Muhammad Abdul-Ghani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9019106/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combination therapy with pioglitazone/exenatide/metformin reduces the prevalence of hepatic fibrosis and steatosis: The efficacy and durability of initial combination therapy for type 2 diabetes (<scp>EDICT</scp>). Diabetes, Obesity and Metabolism, 2022, 24, 899-907.	4.4	15
2	Comprehensive analysis of circulating miRNA expression profiles in insulin resistance and type 2 diabetes in Qatari population. International Journal of Transgender Health, 2022, 15, 191-202.	2.3	0
3	Efficacy of lower doses of pioglitazone after stroke or transient ischaemic attack in patients with insulin resistance. Diabetes, Obesity and Metabolism, 2022, 24, 1150-1158.	4.4	13
4	Dapagliflozin Impairs the Suppression of Endogenous Glucose Production in Type 2 Diabetes Following Oral Glucose. Diabetes Care, 2022, 45, 1372-1380.	8.6	4
5	Modifying chronic kidney disease progression with the mineralocorticoid receptor antagonist finerenone in patients with type 2 diabetes. Diabetes, Obesity and Metabolism, 2022, 24, 1197-1205.	4.4	9
6	Effects of Sustained Hyperglycemia on Skeletal Muscle Lipids in Healthy Subjects. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e3177-e3185.	3.6	4
7	<scp>Type 2 diabetes</scp> subgroups and response to glucoseâ€owering therapy: Results from the <scp>EDICT</scp> and Qatar studies. Diabetes, Obesity and Metabolism, 2022, 24, 1810-1818.	4.4	3
8	FGF21 contributes to metabolic improvements elicited by combination therapy with exenatide and pioglitazone in patients with type 2 diabetes. American Journal of Physiology - Endocrinology and Metabolism, 2022, 323, E123-E132.	3.5	4
9	Effect of Mild Physiologic Hyperglycemia on Insulin Secretion, Insulin Clearance, and Insulin Sensitivity in Healthy Glucose-Tolerant Subjects. Diabetes, 2021, 70, 204-213.	0.6	15
10	Adaptation of Insulin Clearance to Metabolic Demand Is a Key Determinant of Glucose Tolerance. Diabetes, 2021, 70, 377-385.	0.6	47
11	Durability of Triple Combination Therapy Versus Stepwise Addition Therapy in Patients With New-Onset T2DM: 3-Year Follow-up of EDICT. Diabetes Care, 2021, 44, 433-439.	8.6	29
12	Pioglitazone corrects dysregulation of skeletal muscle mitochondrial proteins involved in ATP synthesis in type 2 diabetes. Metabolism: Clinical and Experimental, 2021, 114, 154416.	3.4	23
13	Pathophysiology of diabetic kidney disease: impact of SGLT2 inhibitors. Nature Reviews Nephrology, 2021, 17, 319-334.	9.6	244
14	Impaired Suppression of Glucagon in Obese Subjects Parallels Decline in Insulin Sensitivity and Beta-Cell Function. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 1398-1409.	3.6	16
15	Insulin Resistance and Hyperinsulinemia: the Egg and the Chicken. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 1897-1899.	3.6	16
16	Accuracy of 1-Hour Plasma Glucose During the Oral Glucose Tolerance Test in Diagnosis of Type 2 Diabetes in Adults: A Meta-analysis. Diabetes Care, 2021, 44, 1062-1069.	8.6	25
17	Adiponectin Alleviates Diet-Induced Inflammation in the Liver by Suppressing MCP-1 Expression and Macrophage Infiltration. Diabetes, 2021, 70, 1303-1316.	0.6	22
18	Therapeutic Manipulation of Myocardial Metabolism. Journal of the American College of Cardiology, 2021, 77, 2022-2039.	2.8	40

#	Article	IF	CITATIONS
19	Insulin secretion is a strong predictor for need of insulin therapy in patients with newâ€onset diabetes and <scp>HbA1c of more than 10%: A</scp> post hoc analysis of the <scp>EDICT</scp> study. Diabetes, Obesity and Metabolism, 2021, 23, 1631-1639.	4.4	2
20	Preface: Cardiorenal Considerations for Type 2 Diabetes—Time to Exit the Dark Ages. Diabetes Spectrum, 2021, 34, 214-215.	1.0	0
21	Personalized approach for type 2 diabetes pharmacotherapy: where are we and where do we need to be?. Expert Opinion on Pharmacotherapy, 2021, 22, 1-13.	1.8	2
22	Sodium–Glucose Cotransporter 2 Inhibitors and the Kidney. Diabetes Spectrum, 2021, 34, 225-234.	1.0	1
23	Insulin Secretion Predicts the Response to Antidiabetic Therapy in Patients With New-onset Diabetes. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 3497-3504.	3.6	3
24	Hormoneâ€substrate changes with exenatide plus dapagliflozin versus each drug alone: The randomized, activeâ€controlled DURATIONâ€8 study. Diabetes, Obesity and Metabolism, 2020, 22, 99-106.	4.4	5
