Lifeng Chi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9017198/publications.pdf

Version: 2024-02-01

27035 38517 13,087 324 58 99 citations h-index g-index papers 326 326 326 18174 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Abiotic Formation of an Amide Bond via Surfaceâ€Supported Direct Carboxyl–Amine Coupling. Angewandte Chemie - International Edition, 2022, 61, .	7.2	9
2	Self-generating nanogaps for highly effective surface-enhanced Raman spectroscopy. Nano Research, 2022, 15, 3496-3503.	5.8	5
3	Boosting the electronic and catalytic properties of 2D semiconductors with supramolecular 2D hydrogen-bonded superlattices. Nature Communications, 2022, 13, 510.	5.8	19
4	From n-alkane to polyacetylene on Cu (110): Linkage modulation in chain growth. Science China Chemistry, 2022, 65, 733-739.	4.2	1
5	Termination-Accelerated Electrochemical Nitrogen Fixation on Single-Atom Catalysts Supported by MXenes. Journal of Physical Chemistry Letters, 2022, 13, 2800-2807.	2.1	11
6	Converting <i>n</i> -Alkanol to Conjugated Polyenal on Cu(110) Surface at Mild Temperature. Journal of Physical Chemistry Letters, 2022, , 3276-3282.	2.1	2
7	Tandem Desulfurization/C–C Coupling Reaction of Tetrathienylbenzenes on Cu(111): Synthesis of Pentacene and an Exotic Ladder Polymer. ACS Nano, 2022, 16, 6506-6514.	7.3	7
8	Anchoring and Reacting On-Surface to Achieve Programmability. Jacs Au, 2022, 2, 58-65.	3.6	7
9	Substrate-Modulated Synthesis of Metal–Organic Hybrids by Tunable Multiple Aryl–Metal Bonds. Journal of the American Chemical Society, 2022, 144, 8214-8222.	6.6	24
10	Onâ€Surface Debromination of 2,3â€Bis(dibromomethyl)―and 2,3â€Bis(bromomethyl)naphthalene: Dimerization or Polymerization?. Angewandte Chemie - International Edition, 2022, 61, .	7.2	6
11	Surface modification with a fluorinated N-heterocyclic carbene on Au: effect on contact resistance in organic field-effect transistors. Journal of Materials Chemistry C, 2022, 10, 8589-8595.	2.7	10
12	Organic Heteroepitaxy Growth of High-Performance Responsive Thin Films with Solution Shearing Crystals as Templates., 2022, 4, 1314-1321.		1
13	Synthesis of the Two-Dimensional Robust Kagome Lattice on $Au(111)$ via the Introduction of Fe Atoms. Journal of Physical Chemistry C, 2022, 126, 12009-12014.	1.5	3
14	On-Surface Synthesis on Nonmetallic Substrates. , 2021, 3, 56-63.		16
15	A Fundamental Role of the Molecular Length in Forming Metal–Organic Hybrids of Phenol Derivatives on Silver Surfaces. Journal of Physical Chemistry Letters, 2021, 12, 1869-1875.	2.1	5
16	Oxygen-promoted synthesis of armchair graphene nanoribbons on Cu(111). Science China Chemistry, 2021, 64, 636-641.	4.2	8
17	High selective gas sensors based on surface modified polymer transistor. Organic Electronics, 2021, 91, 106083.	1.4	12
18	Structure-activity correlation of Ti ₂ CT ₂ MXenes for Câ€"H activation. Journal of Physics Condensed Matter, 2021, 33, 235201.	0.7	5

#	Article	IF	CITATIONS
19	Direct transformation of <i>n</i> -alkane into all- <i>trans</i> conjugated polyene via cascade dehydrogenation. National Science Review, 2021, 8, nwab093.	4.6	15
20	Constructing and Transferring Two-Dimensional Tessellation Kagome Lattices via Chemical Reactions on Cu(111) Surface. Journal of Physical Chemistry Letters, 2021, 12, 8151-8156.	2.1	8
21	Recent Progresses on the High Performance Organic Electrochemical Transistors. Chemical Research in Chinese Universities, 2021, 37, 975-988.	1.3	5
22	On-surface synthesis of 2D COFs via molecular assembly directed photocycloadditions: a first-principles investigation. Journal of Physics Condensed Matter, 2021, 33, 475201.	0.7	0
23	A highly-efficient, stable, and flexible Kapton tape-based SERS chip. Materials Chemistry Frontiers, 2021, 5, 6471-6475.	3.2	6
24	<i>In situ</i> observation of organic single micro-crystal fabrication by solvent vapor annealing. Journal of Materials Chemistry C, 2021, 9, 9124-9129.	2.7	5
25	High performance gas sensors with dual response based on organic ambipolar transistors. Journal of Materials Chemistry C, 2021, 9, 1584-1592.	2.7	15
26	High performance near-infrared phototransistors <i>via</i> enhanced electron trapping effect. Chemical Communications, 2021, 57, 12123-12126.	2.2	3
