
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9020115/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nature Photonics, 2018, 12, 681-687.	31.4	1,123
2	Organic radical battery: nitroxide polymers as a cathode-active material. Electrochimica Acta, 2004, 50, 827-831.	5.2	460
3	High-Efficiency Perovskite Quantum-Dot Light-Emitting Devices by Effective Washing Process and Interfacial Energy Level Alignment. ACS Applied Materials & Interfaces, 2017, 9, 18054-18060.	8.0	289
4	Solution-processed multilayer small-molecule light-emitting devices with high-efficiency white-light emission. Nature Communications, 2014, 5, 5756.	12.8	278
5	Bisanthraceneâ€Based Donor–Acceptorâ€type Lightâ€Emitting Dopants: Highly Efficient Deepâ€Blue Emission Organic Lightâ€Emitting Devices. Advanced Functional Materials, 2014, 24, 2064-2071.	in 14.9	278
6	Wide-Energy-Gap Electron-Transport Materials Containing 3,5-Dipyridylphenyl Moieties for an Ultra High Efficiency Blue Organic Light-Emitting Device. Chemistry of Materials, 2008, 20, 5951-5953.	6.7	242
7	Highâ€Performance Green OLEDs Using Thermally Activated Delayed Fluorescence with a Power Efficiency of over 100 lm W ^{â~'1} . Advanced Materials, 2016, 28, 2638-2643.	21.0	225
8	Highâ€Performance Blue Phosphorescent OLEDs Using Energy Transfer from Exciplex. Advanced Materials, 2014, 26, 1612-1616.	21.0	224
9	3,3′â€Bicarbazoleâ€Based Host Materials for Highâ€Efficiency Blue Phosphorescent OLEDs with Extremely Low Driving Voltage. Advanced Materials, 2012, 24, 3212-3217.	21.0	194
10	Electron-Transfer Kinetics of Nitroxide Radicals as an Electrode-Active Material. Bulletin of the Chemical Society of Japan, 2004, 77, 2203-2204.	3.2	171
11	Tuning Energy Levels of Electronâ€Transport Materials by Nitrogen Orientation for Electrophosphorescent Devices with an †Ideal' Operating Voltage. Advanced Materials, 2010, 22, 3311-3316.	21.0	166
12	Extremely Low Operating Voltage Green Phosphorescent Organic Lightâ€Emitting Devices. Advanced Functional Materials, 2013, 23, 5550-5555.	14.9	157
13	Single Benzene Green Fluorophore: Solidâ€State Emissive, Waterâ€Soluble, and Solvent―and pHâ€Independent Fluorescence with Large Stokes Shifts. Angewandte Chemie - International Edition, 2015, 54, 7332-7335.	13.8	155
14	Cathode- and Anode-Active Poly(nitroxylstyrene)s for Rechargeable Batteries:Â p- and n-Type Redox Switching via Substituent Effects. Macromolecules, 2007, 40, 3167-3173.	4.8	148
15	Ultra-high efficiency by multiple emission from stacked organic light-emitting devices. Organic Electronics, 2011, 12, 710-715.	2.6	143
16	Optimizing the Charge Balance of Fluorescent Organic Lightâ€Emitting Devices to Achieve High External Quantum Efficiency Beyond the Conventional Upper Limit. Advanced Materials, 2012, 24, 1765-1770.	21.0	141
17	Influence of Substituted Pyridine Rings on Physical Properties and Electron Mobilities of 2-Methylpyrimidine Skeleton-Based Electron Transporters. Advanced Functional Materials, 2011, 21, 336-342.	14.9	139
18	Solutionâ€Processed White Phosphorescent Tandem Organic Lightâ€Emitting Devices. Advanced Materials, 2015, 27, 4681-4687.	21.0	135

#	Article	IF	CITATIONS
19	2-Phenylpyrimidine skeleton-based electron-transport materials for extremely efficient green organic light-emitting devices. Chemical Communications, 2008, , 5821.	4.1	130
20	Synthesis and electroluminescent property of poly(p-phenylenevinylene)s bearing triarylamine pendants. Polymer, 2005, 46, 3767-3775.	3.8	104
21	Fabrication of Organic Lightâ€Emitting Devices Comprising Stacked Lightâ€Emitting Units by Solutionâ€Based Processes. Advanced Materials, 2015, 27, 1327-1332.	21.0	90