25	Clinical Parameters, Fuel Oxidation, and Glucose Kinetics in Patients With Type 2 Diabetes Treated With Dapagliflozin Plus Saxagliptin. Diabetes Care, 2020, 43, 2519-2527.	8.6	3
26	Combination therapy with pioglitazone/exenatide improves betaâ€cell function and produces superior glycaemic control compared with basal/bolus insulin in poorly controlled type 2 diabetes: A <scp>3â€</scp> year followâ€up of the Qatar study. Diabetes, Obesity and Metabolism, 2020, 22, 2287-2294.	4.4	7
27	Improved Beta Cell Glucose Sensitivity Plays Predominant Role in the Decrease in HbA1c with Cana and Lira in T2DM. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 3226-3233.	3.6	10
28	Increase in endogenous glucose production with SGLT2 inhibition is attenuated in individuals who underwent kidney transplantation and bilateral native nephrectomy. Diabetologia, 2020, 63, 2423-2433.	6.3	17
29	Evidence Against an Important Role of Plasma Insulin and Glucagon Concentrations in the Increase in EGP Caused by SGLT2 Inhibitors. Diabetes, 2020, 69, 681-688.	0.6	23
30	Combination Therapy With Canagliflozin Plus Liraglutide Exerts Additive Effect on Weight Loss, but Not on HbA1c, in Patients With Type 2 Diabetes. Diabetes Care, 2020, 43, 1234-1241.	8.6	30
31	The tumor suppressor TMEM127 regulates insulin sensitivity in a tissue-specific manner. Nature Communications, 2019, 10, 4720.	12.8	14
32	Glycated hemoglobin versus oral glucose tolerance test in the identification of subjects with prediabetes in Qatari population. BMC Endocrine Disorders, 2019, 19, 87.	2.2	4
33	Insulin Resistance and Atherosclerosis: Implications for Insulin-Sensitizing Agents. Endocrine Reviews, 2019, 40, 1447-1467.	20.1	210
34	Pioglitazone: The forgotten, cost-effective cardioprotective drug for type 2 diabetes. Diabetes and Vascular Disease Research, 2019, 16, 133-143.	2.0	155
35	Mild Physiologic Hyperglycemia Induces Hepatic Insulin Resistance in Healthy Normal Glucose-Tolerant Participants. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 2842-2850.	3.6	18
36	Exenatide modulates visual cortex responses. Diabetes/Metabolism Research and Reviews, 2019, 35, e3167.	4.0	3

#	Article	IF	CITATIONS
37	Glucose-Mediated Glucose Disposal at Baseline Insulin Is Impaired in IFG. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 163-171.	3.6	14
38	Pioglitazone prevents the increase in plasma ketone concentration associated with dapagliflozin in insulinâ€ŧreated T2DM patients: Results from the Qatar Study. Diabetes, Obesity and Metabolism, 2019, 21, 705-709.	4.4	3
39	Insulin Resistance the Link between T2DM and CVD: Basic Mechanisms and Clinical Implications. Current Vascular Pharmacology, 2019, 17, 153-163.	1.7	39
40	Impaired left ventricular diastolic function in T2 <scp>DM</scp> patients is closely related to glycemic control. Endocrinology, Diabetes and Metabolism, 2018, 1, e00014.	2.4	6
41	Empagliflozin Treatment Is Associated With Improved β-Cell Function in Type 2 Diabetes Mellitus. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 1402-1407.	3.6	63
42	Slope of change in HbA _{1c} from baseline with empagliflozin compared with sitagliptin or glimepiride in patients with type 2 diabetes. Endocrinology, Diabetes and Metabolism, 2018, 1, e00016.	2.4	12
43	Endogenous Glucose Production and Hormonal Changes in Response to Canagliflozin and Liraglutide Combination Therapy. Diabetes, 2018, 67, 1182-1189.	0.6	44
44	Insulin secretion predicts the response to therapy with exenatide plus pioglitazone, but not to basal/bolus insulin in poorly controlled T2DM patients: Results from the Qatar study. Diabetes, Obesity and Metabolism, 2018, 20, 1075-1079.	4.4	7
45	Glucose lowering and vascular protective effects of cycloset added to <scp>GLP</scp> â€1 receptor agonists in patients with type 2 diabetes. Endocrinology, Diabetes and Metabolism, 2018, 1, e00034.	2.4	9
46	Petition to replace current OGTT criteria for diagnosing prediabetes with the 1-hour post-load plasma glucoseâ€^a‰¥â€~155â€~mg/dl (8.6â€~mmol/L). Diabetes Research and Clinical Practice, 2018, 146, 18-33.	2.8	71
47	Effect of Chronic Hyperglycemia on Glucose Metabolism in Subjects With Normal Glucose Tolerance. Diabetes, 2018, 67, 2507-2517.	0.6	26