27	Water-Induced Chiral Separation on a Au(111) Surface. ACS Nano, 2021, 15, 16896-16903.	7.3	20
28	Lithographical Fabrication of Organic Single-Crystal Arrays by Area-Selective Growth and Solvent Vapor Annealing. ACS Applied Materials & Samp; Interfaces, 2020, 12, 48854-48860.	4.0	12
29	Bottom-Up, On-Surface-Synthesized Armchair Graphene Nanoribbons for Ultra-High-Power Micro-Supercapacitors. Journal of the American Chemical Society, 2020, 142, 17881-17886.	6.6	51
30	Selectively Scissoring Hydrogen-Bonded Cytosine Dimer Structures Catalyzed by Water Molecules. ACS Nano, 2020, 14, 10680-10687.	7. 3	10
31	Two-dimensional Molecular Phase Transition of Alkylated-TDPB on $Au(111)$ and $Cu(111)$ Surfaces. Chemical Research in Chinese Universities, 2020, 36, 685-689.	1.3	0
32	Microstructured Ultrathin Organic Semiconductor Film via Dip-Coating: Precise Assembly and Diverse Applications. Accounts of Materials Research, 2020, 1, 201-212.	5.9	8
33	Oxygenâ€Induced 1D to 2D Transformation of Onâ€Surface Organometallic Structures. Small, 2020, 16, 2002393.	5.2	6
34	Câ€"H activation of light alkanes on MXenes predicted by hydrogen affinity. Physical Chemistry Chemical Physics, 2020, 22, 18622-18630.	1.3	10
35	Performances of Pentacene OFETs Deposited by Arbitrary Mounting Angle Vacuum Evaporator. Frontiers in Materials, 2020, 7, .	1.2	4
36	Noncontact atomic force microscopy: Bond imaging and beyond. Surface Science Reports, 2020, 75, 100509.	3.8	23

#	Article	IF	CITATIONS
37	Substrate-Controlled Synthesis of 5-Armchair Graphene Nanoribbons. Journal of Physical Chemistry C, 2020, 124, 11422-11427.	1.5	15
38	Micro Organic Light Emitting Diode Arrays by Patterned Growth on Structured Polypyrrole. Advanced Optical Materials, 2020, 8, 1902105.	3.6	19
39	Charge Transport: Photomodulation of Charge Transport in Allâ€5emiconducting 2D–1D van der Waals Heterostructures with Suppressed Persistent Photoconductivity Effect (Adv. Mater. 26/2020). Advanced Materials, 2020, 32, 2070200.	11.1	1
40	Directing Onâ€Surface Reaction Pathways via Metalâ€Organic Cuâ^N Coordination. ChemPhysChem, 2020, 21, 843-846.	1.0	8
41	Geometric and Electronic Behavior of C60 on PTCDA Hydrogen Bonded Network. Chemical Research in Chinese Universities, 2020, 36, 81-85.	1.3	0
42	Dynamic Supramolecular Template: Multiple Stimuli-Controlled Size Adjustment of Porous Networks. Langmuir, 2020, 36, 5510-5516.	1.6	6
43	Synthesis of Two-Dimensional Metal–Organic Frameworks via Dehydrogenation Reactions on a Cu(111) Surface. Journal of Physical Chemistry C, 2020, 124, 12390-12396.	1.5	15
44	On-Surface Intramolecular Reactions. ACS Nano, 2020, 14, 6376-6382.	7.3	12
45	Chemical Synthesis at Surfaces with Atomic Precision: Taming Complexity and Perfection. Angewandte Chemie - International Edition, 2019, 58, 18758-18775.	7.2	14
46	Gasâ€Sensing Performance and Operation Mechanism of Organic Ï€â€Conjugated Materials. ChemPlusChem, 2019, 84, 1222-1234.	1.3	50
47	Unraveling the Mechanism of the Persistent Photoconductivity in Organic Phototransistors. Advanced Functional Materials, 2019, 29, 1905657.	7.8	54
48	Tailoring Alkane Uniaxial Self-Assembly via Polymer Modified Step Edges. Journal of Physical Chemistry C, 2019, 123, 28811-28815.	1.5	2
49	Nano as a Rosetta Stone: The Global Roles and Opportunities for Nanoscience and Nanotechnology. ACS Nano, 2019, 13, 10853-10855.	7.3	16
50	Orientation-Selective Growth of Single-Atomic-Layer Gold Nanosheets via van der Waals Interlocking and Octanethiolate-Confined Molecular Channels. Journal of Physical Chemistry C, 2019, 123, 25228-25235.	1.5	1
51	Lithography Compatible, Flexible Microâ€Organic Lightâ€Emitting Diodes by Templateâ€Directed Growth. Small Methods, 2019, 3, 1800508.	4.6	17
52	Theoretical Investigation of On-Purpose Propane Dehydrogenation over the Two-Dimensional Ru–Pc Framework. Journal of Physical Chemistry C, 2019, 123, 4969-4976.	1.5	28
53	Electronic Decoupling of Organic Layers by a Self-Assembled Supramolecular Network on Au(111). Journal of Physical Chemistry Letters, 2019, 10, 4297-4302.	2.1	14
54	N,P-coordinated fullerene-like carbon nanostructures with dual active centers toward highly-efficient multi-functional electrocatalysis for CO ₂ RR, ORR and Zn-air battery. Journal of Materials Chemistry A, 2019, 7, 15271-15277.	5.2	99