22	Dual efficiency enhancement by delayed fluorescence and dipole orientation in high-efficiency fluorescent organic light-emitting diodes. Applied Physics Letters, 2011, 99, .	3.3	89
23	High-efficiency red, green and blue phosphorescent homojunction organic light-emitting diodes based on bipolar host materials. Organic Electronics, 2011, 12, 843-850.	2.6	86
24	Instant Lowâ€Temperature Cross‣inking of Poly(<i>N</i> â€vinylcarbazole) for Solutionâ€Processed Multilayer Blue Phosphorescent Organic Lightâ€Emitting Devices. Advanced Materials, 2014, 26, 7543-7546.	21.0	85
25	A Novel Triphenylamine-Substituted Poly(p-phenylenevinylene):Â Improved Photo- and Electroluminescent Properties. Chemistry of Materials, 2001, 13, 3817-3819.	6.7	84
26	m-Terphenyl-modified carbazole host material for highly efficient blue and green PHOLEDS. Chemical Communications, 2009, , 6655.	4.1	83
27	Electronegative Oligothiophenes Based on Difluorodioxocyclopentene-Annelated Thiophenes: Synthesis, Properties, and n-Type FET Performances. Organic Letters, 2008, 10, 833-836.	4.6	81
28	Kinetic prediction of reverse intersystem crossing in organic donor–acceptor molecules. Nature Communications, 2020, 11, 3909.	12.8	75
29	Solution-processable electron injection materials for organic light-emitting devices. Journal of Materials Chemistry C, 2015, 3, 11567-11576.	5.5	68
30	Solution-processable organic fluorescent dyes for multicolor emission in organic light emitting diodes. Journal of Materials Chemistry, 2008, 18, 4183.	6.7	67
31	Ultra high-efficiency multi-photon emission blue phosphorescent OLEDs with external quantum efficiency exceeding 40%. Organic Electronics, 2012, 13, 2615-2619.	2.6	66
32	Singlet Fission of Nonâ€polycyclic Aromatic Molecules in Organic Photovoltaics. Advanced Materials, 2016, 28, 1585-1590.	21.0	64
33	Solution-Processed Inorganic–Organic Hybrid Electron Injection Layer for Polymer Light-Emitting Devices. ACS Applied Materials & Interfaces, 2012, 4, 6104-6108.	8.0	61
34	High-efficiency simple planar heterojunction organic thin-film photovoltaics with horizontally oriented amorphous donors. Solar Energy Materials and Solar Cells, 2012, 98, 472-475.	6.2	57
35	Excimer-emitting single molecules with stacked π-conjugated groups covalently linked at the 1,8-positions of naphthalene for highly efficient blue and green OLEDs. Journal of Materials Chemistry C, 2013, 1, 3871.	5.5	55
36	Thermally cross-linkable host materials for enabling solution-processed multilayer stacks in organic light-emitting devices. Organic Electronics, 2013, 14, 1614-1620.	2.6	54

#	Article	IF	CITATIONS
37	High efficiency solution processed OLEDs using a thermally activated delayed fluorescence emitter. Synthetic Metals, 2015, 202, 165-168.	3.9	54
38	A single-molecule excimer-emitting compound for highly efficient fluorescent organic light-emitting devices. Chemical Communications, 2012, 48, 8434.	4.1	53
39	Isotope effect in the spin response of aluminum tris(8-hydroxyquinoline) based devices. Physical Review B, 2012, 85, .	3.2	52
40	A Solution-Processed Heteropoly Acid Containing MoO ₃ Units as a Hole-Injection Material for Highly Stable Organic Light-Emitting Devices. ACS Applied Materials & Interfaces, 2016, 8, 20946-20954.	8.0	50
41	Lithium phenolate complexes for an electron injection layer in organic light-emitting diodes. Organic Electronics, 2009, 10, 228-232.	2.6	44
42	Solution-processed organic light-emitting devices with two polymer light-emitting units connected in series by a charge-generation layer. Journal of Materials Chemistry, 2012, 22, 22769.	6.7	41