48	Reduced skeletal muscle phosphocreatine concentration in type 2 diabetic patients: a quantitative image-based phosphorus-31 MR spectroscopy study. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E229-E239.	3.5	15
49	Pioglitazone and cardiovascular risk in T2DM patients: is it good for all?. Annals of Translational Medicine, 2018, 6, 192-192.	1.7	4
50	Therapeutic strategies for type 2 diabetes mellitus patients with very high HbA1c: is insulin the only option?. Annals of Translational Medicine, 2018, 6, S95-S95.	1.7	3
51	Combination Therapy With Exenatide Plus Pioglitazone Versus Basal/Bolus Insulin in Patients With Poorly Controlled Type 2 Diabetes on Sulfonylurea Plus Metformin: The Qatar Study. Diabetes Care, 2017, 40, 325-331.	8.6	32
52	Role of Adipose Tissue Insulin Resistance in the Natural History of Type 2 Diabetes: Results From the San Antonio Metabolism Study. Diabetes, 2017, 66, 815-822.	0.6	234
53	Determinants of the increase in ketone concentration during <scp>SGLT2</scp> inhibition in <scp>NGT</scp> , <scp>IFG</scp> and <scp>T2DM</scp> patients. Diabetes, Obesity and Metabolism, 2017, 19, 809-813.	4.4	61
54	Empagliflozin and Kinetics of Renal Glucose Transport in Healthy Individuals and Individuals With Type 2 Diabetes. Diabetes, 2017, 66, 1999-2006.	0.6	67

#	Article	IF	CITATIONS
55	Combination therapy with <scp>GLP</scp> â€1 receptor agonist and <scp>SGLT2</scp> inhibitor. Diabetes, Obesity and Metabolism, 2017, 19, 1353-1362.	4.4	120
56	Sodiumâ€glucose coâ€ŧransporter (<scp>SGLT</scp>) and glucose transporter (<scp>GLUT</scp>) expression in the kidney of type 2 diabetic subjects. Diabetes, Obesity and Metabolism, 2017, 19, 1322-1326.	4.4	74
57	Efficacy of Exenatide Plus Pioglitazone Vs Basal/Bolus Insulin in T2DM Patients With Very High HbA1c. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 2162-2170.	3.6	12
58	Cardiovascular Disease and Type 2 Diabetes: Has the Dawn of a New Era Arrived?. Diabetes Care, 2017, 40, 813-820.	8.6	109
59	Inhibition of Renal Sodium–Glucose Cotransport With Empagliflozin Lowers Fasting Plasma Glucose and Improves β-Cell Function in Subjects With Impaired Fasting Glucose. Diabetes, 2017, 66, 2495-2502.	0.6	21
60	Consensus Statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the Comprehensive type 2 Diabetes Management Algorithm – 2017 Executive Summary. Endocrine Practice, 2017, 23, 207-238.	2.1	362
61	Impact of ethnicity and obesity on insulin resistance in two ethnic groups at very high risk of type 2 diabetes. Diabetes and Metabolism, 2017, 43, 292-294.	2.9	5
62	Renal, metabolic and cardiovascular considerations of SGLT2 inhibition. Nature Reviews Nephrology, 2017, 13, 11-26.	9.6	398
63	Pioglitazone inhibits mitochondrial pyruvate metabolism and glucose production in hepatocytes. FEBS Journal, 2017, 284, 451-465.	4.7	27
64	Pioglitazone Improves Left Ventricular Diastolic Function in Subjects With Diabetes. Diabetes Care, 2017, 40, 1530-1536.	8.6	45
65	ls It Time to Change the Type 2 Diabetes Treatment Paradigm? Yes! GLP-1 RAs Should Replace Metformin in the Type 2 Diabetes Algorithm. Diabetes Care, 2017, 40, 1121-1127.	8.6	43
66	The Primary Glucose-Lowering Effect of Metformin Resides in the Gut, Not the Circulation: Results From Short-term Pharmacokinetic and 12-Week Dose-Ranging Studies. Diabetes Care, 2016, 39, 198-205.	8.6	240
67	Prediabetes and risk of diabetes and associated complications. Current Opinion in Clinical Nutrition and Metabolic Care, 2016, 19, 394-399.	2.5	35
68	Once-daily delayed-release metformin lowers plasma glucose and enhances fasting and postprandial GLP-1 and PYY: results from two randomised trials. Diabetologia, 2016, 59, 1645-1654.	6.3	95
69	SGLT2 Inhibitors and Cardiovascular Risk: Lessons Learned From the EMPA-REG OUTCOME Study. Diabetes Care, 2016, 39, 717-725.	8.6	244
70	Discordance Between Central (Brain) and Pancreatic Action of Exenatide in Lean and Obese Subjects. Diabetes Care, 2016, 39, 1804-1810.	8.6	15
71	Dapagliflozin Enhances Fat Oxidation and Ketone Production in Patients With Type 2 Diabetes. Diabetes Care, 2016, 39, 2036-2041.	8.6	155
72	Revitalization of pioglitazone: the optimum agent to be combined with a sodiumâ€glucose coâ€transporterâ€2 inhibitor. Diabetes, Obesity and Metabolism, 2016, 18, 454-462.	4.4	44