#	Article	IF	Citations
55	Multi-species micropatterning of organic materials by liquid droplet array transfer printing. Applied Physics Letters, 2019, 114, .	1.5	5
56	Benzo-Fused Periacenes or Double Helicenes? Different Cyclodehydrogenation Pathways on Surface and in Solution. Journal of the American Chemical Society, 2019, 141, 7399-7406.	6.6	49
57	Onâ€Surface Synthesis of 8―and 10â€Armchair Graphene Nanoribbons. Small, 2019, 15, e1804526.	5.2	35
58	Self-assembly of 5,6-dihydroxyindole-2-carboxylic acid: polymorphism of a eumelanin building block on Au(111). Nanoscale, 2019, 11, 5422-5428.	2.8	9
59	Synthesis of Armchair and Chiral Carbon Nanobelts. CheM, 2019, 5, 838-847.	5.8	167
60	Tapeâ€Imprinted Hierarchical Lotus Seedpodâ€Like Arrays for Extraordinary Surfaceâ€Enhanced Raman Spectroscopy. Small, 2019, 15, e1804527.	5.2	38
61	Self-Assembled Asymmetric Microlenses for Four-Dimensional Visual Imaging. ACS Nano, 2019, 13, 13709-13715.	7.3	39
62	Onâ€Surface Synthesis of Graphyneâ€Based Nanostructures. Advanced Materials, 2019, 31, e1804087.	11.1	49
63	Intermediate States Directed Chiral Transfer on a Silver Surface. Journal of the American Chemical Society, 2019, 141, 168-174.	6.6	40
64	Oxygenâ€Assisted Cathodic Deposition of Zeolitic Imidazolate Frameworks with Controlled Thickness. Angewandte Chemie - International Edition, 2019, 58, 1123-1128.	7.2	40
65	Adsorption Structure of Mono- and Diradicals on a Cu(111) Surface: Chemoselective Dehalogenation of 4-Bromo-3″-iodo- <i>p</i> -terphenyl. ACS Nano, 2019, 13, 324-336.	7.3	26
66	Association and differences between on-surface chemistry and solution chemistry. Scientia Sinica Chimica, 2019, 49, 410-440.	0.2	0
67	Triazatriangulene platform for self-assembled monolayers of free-standing diarylethene. Science China Materials, 2018, 61, 1345-1350.	3.5	9
68	An ammonia detecting mechanism for organic transistors as revealed by their recovery processes. Nanoscale, 2018, 10, 8832-8839.	2.8	25
69	Bilayer Formation vs Molecular Exchange in Organic Heterostructures: Strong Impact of Subtle Changes in Molecular Structure. Journal of Physical Chemistry C, 2018, 122, 9480-9490.	1.5	27
70	Nâ€Heterocyclic arbeneâ€Treated Gold Surfaces in Pentacene Organic Fieldâ€Effect Transistors: Improved Stability and Contact at the Interface. Angewandte Chemie - International Edition, 2018, 57, 4792-4796.	7.2	60
71	Mit N-heterocyclischen Carbenen behandelte GoldoberflÄchen in Pentacen-Transistoren: Verbesserte StabilitÄt und Kontakt an der GrenzflÄche. Angewandte Chemie, 2018, 130, 4883-4887.	1.6	16
72	Surface-Assisted Alkane Polymerization: Investigation on Structure–Reactivity Relationship. Journal of the American Chemical Society, 2018, 140, 4820-4825.	6.6	37

#	Article	IF	CITATIONS
73	Boundary-induced nucleation control: a theoretical perspective. Physical Chemistry Chemical Physics, 2018, 20, 3752-3760.	1.3	O
74	Fast growth of monolayer organic 2D crystals and their application in organic transistors. Organic Electronics, 2018, 58, 38-45.	1.4	14
75	Hierarchical Dehydrogenation Reactions on a Copper Surface. Journal of the American Chemical Society, 2018, 140, 6076-6082.	6.6	53
76	Improving the performance of TIPS-pentacene thin film transistors via interface modification. Chemical Research in Chinese Universities, 2018, 34, 151-154.	1.3	6
77	Metallophthalocyanine-Based Molecular Dipole Layer as a Universal and Versatile Approach to Realize Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 42397-42405.	4.0	20
78	Advanced colloidal lithography: From patterning to applications. Nano Today, 2018, 22, 36-61.	6.2	120
79	A Facile Approach to Improve Interchain Packing Order and Charge Mobilities by Selfâ€Assembly of Conjugated Polymers on Water. Advanced Science, 2018, 5, 1801497.	5.6	35
80	Structural Evolutions of the Self-Assembled <i>N</i> -Decyldecanamide on Au(111). Journal of Physical Chemistry C, 2018, 122, 22538-22543.	1.5	1
81	High- <i>k</i> Gate Dielectrics for Emerging Flexible and Stretchable Electronics. Chemical Reviews, 2018, 118, 5690-5754.	23.0	530
82	Mechanistic investigations of the Au catalysed C–H bond activations in on-surface synthesis. Physical Chemistry Chemical Physics, 2018, 20, 15901-15906.	1.3	9
83	Positioning growth of NPB crystalline nanowires on the PTCDA nanocrystal template. Nanoscale, 2018, 10, 10262-10267.	2.8	9
