Jennifer L Soong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9019897/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Negative priming of soil organic matter following long-term in situ warming of sub-arctic soils. Geoderma, 2022, 410, 115652.	5.1	10
2	Long-term warming reduced microbial biomass but increased recent plant-derived C in microbes of a subarctic grassland. Soil Biology and Biochemistry, 2022, 167, 108590.	8.8	12
3	Global stocks and capacity of mineral-associated soil organic carbon. Nature Communications, 2022, 13, .	12.8	146
4	Warming promotes loss of subsoil carbon through accelerated degradation of plant-derived organic matter. Soil Biology and Biochemistry, 2021, 156, 108185.	8.8	35
5	Five years of whole-soil warming led to loss of subsoil carbon stocks and increased CO ₂ efflux. Science Advances, 2021, 7, .	10.3	98
6	High foliar K and P resorption efficiencies in oldâ€growth tropical forests growing on nutrientâ€poor soils. Ecology and Evolution, 2021, 11, 8969-8982.	1.9	18
7	Whole-soil warming decreases abundance and modifies the community structure of microorganisms in the subsoil but not in surface soil. Soil, 2021, 7, 477-494.	4.9	5
8	Conceptualizing soil organic matter into particulate and mineralâ€associated forms to address global change in the 21st century. Global Change Biology, 2020, 26, 261-273.	9.5	693
9	Microbial carbon limitation: The need for integrating microorganisms into our understanding of ecosystem carbon cycling. Global Change Biology, 2020, 26, 1953-1961.	9.5	239
10	A systemic overreaction to years versus decades of warming in a subarctic grassland ecosystem. Nature Ecology and Evolution, 2020, 4, 101-108.	7.8	33
11	Soil properties explain tree growth and mortality, but not biomass, across phosphorus-depleted tropical forests. Scientific Reports, 2020, 10, 2302.	3.3	74
12	CMIP5 Models Predict Rapid and Deep Soil Warming Over the 21st Century. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005266.	3.0	56
13	Spatial Variation of Soil CO2, CH4 and N2O Fluxes Across Topographical Positions in Tropical Forests of the Guiana Shield. Ecosystems, 2018, 21, 1445-1458.	3.4	29
14	Impact of priming on global soil carbon stocks. Global Change Biology, 2018, 24, 1873-1883.	9.5	134
15	ORCHIMIC (v1.0), a microbe-mediated model for soil organic matter decomposition. Geoscientific Model Development, 2018, 11, 2111-2138.	3.6	39
16	Soil microbial CNP and respiration responses to organic matter and nutrient additions: Evidence from a tropical soil incubation. Soil Biology and Biochemistry, 2018, 122, 141-149.	8.8	62
17	Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils $\hat{a} \in A$ comprehensive method comparison. Soil Biology and Biochemistry, 2018, 125, 10-26.	8.8	269
18	Belowâ€ground biological responses to pyrogenic organic matter and litter inputs in grasslands. Functional Ecology, 2017, 31, 260-269.	3.6	14

JENNIFER L SOONG

#	Article	IF	CITATIONS
19	Using litter chemistry controls on microbial processes to partition litter carbon fluxes with the Litter Decomposition and Leaching (LIDEL) model. Soil Biology and Biochemistry, 2016, 100, 160-174.	8.8	44
20	An integrated spectroscopic and wet chemical approach to investigate grass litter decomposition chemistry. Biogeochemistry, 2016, 128, 107-123.	3.5	40
21	The role of microarthropods in emerging models of soil organic matter. Soil Biology and Biochemistry, 2016, 102, 37-39.	8.8	56
22	Soil microarthropods support ecosystem productivity and soil C accrual: Evidence from a litter decomposition study in the tallgrass prairie. Soil Biology and Biochemistry, 2016, 92, 230-238.	8.8	72
23	Annual burning of a tallgrass prairie inhibits C and N cycling in soil, increasing recalcitrant pyrogenic organic matter storage while reducing N availability. Global Change Biology, 2015, 21, 2321-2333.	9.5	66
24	A new conceptual model on the fate and controls of fresh and pyrolized plant litter decomposition. Biogeochemistry, 2015, 124, 27-44.	3.5	78
25	Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geoscience, 2015, 8, 776-779.	12.9	1,021
26	Quantification and FTIR characterization of dissolved organic carbon and total dissolved nitrogen leached from litter: a comparison of methods across litter types. Plant and Soil, 2014, 385, 125-137.	3.7	33
27	Naphthalene addition to soil surfaces: A feasible method to reduce soil micro-arthropods with negligible direct effects on soil C dynamics. Applied Soil Ecology, 2014, 74, 21-29.	4.3	34
28	Design and Operation of a Continuous ¹³ C and ¹⁵ N Labeling Chamber for Uniform or Differential, Metabolic and Structural, Plant Isotope Labeling. Journal of Visualized Experiments, 2014, , e51117.	0.3	12