#	Article	IF	CITATIONS
73	Diverted sleeve gastrectomy with ileal transposition in overweight, obese, and morbidly obese patients with type 2 diabetes: results of 1-year follow-up. Surgery for Obesity and Related Diseases, 2016, 12, 541-549.	1.2	9
74	Type 2 diabetes mellitus. Nature Reviews Disease Primers, 2015, 1, 15019.	30.5	1,308
75	Combination of Empagliflozin and Linagliptin as Second-Line Therapy in Subjects With Type 2 Diabetes Inadequately Controlled on Metformin. Diabetes Care, 2015, 38, 384-393.	8.6	241
76	Dapagliflozin Lowers Plasma Glucose Concentration and Improves Î ² -Cell Function. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 1927-1932.	3.6	133
77	Fiber orientation measurements by diffusion tensor imaging improve hydrogen-1 magnetic resonance spectroscopy of intramyocellular lipids in human leg muscles. Journal of Medical Imaging, 2015, 2, 026002.	1.5	3
78	Renal sodium-glucose cotransporter inhibition in the management of type 2 diabetes mellitus. American Journal of Physiology - Renal Physiology, 2015, 309, F889-F900.	2.7	113
79	Initial combination therapy with metformin, ploglitazone and exenatide is more effective than sequential addâ€on therapy in subjects with newâ€onset diabetes. Results from the <scp>E</scp> fficacy and <scp>D</scp> urability of <scp>I</scp> nitial <scp>C</scp> ombination <scp>T</scp> herapy for <scp>T</scp> period contents (<scp>E>D</scp> indetes (<scp>EDICT</scp>): a randomized trial. Diabetes, Obesity and	4.4	160
80	Effect of vildagliptin add-on treatment to metformin on plasma asymmetric dimethylarginine in type 2 diabetes mellitus patients. Drug Design, Development and Therapy, 2014, 8, 239.	4.3	7
81	The Disposition Index Does Not Reflect β-Cell Function in IGT Subjects Treated With Pioglitazone. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 3774-3781.	3.6	34
82	Strong Association Between Insulin-Mediated Glucose Uptake and the 2-Hour, Not the Fasting Plasma Glucose Concentration, in the Normal Glucose Tolerance Range. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 3444-3449.	3.6	9
83	What are the pharmacotherapy options for treating prediabetes?. Expert Opinion on Pharmacotherapy, 2014, 15, 2003-2018.	1.8	21
84	Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production. Journal of Clinical Investigation, 2014, 124, 509-514.	8.2	661
85	Prevention of Diabetes With Pioglitazone in ACT NOW. Diabetes, 2013, 62, 3920-3926.	0.6	83
86	Mechanisms of Glucose Lowering of Dipeptidyl Peptidase-4 Inhibitor Sitagliptin When Used Alone or With Metformin in Type 2 Diabetes. Diabetes Care, 2013, 36, 2756-2762.	8.6	52
87	Non-Alcoholic Fatty Liver Disease (NAFLD) and Its Connection with Insulin Resistance, Dyslipidemia, Atherosclerosis and Coronary Heart Disease. Nutrients, 2013, 5, 1544-1560.	4.1	648
88	Pioglitazone Slows Progression of Atherosclerosis in Prediabetes Independent of Changes in Cardiovascular Risk Factors. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 393-399.	2.4	97
89	Pleiotropic Effects of Thiazolidinediones: Implications for the Treatment of Patients With Type 2 Diabetes Mellitus. Hospital Practice (1995), 2013, 41, 132-147.	1.0	24
90	In Vivo Actions of Peroxisome Proliferator–Activated Receptors. Diabetes Care, 2013, 36, S162-S174.	8.6	94

Muhammad Abdul-Ghani

#	Article	IF	CITATIONS
91	Characterization of Renal Glucose Reabsorption in Response to Dapagliflozin in Healthy Subjects and Subjects With Type 2 Diabetes. Diabetes Care, 2013, 36, 3169-3176.	8.6	233
92	Novel Hypothesis to Explain Why SGLT2 Inhibitors Inhibit Only 30–50% of Filtered Glucose Load in Humans. Diabetes, 2013, 62, 3324-3328.	0.6	198
93	Distinct Â-Cell Defects in Impaired Fasting Glucose and Impaired Glucose Tolerance. Diabetes, 2012, 61, 447-453.	0.6	96
94	Efficacy and Tolerability of the DPP-4 Inhibitor Alogliptin Combined with Pioglitazone, in Metformin-Treated Patients with Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 1615-1622.	3.6	88
95	The role of the kidneys in glucose homeostasis: a new path towards normalizing glycaemia. Diabetes, Obesity and Metabolism, 2012, 14, 5-14.	4.4	398
96	Preservation of β-Cell Function: The Key to Diabetes Prevention. Journal of Clinical Endocrinology and Metabolism, 2011, 96, 2354-2366.	3.6	207
97	Pioglitazone for Diabetes Prevention in Impaired Glucose Tolerance. New England Journal of Medicine, 2011, 364, 1104-1115.	27.0	646