84	Self-assembly directed one-step synthesis of [4]radialene on Cu(100) surfaces. Nature Communications, 2018, 9, 3113.	5.8	41
85	Locally Induced Spin States on Graphene by Chemical Attachment of Boron Atoms. Nano Letters, 2018, 18, 5482-5487.	4.5	18
86	Symmetry breakdown of $4,4\hat{a}\in^3$ -diamino-p-terphenyl on a Cu(111) surface by lattice mismatch. Nature Communications, 2018, 9, 3277.	5.8	32
87	Interface electronic property of organic/organic heterostructure visualized via kelvin probe force microscopy. Organic Electronics, 2018, 61, 383-388.	1.4	2
88	Deprotonation-Induced Phase Evolutions in Co-Assembled Molecular Structures. Langmuir, 2018, 34, 7852-7858.	1.6	19
89	Tunable random lasing behavior in plasmonic nanostructures. Nano Convergence, 2017, 4, 1.	6.3	54
90	Imparting Catalytic Activity to a Covalent Organic Framework Material by Nanoparticle Encapsulation. ACS Applied Materials & ACS ACS Applied Materials & ACS ACS APPLIED & ACS ACS ACS APPLIED & ACS ACS ACS APPLIED & ACS ACS APPLI	4.0	157

#	Article	IF	CITATIONS
91	Chemical bond imaging using higher eigenmodes of tuning fork sensors in atomic force microscopy. Applied Physics Letters, 2017, 110, .	1.5	20
92	A new on-surface synthetic pathway to 5-armchair graphene nanoribbons on Cu(111) surfaces. Faraday Discussions, 2017, 204, 297-305.	1.6	12
93	Tunable control efficiency of patterned nucleation by post-annealing. Journal of Materials Chemistry C, 2017, 5, 6672-6676.	2.7	4
94	Fabrication of 3D biomimetic composite coating with broadband antireflection, superhydrophilicity, and double p-n heterojunctions. Nano Research, 2017, 10, 2377-2385.	5.8	38
95	Lasing behavior of surface functionalized carbon quantum dot/RhB composites. Nanoscale, 2017, 9, 5049-5054.	2.8	21
96	Stepâ€Edge Assisted Direct Linear Alkane Coupling. Chemistry - A European Journal, 2017, 23, 6185-6189.	1.7	26
97	Efficient PbS quantum dot solar cells employing a conventional structure. Journal of Materials Chemistry A, 2017, 5, 23960-23966.	5.2	104
98	Stamp recyclable contact printing of liquid droplet matrix on various surfaces. Journal of Materials Chemistry C, 2017, 5, 10971-10975.	2.7	3
99	Supramolecular effects in self-assembled monolayers: general discussion. Faraday Discussions, 2017, 204, 123-158.	1.6	2
100	Quasi-Layer-by-Layer Growth of Pentacene on HOPG and Au Surfaces. Journal of Physical Chemistry C, 2017, 121, 25043-25051.	1.5	4
101	Preparing macromolecular systems on surfaces: general discussion. Faraday Discussions, 2017, 204, 395-418.	1.6	0
102	Supramolecular systems at liquid–solid interfaces: general discussion. Faraday Discussions, 2017, 204, 271-295.	1.6	2
103	Highâ€Performance Bottomâ€Contact Organic Thinâ€Film Transistors by Improving the Lateral Contact. Advanced Electronic Materials, 2017, 3, 1700128.	2.6	12
104	Modulating the Spatial Electrostatic Potential for 1D Colloidal Nanoparticles Assembly. Advanced Materials Interfaces, 2017, 4, 1700505.	1.9	12
105	An Ultrasensitive Organic Semiconductor NO ₂ Sensor Based on Crystalline TIPSâ€Pentacene Films. Advanced Materials, 2017, 29, 1703192.	11.1	158
106	Micro organic light-emitting diodes fabricated through area-selective growth. Materials Chemistry Frontiers, 2017, 1, 2606-2612.	3.2	10
107	Foreign Particle Promoted Crystalline Nucleation for Growing Highâ€Quality Ultrathin Rubrene Films. Small, 2016, 12, 4086-4092.	5. 2	10
108	Investigation into the Sensing Process of Highâ€Performance H ₂ S Sensors Based on Polymer Transistors. Chemistry - A European Journal, 2016, 22, 3654-3659.	1.7	37

#	Article	IF	Citations
109	Structural Variation in Surface-Supported Synthesis by Adjusting the Stoichiometric Ratio of the Reactants. ACS Nano, 2016, 10, 4228-4235.	7.3	55
110	Carbohydrate-Assisted Combustion Synthesis To Realize High-Performance Oxide Transistors. Journal of the American Chemical Society, 2016, 138, 7067-7074.	6.6	61
111	Titanium Oxide/Silicon Moth-Eye Structures with Antireflection, p–n Heterojunctions, and Superhydrophilicity. Langmuir, 2016, 32, 10719-10724.	1.6	26
112	Photo-generated charge behaviors in all-polymer solar cells studied by Kelvin probe force microscopy. Organic Electronics, 2016, 39, 38-42.	1.4	6