43	Solution processable phosphorescent rhenium(i) dendrimers. Journal of Materials Chemistry, 2007, 17, 4255.	6.7	38
44	Electron spin resonance resolves intermediate triplet states in delayed fluorescence. Nature Communications, 2021, 12, 4532.	12.8	38
45	Solution-processable carbazole-based host materials for phosphorescent organic light-emitting devices. Organic Electronics, 2012, 13, 2235-2242.	2.6	37
46	Molecular Interdiffusion between Stacked Layers by Solution and Thermal Annealing Processes in Organic Light Emitting Devices. ACS Applied Materials & Interfaces, 2015, 7, 20779-20785.	8.0	37
47	Air‣table and Highâ€Performance Solutionâ€Processed Organic Lightâ€Emitting Devices Based on Hydrophobic Polymeric Ionic Liquid Carrierâ€Injection Layers. Advanced Materials, 2018, 30, e1705915.	21.0	36
48	An Indolocarbazoleâ€Based Thermally Activated Delayed Fluorescence Host for Solutionâ€Processed Phosphorescent Tandem Organic Lightâ€Emitting Devices Exhibiting Extremely Small Efficiency Rollâ€Off. Advanced Functional Materials, 2019, 29, 1808022.	14.9	34
49	Acyclic and Cyclic Di- and Tri(4-oxyphenyl-1,2-phenyleneethynylene)s:Â Their Synthesis and Ferromagnetic Spin Interaction. Journal of Organic Chemistry, 1999, 64, 7375-7380.	3.2	33
50	Simultaneous Manipulation of Intramolecular and Intermolecular Hydrogen Bonds in nâ€īype Organic Semiconductor Layers: Realization of Horizontal Orientation in OLEDs. Advanced Optical Materials, 2015, 3, 769-773.	7.3	33
51	Addition of Lithium 8-Quinolate into Polyethylenimine Electron-Injection Layer in OLEDs: Not Only Reducing Driving Voltage but Also Improving Device Lifetime. ACS Applied Materials & Interfaces, 2017, 9, 18113-18119.	8.0	32
52	Dimethylsilyl-linked anthracene–pyrene dimers and their efficient triplet–triplet annihilation in organic light emitting diodes. Journal of Materials Chemistry C, 2017, 5, 1090-1094.	5.5	32
53	Triphenylamine- and oxadiazole-substituted poly(1,4-phenylenevinylene)s: synthesis, photo-, and electroluminescent properties. Synthetic Metals, 2004, 143, 207-214.	3.9	31
54	Controlling the dimension of the quantum resonance in CdTe quantum dot superlattices fabricated via layer-by-layer assembly. Nature Communications, 2020, 11, 5471.	12.8	31

#	Article	IF	CITATIONS
55	2,6â€Bis(arylsulfonyl)anilines as Fluorescent Scaffolds through Intramolecular Hydrogen Bonds: Solidâ€State Fluorescence Materials and Turnâ€Onâ€Type Probes Based on Aggregationâ€Induced Emission. ChemPlusChem, 2014, 79, 536-545.	2.8	30
56	Efficient Electron Injection by Size- and Shape-Controlled Zinc Oxide Nanoparticles in Organic Light-Emitting Devices. ACS Applied Materials & Interfaces, 2015, 7, 25373-25377.	8.0	29
57	Influence of solution- and thermal-annealing processes on the sub-nanometer-ordered organic–organic interface structure of organic light-emitting devices. Nanoscale, 2017, 9, 25-30.	5.6	29
58	Conjugated Polyelectrolyte Blend with Polyethyleneimine Ethoxylated for Thickness-Insensitive Electron Injection Layers in Organic Light-Emitting Devices. ACS Applied Materials & Interfaces, 2018, 10, 17318-17326.	8.0	27
59	Absence of delayed fluorescence and triplet–triplet annihilation in organic light emitting diodes with spatially orthogonal bianthracenes. Journal of Materials Chemistry C, 2019, 7, 2541-2547.	5.5	26
60	Monodisperse Perovskite Colloidal Quantum Dots Enable High-Efficiency Photovoltaics. ACS Energy Letters, 2021, 6, 2229-2237.	17.4	26
