobiology, 2015, 41, 676-680.	3.2	0
327	Astrocytic-Neuronal Teamwork Against External Iron Attacks: Does It Always Work?. Function, 2021, 2, zqab009.	2.3	0
328	Creutzfeldt–Jakob Disease and Dementia. , 2015, , 45-55.		0
329	Clinical Neuropathology teaching case 4-2015: Heterogenous brain pathologies temporally and spatially coinciding in limbic regions. , 2015, 34, 178-180.		0
330	Macrophagic scavenging of AÎ ² . , 2019, 38, 48-50.		0
331	Clinical aspects of dementia. , 0, , 8-28.		Ο
332	Clinical aspects of movement disorders. , 0, , 29-50.		0
333	Ethical, health and safety considerations. , 0, , 51-54.		0
334	Molecular methods. , 0, , 70-79.		0
335	Synucleinopathies. , 2014, , 149-175.		0
336	Other neurodegenerative conditions I. , 2014, , 249-258.		0
337	Other neurodegenerative conditions II. , 0, , 259-262.		0
338	Other neurogenerative conditions III. , 0, , 263-267.		0
339	Other neurogenerative conditions IV. , 0, , 268-273.		0
340	Concomitant pathologies I. , 2014, , 274-291.		0
341	Concomitant pathologies II. , 0, , 292-298.		О