113	Branch Suppression and Orientation Control of Langmuir–Blodgett Patterning on Prestructured Surfaces. Advanced Materials Interfaces, 2016, 3, 1600478.	1.9	10
114	Two-Dimensional Chirality Transfer via On-Surface Reaction. Journal of the American Chemical Society, 2016, 138, 11743-11748.	6.6	34
115	Growth of Highly Oriented Ultrathin Crystalline Organic Microstripes: Effect of Alkyl Chain Length. Langmuir, 2016, 32, 9109-9117.	1.6	11
116	Scalable Fabrication of Multiplexed Plasmonic Nanoparticle Structures Based on AFM Lithography. Small, 2016, 12, 5818-5825.	5.2	25
117	Kilohertz organic complementary inverters driven by surface-grafting conducting polypyrrole electrodes. Solid-State Electronics, 2016, 123, 51-57.	0.8	6
118	Gold–Organic Hybrids: On‧urface Synthesis and Perspectives. Advanced Materials, 2016, 28, 10492-10498.	11.1	30
119	Seeing Down to the Bottom: Nondestructive Inspection of Allâ€Polymer Solar Cells by Kelvin Probe Force Microscopy. Advanced Materials Interfaces, 2016, 3, 1600446.	1.9	13
120	Catalytic Dealkylation of Ethers to Alcohols on Metal Surfaces. Angewandte Chemie - International Edition, 2016, 55, 9881-9885.	7.2	23
121	Catalytic Dealkylation of Ethers to Alcohols on Metal Surfaces. Angewandte Chemie, 2016, 128, 10035-10039.	1.6	9
122	Plasmonic Nanoparticles: Scalable Fabrication of Multiplexed Plasmonic Nanoparticle Structures Based on AFM Lithography (Small 42/2016). Small, 2016, 12, 5817-5817.	5.2	2
123	Area confined position control of molecular aggregates. New Journal of Physics, 2016, 18, 053006.	1.2	13
124	Controlled Growth of Ultrathin Film of Organic Semiconductors by Balancing the Competitive Processes in Dip-Coating for Organic Transistors. Langmuir, 2016, 32, 6246-6254.	1.6	48
125	Electrical gas sensors based on structured organic ultra-thin films and nanocrystals on solid state substrates. Nanoscale Horizons, 2016, 1, 383-393.	4.1	48
126	Recent Advances in TiO ₂ â∈Based Nanostructured Surfaces with Controllable Wettability and Adhesion. Small, 2016, 12, 2203-2224.	5.2	278

#	Article	IF	Citations
127	Metal-Mediated Assembly of $1,<$ i>N ⁶ -Ethenoadenine: From Surfaces to DNA Duplexes. Inorganic Chemistry, 2016, 55, 7041-7050.	1.9	36
128	Solutionâ€Processed Allâ€Oxide Transparent Highâ€Performance Transistors Fabricated by Sprayâ€Combustion Synthesis. Advanced Electronic Materials, 2016, 2, 1500427.	2.6	101
129	Fast patterning of oriented organic microstripes for field-effect ammonia gas sensors. Nanoscale, 2016, 8, 3954-3961.	2.8	23
130	Spectral plasmonic effect in the nano-cavity of dye-doped nanosphere-based photonic crystals. Nanotechnology, 2016, 27, 165703.	1.3	12
131	Surface-Controlled Mono/Diselective <i>ortho</i> C–H Bond Activation. Journal of the American Chemical Society, 2016, 138, 2809-2814.	6.6	120
132	Enabling Light Work in Helical Self-Assembly for Dynamic Amplification of Chirality with Photoreversibility. Journal of the American Chemical Society, 2016, 138, 2219-2224.	6.6	142
133	Phase Transitions: Concentrationâ€Controlled Reversible Phase Transitions in Selfâ€Assembled Monolayers on HOPG Surfaces (Small 19/2015). Small, 2015, 11, 2222-2222.	5.2	0
134	Enhanced Charge Injection Through Nanostructured Electrodes for Organic Field Effect Transistors. Advanced Functional Materials, 2015, 25, 3855-3859.	7.8	27
135	Building chessboard-like supramolecular structures on Au(111) surfaces. Nanotechnology, 2015, 26, 385601.	1.3	7
136	Linear Alkane CC Bond Chemistry Mediated by Metal Surfaces. ChemPhysChem, 2015, 16, 1356-1360.	1.0	12
137	Optimizing the Volmer Step by Single-Layer Nickel Hydroxide Nanosheets in Hydrogen Evolution Reaction of Platinum. ACS Catalysis, 2015, 5, 3801-3806.	5.5	142
138	Monolayer-Mediated Growth of Organic Semiconductor Films with Improved Device Performance. Langmuir, 2015, 31, 9748-9761.	1.6	16
139	Addressable growth of oriented organic semiconductor ultra-thin films on hydrophobic surface by direct dip-coating. Organic Electronics, 2015, 24, 170-175.	1.4	33
140	Fabrication and origin of high-k carbon nanotube/epoxy composites with low dielectric loss through layer-by-layer casting technique. Carbon, 2015, 85, 28-37.	5.4	82
141	Tadpole-like artificial micromotor. Nanoscale, 2015, 7, 2276-2280.	2.8	25