61	Synthesis, photoluminescence and electroluminescence properties of iridium complexes with bulky carbazole dendrons. Organic Electronics, 2009, 10, 465-472.	2.6	25
62	Arylamino-9,10-diphenylanthracenes for organic light emitting devices. Organic Electronics, 2010, 11, 479-485.	2.6	25
63	Fluorescence via Reverse Intersystem Crossing from Higher Triplet States in a Bisanthracene Derivative. Scientific Reports, 2017, 7, 4820.	3.3	25
64	Highly Efficient Green Phosphorescent OLED Based on Pyridine-containing Starburst Electron-transporting Materials. Chemistry Letters, 2010, 39, 140-141.	1.3	24
65	fac-Tris(2-phenylpyridine)iridium (III)s, covalently surrounded by six bulky host dendrons, for a highly efficient solution-processed organic light emitting device. Organic Electronics, 2011, 12, 2103-2110.	2.6	24
66	Controlling the excited-state energy levels of 9,9′-bifluorenylidene derivatives by twisting their structure to attaining singlet fission character in organic photovoltaics. Journal of Materials Chemistry C, 2017, 5, 4909-4914.	5.5	22
67	Improved Electroluminescence Performance of Perovskite Light-Emitting Diodes by a New Hole Transporting Polymer Based on the Benzocarbazole Moiety. ACS Applied Materials & Interfaces, 2020, 12, 51756-51765.	8.0	22
68	Selenium Substitution Enhances Reverse Intersystem Crossing in a Delayed Fluorescence Emitter. Journal of Physical Chemistry C, 2020, 124, 6364-6370.	3.1	22
69	Designs and understanding of small molecule-based non-fullerene acceptors for realizing commercially viable organic photovoltaics. Chemical Science, 2021, 12, 14004-14023.	7.4	22
70	Exciplex emissions derived from exceptionally long-distance donor and acceptor molecules. Chemical Science, 2019, 10, 9203-9208.	7.4	20
71	Precise Evaluation of Angstromâ€Ordered Mixed Interfaces in Solutionâ€Processed OLEDs by Neutron Reflectometry. Advanced Materials Interfaces, 2014, 1, 1400097.	3.7	18
72	Organic Light-Emitting Devices with Tandem Structure. Topics in Current Chemistry, 2016, 374, 33.	5.8	17

#	Article	IF	CITATIONS
73	Poly(pyridinium iodide ionic liquid)-based electron injection layers for solution-processed organic light-emitting devices. Journal of Materials Chemistry C, 2016, 4, 6713-6719.	5.5	17
74	Efficient Low-Driving-Voltage Blue Phosphorescent Homojunction Organic Light-Emitting Devices. Japanese Journal of Applied Physics, 2011, 50, 040204.	1.5	16
75	Lithium Phenolate Complexes with a Pyridineâ€Containing Polymer for Solutionâ€Processable Electron Injection Layers in PLEDs. Advanced Functional Materials, 2014, 24, 6038-6045.	14.9	15
76	Post-Treatment-Free Solution-Processed Reduced Phosphomolybdic Acid Containing Molybdenum Oxide Units for Efficient Hole-Injection Layers in Organic Light-Emitting Devices. Inorganic Chemistry, 2018, 57, 1950-1957.	4.0	15
77	Two-Dimensional Ca ₂ Nb ₃ O ₁₀ Perovskite Nanosheets for Electron Injection Layers in Organic Light-Emitting Devices. ACS Applied Materials & Interfaces, 2018, 10, 27885-27893.	8.0	15
78	Synthesis, magnetic, and optoelectronic properties of poly(triphenylamine-alt-phenylenevinylene)s. Journal of Polymer Science Part A, 2000, 38, 4119-4127.	2.3	14
79	Hole mobility measurement of 4,4′-Bis[N-(1-naphthyl)-N-phenylamino]-biphenyl by dark injection method. Chemical Physics Letters, 2011, 502, 118-120.	2.6	14
80	Synthesis, characterization, and polarized luminescence properties of platinum(ii) complexes having a rod-like ligand. Dalton Transactions, 2012, 41, 8379.	3.3	14
81	Multilayered Organic Light-Emitting Devices by Solution-Process. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2013, 26, 403-410.	0.3	14