98	Impaired early- but not late-phase insulin secretion in subjects with impaired fasting glucose. Acta Diabetologica, 2011, 48, 209-217.	2.5	55
99	Effect of Exenatide on Splanchnic and Peripheral Glucose Metabolism in Type 2 Diabetic Subjects. Journal of Clinical Endocrinology and Metabolism, 2011, 96, 1763-1770.	3.6	45
100	Bromocriptine: A Sympatholytic, D2-Dopamine Agonist for the Treatment of Type 2 Diabetes. Diabetes Care, 2011, 34, 789-794.	8.6	209
101	The Relationship Between Â-Cell Function and Clycated Hemoglobin: Results from the Veterans Administration Genetic Epidemiology Study. Diabetes Care, 2011, 34, 1006-1010.	8.6	53
102	Role of Sodium-Glucose Cotransporter 2 (SGLT 2) Inhibitors in the Treatment of Type 2 Diabetes. Endocrine Reviews, 2011, 32, 515-531.	20.1	344
103	Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links. The Claude Bernard Lecture 2009. Diabetologia, 2010, 53, 1270-1287.	6.3	678
104	Relationship of baseline HbA _{1c} and efficacy of current glucoseâ€lowering therapies: a metaâ€analysis of randomized clinical trials. Diabetic Medicine, 2010, 27, 309-317.	2.3	183
105	Effects of Exenatide Plus Rosiglitazone on β-Cell Function and Insulin Sensitivity in Subjects With Type 2 Diabetes on Metformin. Diabetes Care, 2010, 33, 951-957.	8.6	100
106	Pathogenesis of Insulin Resistance in Skeletal Muscle. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-19.	3.0	441
107	Effects of Pioglitazone on Intramyocellular Fat Metabolism in Patients with Type 2 Diabetes Mellitus. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 1916-1923.	3.6	72
108	Pioglitazone stimulates AMP-activated protein kinase signalling and increases the expression of genes involved in adiponectin signalling, mitochondrial function and fat oxidation in human skeletal muscle in vivo: a randomised trial. Diabetologia, 2009, 52, 723-732.	6.3	127

#	Article	IF	CITATIONS
109	From the Triumvirate to the Ominous Octet: A New Paradigm for the Treatment of Type 2 Diabetes Mellitus. Diabetes, 2009, 58, 773-795.	0.6	2,251
110	Effects of exenatide versus sitagliptin on postprandial glucose, insulin and glucagon secretion, gastric emptying, and caloric intake: a randomized, cross-over study. Current Medical Research and Opinion, 2008, 24, 2943-2952.	1.9	341
111	Rosiglitazone and pioglitazone similarly improve insulin sensitivity and secretion, glucose tolerance and adipocytokines in type 2 diabetic patients. Diabetes, Obesity and Metabolism, 2008, 10, 1204-1211.	4.4	76
112	Elevated Toll-Like Receptor 4 Expression and Signaling in Muscle From Insulin-Resistant Subjects. Diabetes, 2008, 57, 2595-2602.	0.6	319
113	Insulin Reduces Plasma Arginase Activity in Type 2 Diabetic Patients. Diabetes Care, 2008, 31, 134-139.	8.6	97
114	Decreased Non–Insulin-Dependent Glucose Clearance Contributes to the Rise in Fasting Plasma Glucose in the Nondiabetic Range. Diabetes Care, 2008, 31, 311-315.	8.6	30
115	The relationship between fasting hyperglycemia and insulin secretion in subjects with normal or impaired glucose tolerance. American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E401-E406.	3.5	70
116	Mechanism of action of exenatide to reduce postprandial hyperglycemia in type 2 diabetes. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E846-E852.	3.5	144
117	Effect of acute physiological hyperinsulinemia on gene expression in human skeletal muscle in vivo. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E910-E917.	3.5	76
118	Thiazolidinediones improve β-cell function in type 2 diabetic patients. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E871-E883.	3.5	167
119	Relationship Between Hepatic/Visceral Fat and Hepatic Insulin Resistance in Nondiabetic and Type 2 Diabetic Subjects. Gastroenterology, 2007, 133, 496-506.	1.3	500
120	Reduction in Hematocrit and Hemoglobin Following Pioglitazone Treatment is not Hemodilutional in Type II Diabetes Mellitus. Clinical Pharmacology and Therapeutics, 2007, 82, 275-281.	4.7	80
121	Effects of peroxisome proliferator-activated receptor (PPAR)-α and PPAR-γ agonists on glucose and lipid metabolism in patients with type 2 diabetes mellitus. Diabetologia, 2007, 50, 1723-1731.	6.3	124
122	A Placebo-Controlled Trial of Pioglitazone in Subjects with Nonalcoholic Steatohepatitis. New England Journal of Medicine, 2006, 355, 2297-2307.	27.0	1,584