142	Concentration ontrolled Reversible Phase Transitions in Selfâ€Assembled Monolayers on HOPG Surfaces. Small, 2015, 11, 2284-2290.	5.2	34
143	Synthesis of Surface Covalent Organic Frameworks via Dimerization and Cyclotrimerization of Acetyls. Journal of the American Chemical Society, 2015, 137, 4904-4907.	6.6	98
144	On-Surface Synthesis of Rylene-Type Graphene Nanoribbons. Journal of the American Chemical Society, 2015, 137, 4022-4025.	6.6	278

#	Article	IF	Citations
145	Fabricating sub-100nm conducting polymer nanowires by edge nanoimprint lithography. Journal of Colloid and Interface Science, 2015, 458, 300-304.	5.0	14
146	Patterning rubrene crystalline thin films for sub-micrometer channel length field-effect transistor arrays. Journal of Materials Chemistry C, 2014, 2, 9359-9363.	2.7	7
147	Controllable and Facile Fabrication of Gold Nanostructures for Selective Metalâ€Assisted Etching of Silicon. Small, 2014, 10, 2451-2458.	5.2	16
148	Spatially Confined Assembly of Nanoparticles. Accounts of Chemical Research, 2014, 47, 3009-3017.	7.6	98
149	Surface Supported Gold–Organic Hybrids: Onâ€Surface Synthesis and Surface Directed Orientation. Small, 2014, 10, 1361-1368.	5.2	62
150	Thymine and Adenine Tetrads Formed on Anisotropic Metal Surfaces. Small, 2014, 10, 265-270.	5.2	7
151	Tunable Organic Heteroâ€Patterns via Molecule Diffusion Control. Small, 2014, 10, 3045-3049.	5.2	6
152	Phase Behavior and Molecular Packing of Octadecyl Phenols and their Methyl Ethers at the Air/Water Interface. Langmuir, 2014, 30, 5780-5789.	1.6	11
153	Controllable wettability and adhesion on bioinspired multifunctional TiO ₂ nanostructure surfaces for liquid manipulation. Journal of Materials Chemistry A, 2014, 2, 18531-18538.	5.2	84
154	Surface Microfluidic Patterning and Transporting Organic Small Molecules. Small, 2014, 10, 2549-2552.	5.2	10
155	Molecular Composition, Grafting Density and Film Area Affect the Swelling-Induced Au–S Bond Breakage. ACS Applied Materials & Samp; Interfaces, 2014, 6, 8313-8319.	4.0	13
156	Step-edge induced area selective growth: a kinetic Monte Carlo study. RSC Advances, 2014, 4, 25005-25010.	1.7	6
157	Simulation Modeling of Supported Lipid Membranes – A Review. Current Topics in Medicinal Chemistry, 2014, 14, 617-623.	1.0	7
158	Topographic effect on human induced pluripotent stem cells differentiation towards neuronal lineage. Biomaterials, 2013, 34, 8131-8139.	5.7	108
159	Bioinspired Patterning with Extreme Wettability Contrast on TiO ₂ Nanotube Array Surface: A Versatile Platform for Biomedical Applications. Small, 2013, 9, 2945-2953.	5.2	159
160	Growth of Ultrathin Organic Semiconductor Microstripes with Thickness Control in the Monolayer Precision. Angewandte Chemie - International Edition, 2013, 52, 12530-12535.	7.2	92
161	Nanotube Arrays: Bioinspired Patterning with Extreme Wettability Contrast on TiO2Nanotube Array Surface: A Versatile Platform for Biomedical Applications (Small 17/2013). Small, 2013, 9, 3004-3004.	5.2	0
162	Temperature-Dependent Self-Assembly of Adenine Derivative on HOPG. Langmuir, 2013, 29, 10737-10743.	1.6	16

#	Article	IF	Citations
163	Bio-inspired antireflective hetero-nanojunctions with enhanced photoactivity. Nanoscale, 2013, 5, 12383.	2.8	39
164	Influence of self-assembled monolayers on the growth and crystallization of rubrene films: a molecular dynamics study. RSC Advances, 2013, 3, 15404.	1.7	8
165	Biomimetic Antireflective Silicon Nanocones Array for Small Molecules Analysis. Journal of the American Society for Mass Spectrometry, 2013, 24, 66-73.	1.2	32
166	AFM-based Force Spectroscopy on Polystyrene Brushes: Effect of Brush Thickness on Protein Adsorption. Langmuir, 2013, 29, 1850-1856.	1.6	18
167	Growth of rubrene crystalline thin films using thermal annealing on DPPC LB monolayer. Organic Electronics, 2013, 14, 2534-2539.	1.4	20
168	Addressable Organic Structure by Anisotropic Wetting. Advanced Materials, 2013, 25, 2018-2023.	11.1	17
169	In Situ Surfaceâ€Modificationâ€Induced Superhydrophobic Patterns with Reversible Wettability and Adhesion. Advanced Materials, 2013, 25, 1682-1686.	11.1	249
170	Highly effective and reproducible surface-enhanced Raman scattering substrates based on Ag pyramidal arrays. Nano Research, 2013, 6, 159-166.	5.8	75