82	Phenanthroline Derivatives for Electron-transport Layer in Organic Light-emitting Devices. Chemistry Letters, 2009, 38, 712-713.	1.3	13
83	Synthesis and properties of naphthobisbenzo[b]thiophenes: structural curvature of higher acene frameworks for solubility enhancement and high-order orientation in crystalline states. Tetrahedron Letters, 2012, 53, 1786-1789.	1.4	13
84	Dipyrenylpyridines for electron-transporting materials in organic light emitting devices and their structural effect on electron injection from LiF/Al cathode. Organic Electronics, 2009, 10, 877-882.	2.6	12
85	Bifluorene compounds containing carbazole and/or diphenylamine groups and their bipolar charge transport properties in organic light emitting devices. Organic Electronics, 2010, 11, 717-723.	2.6	12
86	Roomâ€Temperature Phosphorescence from a Series of 3â€Pyridylcarbazole Derivatives. Chemistry - A European Journal, 2019, 25, 16294-16300.	3.3	12
87	Energy Transfer from Blue-Emitting CsPbBr ₃ Perovskite Nanocrystals to Green-Emitting CsPbBr ₃ Perovskite Nanocrystals. Journal of Physical Chemistry C, 2021, 125, 19368-19373.	3.1	11
88	A morphology control layer of a pyrene dimer enhances the efficiency in small molecule organic photovoltaic cells. Journal of Materials Chemistry C, 2014, 2, 501-509.	5.5	10
89	High-Spin Oxyphenylbenzo-Annelated Dehydro[12]annulene. Chemistry Letters, 1999, 28, 161-162.	1.3	9
90	A Donor–Acceptor-type Host Material for Solution-processed Phosphorescent Organic Light-emitting Devices Showing High Efficiency. Chemistry Letters, 2014, 43, 1935-1936.	1.3	9

#	Article	IF	CITATIONS
91	Achieving Green and Deep-Blue Perovskite LEDs by Dimensional Control Using Various Ammonium Bromides with CsPbBr-3. Materials Today Energy, 2021, , 100749.	4.7	9
92	Electroluminescent Properties of a Solution Processable Carbazole-Substituted Iridium(III) Complex. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2007, 20, 73-75.	0.3	8
93	Triarylamine-Bearing Poly(1,4-phenylenevinylene): Facile Preparation and Its Durable Aminium Polyradical. Polymer Journal, 2007, 39, 675-683.	2.7	8
94	9,10-Bis(bipyridyl, pyridylphenyl, phenylpyridyl, and biphenyl)anthracenes Combining High Electron Transport and Injection, Efficiency and Stability in Fluorescent Organic Light-emitting Devices. Chemistry Letters, 2011, 40, 1092-1094.	1.3	8
95	Orientation and Polarized Optical Emission Properties of Platinum(II) Complexes in Smectic Liquid Crystals. European Journal of Inorganic Chemistry, 2013, 2013, 2212-2219.	2.0	8
96	A Series of Lithium Pyridyl Phenolate Complexes with a Pendant Pyridyl Group for Electron-Injection Layers in Organic Light-Emitting Devices. ACS Applied Materials & Interfaces, 2017, 9, 40541-40548.	8.0	8
97	Inhibition of solution-processed 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile crystallization by mixing additives for hole injection layers in organic light-emitting devices. Polymer Journal, 2017, 49, 149-154.	2.7	8
98	Hydrothermal synthesis of water-soluble Mn- and Cu-doped CdSe quantum dots with multi-shell structures and their photoluminescence properties. RSC Advances, 2022, 12, 6255-6264.	3.6	8
99	Three-color white electroluminescence emission using perovskite quantum dots and organic emitters. Applied Surface Science, 2022, 588, 152875.	6.1	8
100	Donor- or Acceptor-type 9,9′-Bifluorenylidene Derivatives for Attaining Singlet Fission Character in Organic Photovoltaics. Chemistry Letters, 2017, 46, 1126-1129.	1.3	7