123	Comprehensive assessment of postischemic vascular reactivity in Hispanic children and adults with and without diabetes mellitus. Pediatric Diabetes, 2006, 7, 329-335.	2.9	13
124	Insulin resistance and endothelial dysfunction: the road map to cardiovascular diseases. Diabetes/Metabolism Research and Reviews, 2006, 22, 423-436.	4.0	373
125	The Effect of Pioglitazone on the Liver: Role of adiponectin. Diabetes Care, 2006, 29, 2275-2281.	8.6	76
126	Reduced Skeletal Muscle Inhibitor of ÂBÂ Content Is Associated With Insulin Resistance in Subjects With Type 2 Diabetes: Reversal by Exercise Training. Diabetes, 2006, 55, 760-767.	0.6	124

#	Article	IF	CITATIONS
127	Insulin Secretion and Action in Subjects With Impaired Fasting Glucose and Impaired Glucose Tolerance: Results From the Veterans Administration Genetic Epidemiology Study. Diabetes, 2006, 55, 1430-1435.	0.6	429
128	Contributions of Â-Cell Dysfunction and Insulin Resistance to the Pathogenesis of Impaired Glucose Tolerance and Impaired Fasting Glucose. Diabetes Care, 2006, 29, 1130-1139.	8.6	382
129	Effect of a Sustained Reduction in Plasma Free Fatty Acid Concentration on Intramuscular Long-Chain Fatty Acyl-CoAs and Insulin Action in Type 2 Diabetic Patients. Diabetes, 2005, 54, 3148-3153.	0.6	162
130	β-Cell Function in Subjects Spanning the Range from Normal Glucose Tolerance to Overt Diabetes: A New Analysis. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 493-500.	3.6	470
131	Dose-Response Effect of Elevated Plasma Free Fatty Acid on Insulin Signaling. Diabetes, 2005, 54, 1640-1648.	0.6	333
132	Insulin Resistance Is Associated with Impaired Nitric Oxide Synthase Activity in Skeletal Muscle of Type 2 Diabetic Subjects. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 1100-1105.	3.6	124
133	Lipid Infusion Decreases the Expression of Nuclear Encoded Mitochondrial Genes and Increases the Expression of Extracellular Matrix Genes in Human Skeletal Muscle. Journal of Biological Chemistry, 2005, 280, 10290-10297.	3.4	217
134	A Meta-analysis Comparing the Effect of Thiazolidinediones on Cardiovascular Risk Factors. Archives of Internal Medicine, 2004, 164, 2097.	3.8	264
135	Decreased Plasma Adiponectin Concentrations Are Closely Related to Hepatic Fat Content and Hepatic Insulin Resistance in Pioglitazone-Treated Type 2 Diabetic Patients. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 200-206.	3.6	340
136	Discordant effects of a chronic physiological increase in plasma FFA on insulin signaling in healthy subjects with or without a family history of type 2 diabetes. American Journal of Physiology - Endocrinology and Metabolism, 2004, 287, E537-E546.	3.5	89
137	Dysfunctional fat cells, lipotoxicity and type 2 diabetes. International Journal of Clinical Practice, 2004, 58, 9-21.	1.7	175
138	Beta-cell dysfunction and glucose intolerance: results from the San Antonio metabolism (SAM) study. Diabetologia, 2004, 47, 31-39.	6.3	287
139	Role of the Adipocyte, Free Fatty Acids, and Ectopic Fat in Pathogenesis of Type 2 Diabetes Mellitus: Peroxisomal Proliferator-Activated Receptor Agonists Provide a Rational Therapeutic Approach. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 463-478.	3.6	570
140	Predominant role of reduced beta-cell sensitivity to glucose over insulin resistance in impaired glucose tolerance. Diabetologia, 2003, 46, 1211-1219.	6.3	103
141	Metabolic and molecular basis of insulin resistance. Journal of Nuclear Cardiology, 2003, 10, 311-323.	2.1	96
142	Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of <i>PGC1</i> and <i>NRF1</i> . Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8466-8471.	7.1	1,800
143	Rosiglitazone Improves Downstream Insulin Receptor Signaling in Type 2 Diabetic Patients. Diabetes, 2003, 52, 1943-1950.	0.6	128
144	Pioglitazone Reduces Hepatic Fat Content and Augments Splanchnic Glucose Uptake in Patients With Type 2 Diabetes. Diabetes, 2003, 52, 1364-1370.	0.6	265

#	Article	IF	CITATIONS
145	A Sustained Increase in Plasma Free Fatty Acids Impairs Insulin Secretion in Nondiabetic Subjects Genetically Predisposed to Develop Type 2 Diabetes. Diabetes, 2003, 52, 2461-2474.	0.6	447
146	Effect of Pioglitazone on Abdominal Fat Distribution and Insulin Sensitivity in Type 2 Diabetic Patients. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 2784-2791.	3.6	629
147	Free Fatty Acids Reduce Splanchnic and Peripheral Glucose Uptake in Patients With Type 2 Diabetes. Diabetes, 2002, 51, 3043-3048.	0.6	44