171	High Performance Fieldâ€Effect Ammonia Sensors Based on a Structured Ultrathin Organic Semiconductor Film. Advanced Materials, 2013, 25, 3419-3425.	11.1	263
172	Selective deposition of organic molecules onto DPPC templates – A molecular dynamics study. Journal of Colloid and Interface Science, 2013, 389, 206-212.	5.0	4
173	Controlled Assembly and Release of Retinoic Acid Based on the Layer-by-Layer Method. Langmuir, 2013, 29, 2708-2712.	1.6	5
174	Nanotube Arrays: In Situ Surfaceâ€Modificationâ€Induced Superhydrophobic Patterns with Reversible Wettability and Adhesion (Adv. Mater. 12/2013). Advanced Materials, 2013, 25, 1804-1804.	11.1	2
175	Organic Transistors: High Performance Fieldâ€Effect Ammonia Sensors Based on a Structured Ultrathin Organic Semiconductor Film (Adv. Mater. 25/2013). Advanced Materials, 2013, 25, 3500-3500.	11.1	0
176	Effects of Nanostructures and Mouse Embryonic Stem Cells on In Vitro Morphogenesis of Rat Testicular Cords. PLoS ONE, 2013, 8, e60054.	1.1	18
177	CdSe/CdS quantum dots co-sensitized TiO2 nanotube array photoelectrode for highly efficient solar cells. Electrochimica Acta, 2012, 79, 175-181.	2.6	87
178	Conducting polymer nanowires fabricated by edge effect of NIL. Journal of Materials Chemistry, 2012, 22, 12096.	6.7	8
179	Area-Selective Growth of Functional Molecular Architectures. Accounts of Chemical Research, 2012, 45, 1646-1656.	7.6	35
180	Fabrication of Single Gold Particle Arrays with Pattern Directed Electrochemical Deposition. ACS Applied Materials & Electrochemical Deposition.	4.0	12

#	Article	IF	Citations
181	Very large-bandgap insulating monolayers of ODS on SiC. Applied Surface Science, 2012, 258, 7280-7285.	3.1	6
182	Electronic Structure of Spatially Aligned Graphene Nanoribbons on Au(788). Physical Review Letters, 2012, 108, 216801.	2.9	212
183	Molecular Cloisonné: Multicomponent Organic Alternating Nanostructures at Vicinal Surfaces with Tunable Length Scales. Small, 2012, 8, 535-540.	5.2	1
184	Design and Assembly of Rotaxaneâ€Based Molecular Switches and Machines. Small, 2012, 8, 504-516.	5.2	131
185	Selfâ€Assembly of a Dendronâ€Attached Tetrathiafulvalene: Gel Formation and Modulation in the Presence of Chloranil and Metal Ions. Small, 2012, 8, 578-584.	5.2	30
186	TRR 61, The "Interplay―between MÃ⅓nster and Beijing for Promoting Research on Multilevel Molecular Assemblies: Structure, Dynamics, and Functions. Small, 2012, 8, 479-480.	5.2	0
187	Patterning: Structure Formation by Dynamic Selfâ€Assembly (Small 4/2012). Small, 2012, 8, 487-487.	5.2	2
188	Transparent superhydrophobic/superhydrophilic TiO2-based coatings for self-cleaning and anti-fogging. Journal of Materials Chemistry, 2012, 22, 7420.	6.7	441
189	Synthesis and Solidâ€State Investigations of Oligoâ€Phenylene–Ethynylene Structures with Halide Endâ€Groups. European Journal of Organic Chemistry, 2012, 2012, 2738-2747.	1.2	9
190	Highâ€Performance and Stable Organic Transistors and Circuits with Patterned Polypyrrole Electrodes. Advanced Materials, 2012, 24, 2159-2164.	11.1	50
191	Biosupramolecular Nanowires from Chlorophyll Dyes with Exceptional Chargeâ€Transport Properties. Angewandte Chemie - International Edition, 2012, 51, 6378-6382.	7.2	88
192	The Electrode's Effect on the Stability of Organic Transistors and Circuits. Advanced Materials, 2012, 24, 3053-3058.	11,1	24
193	Fabrication of hierarchical structures by unconventional two-step imprinting. Journal of Colloid and Interface Science, 2012, 368, 655-659.	5.0	18
194	Site specific protein immobilization into structured polymer brushes prepared by AFM lithography. Soft Matter, 2011, 7, 9854.	1.2	24
195	Patterning of proteins into nanostripes on Si-wafer over large areas: a combination of Langmuir–Blodgett patterning and orthogonal surface chemistry. Soft Matter, 2011, 7, 861-863.	1.2	14
196	Patterning of Plasmonic Nanoparticles into Multiplexed One-Dimensional Arrays Based on Spatially Modulated Electrostatic Potential. ACS Nano, 2011, 5, 8288-8294.	7.3	62
197	Biomimetic Antireflective Hierarchical Arrays. Langmuir, 2011, 27, 4963-4967.	1.6	51
198	Fabrication of Periodic Metal Nanowires with Microscale Mold by Nanoimprint Lithography. ACS Applied Materials & Diterfaces, 2011, 3, 4174-4179.	4.0	17

#	Article	IF	Citations
199	Two-Dimensional Self-Assembly of Linear Molecular Rods at the Liquid/Solid Interfaceâ€. Langmuir, 2011, 27, 1359-1363.	1.6	11