101	Simple cubic self-assembly of PbS quantum dots by finely controlled ligand removal through gel permeation chromatography. Chemical Science, 2021, 12, 10354-10361.	7.4	7
102	Phenoxyl Radicals Ferromagnetically Attached to a Cyclic π-Conjugation: 2,8,14-Trisoxyphenyltribenzotrisdehydro [12]Annulene. Molecular Crystals and Liquid Crystals, 1999, 334, 1-10.	0.3	6
103	Red Phosphorescent Iridium Complexes having a Bulky Ancillary Ligand for Solution-processed Organic Light Emitting Diodes. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2008, 21, 323-325.	0.3	6
104	Electron Injection and Transport Properties of Phenazine Compounds with Fused Rings. Japanese Journal of Applied Physics, 2010, 49, 01AB11.	1.5	6
105	High-efficiency deep-blue emitter consisting of a chrysene core and optimized side groups. Materials Today Energy, 2021, 21, 100706.	4.7	6
106	LiF/Al Base Electrodes in Vertical Metal-Base Organic Transistors for Heat-Treatment-Free Process. Japanese Journal of Applied Physics, 2010, 49, 030202.	1.5	4
107	Surfaceâ€lightâ€emitting transistors based on verticalâ€type metalâ€base organic transistors. Journal of the Society for Information Display, 2011, 19, 602-607.	2.1	4
108	Operation behaviors of interconnecting-layers in solution-processed tandem organic light-emitting devices. Organic Electronics, 2018, 63, 98-103.	2.6	4

#	Article	IF	CITATIONS
109	Roles and Impacts of Ancillary Materials for Multi omponent Blend Organic Photovoltaics towards High Efficiency and Stability. ChemSusChem, 2021, 14, 3475-3487.	6.8	4
110	Electroluminescence of Poly(phenylenevinylene)s Containing Triphenylamine Moieties in the Main Chain. Japanese Journal of Applied Physics, 2002, 41, 362-365.	1.5	3
111	Comparison of Spin and Blade Coating Methods in Solution-process for Organic Light-emitting Devices. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2015, 28, 343-347.	0.3	3
112	A Solution-Processable Small-Molecule Host for Phosphorescent Organic Light-Emitting Devices. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2016, 29, 317-321.	0.3	3
113	Surface-Modified Zinc Oxide Nanoparticles for Electron Injection Layers in Organic Light-Emitting Devices. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2017, 30, 483-488.	0.3	3
114	White OLED (WOLED) and Charge Generation Layer (CGL). , 2018, , 1-22.		3
115	Controllable 1D Patterned Assembly of Colloidal Quantum Dots on PbSO ₄ Nanoribbons. Advanced Functional Materials, 2019, 29, 1905175.	14.9	3
116	Charge-Transporting Property of Polymer Films Doped with Organic Stable Radicals. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2003, 16, 297-298.	0.3	2
117	Current Enhancement in the Vertical-Type Metal-Base Organic Transistors. Molecular Crystals and Liquid Crystals, 2009, 504, 133-139.	0.9	2
118	Organic Light-Emitting Devices: Instant Low-Temperature Cross-Linking of Poly(N-vinylcarbazole) for Solution-Processed Multilayer Blue Phosphorescent Organic Light-Emitting Devices (Adv. Mater.) Tj ETQq0 0 0 rg	;BT2/100verlo	ock210 Tf 50 3
119	57â€3: <i>Invited Paper</i> : Solutionâ€Processed Electron Transporting Layer and Interface Characterization in Organic Light Emitting Diodes. Digest of Technical Papers SID International Symposium, 2017, 48, 849-852.	0.3	2
120	Organic Lightâ€Emitting Devices: Airâ€6table and Highâ€Performance Solutionâ€Processed Organic Lightâ€Emitting Devices Based on Hydrophobic Polymeric Ionic Liquid Carrierâ€Injection Layers (Adv.) Tj ETQq0 (0 02ng 6 T /(Overlock 10 T
121	Size control of CH3NH3PbBr3 perovskite cuboid fine crystals synthesized by ligand-free reprecipitation method. Microsystem Technologies, 2018, 24, 619-623.	2.0	2