148	Glucagon dose-response curve for hepatic glucose production and glucose disposal in type 2 diabetic patients and normal individuals. Metabolism: Clinical and Experimental, 2002, 51, 1111-1119.	3.4	76
149	Physiological hyperinsulinemia impairs insulin-stimulated glycogen synthase activity and glycogen synthesis. American Journal of Physiology - Endocrinology and Metabolism, 2001, 280, E712-E719.	3.5	45
150	Effect of rosiglitazone on glucose and non-esterified fatty acid metabolism in Type II diabetic patients. Diabetologia, 2001, 44, 2210-2219.	6.3	253
151	Skeletal Muscle Insulin Resistance in Normoglycemic Subjects With a Strong Family History of Type 2 Diabetes Is Associated With Decreased Insulin-Stimulated Insulin Receptor Substrate-1 Tyrosine Phosphorylation. Diabetes, 2001, 50, 2572-2578.	0.6	100
152	Improved Glycemic Control and Enhanced Insulin Sensitivity in Type 2 Diabetic Subjects Treated With Pioglitazone. Diabetes Care, 2001, 24, 710-719.	8.6	367
153	Insulin resistance differentially affects the PI 3-kinase– and MAP kinase–mediated signaling in human muscle. Journal of Clinical Investigation, 2000, 105, 311-320.	8.2	953
154	Bromocriptine: a novel approach to the treatment of type 2 diabetes Diabetes Care, 2000, 23, 1154-1161.	8.6	224
155	Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp Diabetes Care, 1999, 22, 1462-1470.	8.6	4,832
156	Chronic physiologic hyperinsulinemia impairs suppression of plasma free fatty acids and increases de novo lipogenesis but does not cause dyslipidemia in conscious normal rats. Metabolism: Clinical and Experimental, 1999, 48, 330-337.	3.4	41
157	Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidaemia and atherosclerosis. Netherlands Journal of Medicine, 1997, 50, 191-197.	0.5	232
158	UDP-N-acetylglucosamine transferase and glutamine: fructose 6-phosphate amidotransferase activities in insulin-sensitive tissues. Diabetologia, 1997, 40, 76-81.	6.3	45
159	Insulin resistance and coronary artery disease. Diabetologia, 1996, 39, 1345-1350.	6.3	187
160	Metabolic effects of metformin on glucose and lactate metabolism in noninsulin-dependent diabetes mellitus Journal of Clinical Endocrinology and Metabolism, 1996, 81, 4059-4067.	3.6	349
161	Increased Glutamine:Fructose-6-Phosphate Amidotransferase Activity in Skeletal Muscle of Patients With NIDDM. Diabetes, 1996, 45, 302-307.	0.6	113
162	Reciprocal Variations in Insulin-Stimulated Glucose Uptake and Pancreatic Insulin Secretion in Women With Normal Glucose Tolerance. Journal of the Society for Gynecologic Investigation, 1995, 2, 708-715.	1.7	31

#	Article	IF	CITATIONS
163	Efficacy of Metformin in Patients with Non-Insulin-Dependent Diabetes Mellitus. New England Journal of Medicine, 1995, 333, 541-549.	27.0	1,213
164	Reciprocal variations in insulin-stimulated glucose uptake and pancreatic insulin secretion in women with normal glucose tolerance. Journal of the Society for Gynecologic Investigation, 1995, 2, 708-715.	1.7	37
165	Comparison of the effects of human recombinant insulin-like growth factor I and insulin on plasma amino acid concentrations and leucine kinetics in humans. Diabetologia, 1995, 38, 732-738.	6.3	0
166	Effect of sustained physiologic hyperinsulinaemia and hyperglycaemia on insulin secretion and insulin sensitivity in man. Diabetologia, 1994, 37, 1025-1035.	6.3	280
167	Effect of sustained physiologic hyperinsulinaemia and hyperglycaemia on insulin secretion and insulin sensitivity in man. Diabetologia, 1994, 37, 1025-1035.	6.3	17
168	The Metabolic Profile of NIDDM Is Fully Established in Glucose-Tolerant Offspring of Two Mexican-American NIDDM Parents. Diabetes, 1992, 41, 1575-1586.	0.6	277
169	Total Body Fat Content and Fat Topography Are Associated Differently With In Vivo Glucose Metabolism in Nonobese and Obese Nondiabetic Women. Diabetes, 1992, 41, 1151-1159.	0.6	145
170	Insulin resistance, hypertension and cellular ion transport systems. Acta Diabetologica, 1992, 29, 196-200.	2.5	5
171	Insulin Resistance: A Multifaceted Syndrome Responsible for NIDDM, Obesity, Hypertension, Dyslipidemia, and Atherosclerotic Cardiovascular Disease. Diabetes Care, 1991, 14, 173-194.	8.6	3,723
172	Differential effect of hyperglycemia and hyperinsulinemia on pathways of hepatic glycogen repletion. American Journal of Physiology - Endocrinology and Metabolism, 1991, 260, E731-E735.	3.5	12
173	Mechanism of Metformin Action in Obese and Lean Noninsulin-Dependent Diabetic Subjects*. Journal of Clinical Endocrinology and Metabolism, 1991, 73, 1294-1301.	3.6	363
174	Normalization of blood glucose in diabetic rats with phlorizin treatment reverses insulin-resistant glucose transport in adipose cells without restoring glucose transporter gene expression Journal of Clinical Investigation, 1991, 87, 561-570.	8.2	155
175	Indirect calorimetry: methodological and interpretative problems. American Journal of Physiology - Endocrinology and Metabolism, 1990, 258, E399-E412.	3.5	200
176	Glucose Toxicity. Diabetes Care, 1990, 13, 610-630.	8.6	889
177	Quantitation of Muscle Glycogen Synthesis in Normal Subjects and Subjects with Non-Insulin-Dependent Diabetes by ¹³ C Nuclear Magnetic Resonance Spectroscopy. New England Journal of Medicine, 1990, 322, 223-228.	27.0	1,181
178	Obesity and insulin resistance in humans: A dose-response study. Metabolism: Clinical and Experimental, 1990, 39, 452-459.	3.4	333
179	Effect of loss of first-phase insulin secretion on hepatic glucose production and tissue glucose disposal in humans. American Journal of Physiology - Endocrinology and Metabolism, 1989, 257, E241-E246.	3.5	101
180	Fasting hyperglycemia in non-insulin-dependent diabetes mellitus: Contributions of excessive hepatic glucose production and impaired tissue glucose uptake. Metabolism: Clinical and Experimental, 1989, 38, 387-395.	3.4	492

#	Article	IF	CITATIONS
181	Glucose and free fatty acid metabolism in non-insulin-dependent diabetes mellitus. Evidence for multiple sites of insulin resistance Journal of Clinical Investigation, 1989, 84, 205-213.	8.2	710
182	The disposal of an oral glucose load in patients with non-insulin-dependent diabetes. Metabolism: Clinical and Experimental, 1988, 37, 79-85.	3.4	268
183	The Triumvirate: β-Cell, Muscle, Liver: A Collusion Responsible for NIDDM. Diabetes, 1988, 37, 667-687.	0.6	2,466
184	Effect of Physical Training on Insulin Action in Obesity. Diabetes, 1987, 36, 1379-1385.	0.6	153
185	Role of Lipid Oxidation in Pathogenesis of Insulin Resistance of Obesity and Type II Diabetes. Diabetes, 1987, 36, 1341-1350.	0.6	259
186	Correction of hyperglycemia with phlorizin normalizes tissue sensitivity to insulin in diabetic rats Journal of Clinical Investigation, 1987, 79, 1510-1515.	8.2	722
187	Effect of chronic hyperglycemia on in vivo insulin secretion in partially pancreatectomized rats Journal of Clinical Investigation, 1987, 80, 1037-1044.	8.2	312
188	Physical training and insulin sensitivity. Diabetes/metabolism Reviews, 1986, 1, 445-481.	0.3	222
189	Effect of insulin on the distribution and disposition of glucose in man Journal of Clinical Investigation, 1985, 76, 357-364.	8.2	223
190	Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus Journal of Clinical Investigation, 1985, 76, 149-155.	8.2	974
191	Regulation of Splanchnic and Peripheral Glucose Uptake by Insulin and Hyperglycemia in Man. Diabetes, 1983, 32, 35-45.	0.6	548
192	Insulin secretion, insulin resistance, and obesity. , 1982, 6 Suppl 1, 73-82.		15
193	Glucose Intolerance and Aging. Diabetes Care, 1981, 4, 493-501.	8.6	329
194	The role of fractional glucose extraction in the regulation of splanchnic glucose metabolism in normal and diabetic man. Metabolism: Clinical and Experimental, 1980, 29, 28-35.	3.4	117
195	Glucose clamp technique: a method for quantifying insulin secretion and resistance American Journal of Physiology - Endocrinology and Metabolism, 1979, 237, E214.	3.5	4,022
196	Influence of hyperinsulinemia, hyperglycemia, and the route of glucose administration on splanchnic glucose exchange. Proceedings of the National Academy of Sciences of the United States of America, 1978, 75, 5173-5177.	7.1	279
197	Insulin Binding to Monocytes and Insulin Action in Human Obesity, Starvation, and Refeeding. Journal of Clinical Investigation, 1978, 62, 204-213.	8.2	235
198	A Test of the Hypothesis that the Rate of Fall in Glucose Concentration Triggers Counterregulatory Hormonal Responses in Man. Diabetes, 1977, 26, 445-452.	0.6	80

#	Article	IF	CITATIONS
199	The effects of glucose and insulin on renal electrolyte transport Journal of Clinical Investigation, 1976, 58, 83-90.	8.2	398