122	Electroluminescent Properties of a Triphenylamine-Containing Poly(phenylenevinylene) Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2002, 15, 259-260.	0.3	1
123	Mobility Improvement in N-Type Organic FET with Hetero-Layered Structure. Molecular Crystals and Liquid Crystals, 2009, 504, 124-132.	0.9	1
124	Syntheses of Solution-Processable Arylamine Derivatives and Their Application to Organic Light Emitting Devices. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2012, 25, 335-339.	0.3	1
125	Fabrication of Light Scattering Structure by Self-organization of a Polymer: Application to Light Out-coupling Enhancement in OLEDs. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2014, 27, 363-367.	0.3	1
126	Whiteâ€Light Sources: Solutionâ€Processed White Phosphorescent Tandem Organic Lightâ€Emitting Devices (Adv. Mater. 32/2015). Advanced Materials, 2015, 27, 4804-4804.	21.0	1

#	Article	IF	CITATIONS
127	Organic Photovoltaics: Singlet Fission of Non-polycyclic Aromatic Molecules in Organic Photovoltaics (Adv. Mater. 8/2016). Advanced Materials, 2016, 28, 1711-1711.	21.0	1
128	Organic Lightâ€Emitting Devices: Highâ€Performance Green OLEDs Using Thermally Activated Delayed Fluorescence with a Power Efficiency of over 100 lm W ^{â^'1} (Adv. Mater. 13/2016). Advanced Materials, 2016, 28, 2651-2651.	21.0	1
129	Neutron Reflectivity Study for Solution-processed Organic/Organic Interfacial Structures in Organic Light-emitting Devices. Hamon, 2018, 28, 183-186.	0.0	1
130	Colloidal CdS Quantum Dot Fibers Prepared by Electrospinning of Their Wet Gel for Quantum Nanowires. ACS Applied Nano Materials, 2022, 5, 3756-3762.	5.0	1
131	Highly Efficient Organic Light-emitting Devices based on a New Yellow Fluorescent Dopant. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2009, 22, 521-523.	0.3	0
132	Electron-Transporting Materials Containing Pyridylphenyl groups and Their Application to Organic Light-Emitting Devices. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2010, 23, 333-336.	0.3	0
133	57.2:Invited Paper: White OLEDs for General Lighting. Digest of Technical Papers SID International Symposium, 2012, 43, 776-777.	0.3	0
134	Extremely high-efficiency multiphoton emission blue phosphorescent OLEDs with external quantum efficiency exceeding 40%. , 2012, , .		0
135	Organic Light Emitting Devices: Precise Evaluation of Angstromâ€Ordered Mixed Interfaces in Solutionâ€Processed OLEDs by Neutron Reflectometry (Adv. Mater. Interfaces 9/2014). Advanced Materials Interfaces, 2014, 1, .	3.7	0
136	Solution-Processed Organic Light-Emitting Devices. , 2015, , 195-219.		0
137	Pâ€172: Solutionâ€Processed Polymer and Smallâ€Molecule Tandem OLEDs. Digest of Technical Papers SID International Symposium, 2017, 48, 1922-1924.	0.3	0
138	Solutionâ€Processed Tandem OLEDs: An Indolocarbazoleâ€Based Thermally Activated Delayed Fluorescence Host for Solutionâ€Processed Phosphorescent Tandem Organic Lightâ€Emitting Devices Exhibiting Extremely Small Efficiency Rollâ€Off (Adv. Funct. Mater. 16/2019). Advanced Functional Materials, 2019, 29, 1970102.	14.9	0
139	Patterned Assembly: Controllable 1D Patterned Assembly of Colloidal Quantum Dots on PbSO ₄ Nanoribbons (Adv. Funct. Mater. 44/2019). Advanced Functional Materials, 2019, 29, 1970307.	14.9	0
140	Alkoxyphenyl Group-Containing Starburst Host Materials for Efficient Blue and Green Organic Light-Emitting Devices. IEICE Transactions on Electronics, 2011, E94-C, 1848-1850.	0.6	0
141	Low Molecular Weight Materials: Electron Injection Materials. , 2021, , 1-8.		0