200	Linear Alkane Polymerization on a Gold Surface. Science, 2011, 334, 213-216.	6.0	321
201	Aggregation behaviour of peptide–polymer conjugates containing linear peptide backbones and multiple polymer side chains prepared by nitroxide-mediated radical polymerization. Organic and Biomolecular Chemistry, 2011, 9, 2403.	1.5	23
202	Highâ€Resolution Tripleâ€Color Patterns Based on the Liquid Behavior of Organic Molecules. Small, 2011, 7, 1403-1406.	5.2	24
203	Nanoscaled Surface Patterning of Conducting Polymers. Small, 2011, 7, 1309-1321.	5.2	64
204	Enhanced Electrical Conductivity of Individual Conducting Polymer Nanobelts. Small, 2011, 7, 1949-1953.	5.2	37
205	Controlling Molecular Packing for Charge Transport in Organic Thin Films. Advanced Energy Materials, 2011, 1, 188-193.	10.2	36
206	Synthesis, Structures, and Aggregation Properties of N-Acylamidines. European Journal of Organic Chemistry, 2011, 2011, 861-877.	1.2	10
207	Cover Picture: A Nanosized Molybdenum Oxide Wheel with a Unique Electronic-Necklace Structure: STM Study with Submolecular Resolution (Angew. Chem. Int. Ed. 31/2011). Angewandte Chemie - International Edition, 2011, 50, 6931-6931.	7.2	0
208	Chemical Surface Modification of Selfâ€Assembled Monolayers by Radical Nitroxide Exchange Reactions. Chemistry - A European Journal, 2011, 17, 9107-9112.	1.7	27
209	Selective deposition of organic molecules onto different densely packed self-assembled monolayers: A molecular dynamics study. Chemical Physics Letters, 2011, 507, 138-143.	1.2	17
210	Fabrication of superhydrophobic polymer films with hierarchical silver microbowl array structures. Journal of Colloid and Interface Science, 2011, 360, 300-304.	5.0	19
211	Fabrication of split-ring resonators by tilted nanoimprint lithography. Journal of Colloid and Interface Science, 2011, 360, 320-323.	5.0	9
212	Homogeneous Epitaxial Growth of N,N′-di(n-butyl)quinacridone Thin Films on Ag(110). Journal of Nanoscience and Nanotechnology, 2010, 10, 7162-7166.	0.9	0
213	Biomimetic corrugated silicon nanocone arrays for self-cleaning antireflection coatings. Nano Research, 2010, 3, 520-527.	5.8	99
214	Patterning of Polymer Electrodes by Nanoscratching. Advanced Materials, 2010, 22, 1374-1378.	11.1	51
215	Tunable Multicolor Ordered Patterns with Two Dye Molecules. Advanced Materials, 2010, 22, 2764-2769.	11.1	22
216	Generation of metal patterns by topography-directed deposition. Microelectronic Engineering, 2010, 87, 1509-1511.	1.1	1

#	Article	IF	CITATIONS
217	Tuning the Intensity of Metalâ€Enhanced Fluorescence by Engineering Silver Nanoparticle Arrays. Small, 2010, 6, 1038-1043.	5.2	79
218	Polymer Brush and Inorganic Oxide Hybrid Nanodielectrics for High Performance Organic Transistors. Journal of Physical Chemistry B, 2010, 114, 5315-5319.	1.2	36
219	Controllable Growth and Field-Effect Property of Monolayer to Multilayer Microstripes of an Organic Semiconductor. Journal of the American Chemical Society, 2010, 132, 8807-8809.	6.6	155
220	Multilevel Supramolecular Architectures Self-Assembled on Metal Surfaces. ACS Nano, 2010, 4, 1997-2002.	7.3	24
221	Structural Transition and Thermal Stability of a Coronene Molecular Monolayer on Cu(110). Journal of Physical Chemistry C, 2010, 114, 11180-11184.	1.5	8
222	A Simple Method for the Fabrication of High-Resolution Conducting Polymer Patterns. Langmuir, 2010, 26, 9142-9145.	1.6	9
223	Patterning of Functional Compounds by Multicomponent Langmuirâ^'Blodgett Transfer and Subsequent Chemical Modification. Langmuir, 2010, 26, 15388-15393.	1.6	12
224	Pattern Formation in Monolayer Transfer Systems with Substrate-Mediated Condensation. Langmuir, 2010, 26, 10444-10447.	1.6	40
225	Ion Strength and pH Sensitive Phase Transition of <i>N</i> -lsobutyryl- <scp>I</scp> -(<scp>d</scp>)-cysteine Monolayers on Au(111) Surfaces. Langmuir, 2010, 26, 7343-7348.	1.6	9
226	Fabrication of flexible superhydrophobic biomimic surfaces. Soft Matter, 2010, 6, 1438.	1.2	39
227	Combining Hostâ^'Guest Systems with Nonfouling Material for the Fabrication of a Biosurface: Toward Nearly Complete and Reversible Resistance of Cytochrome c. Langmuir, 2010, 26, 12515-12517.	1.6	22
228	Anisotropic growth of organic semiconductor based on mechanical contrast of pre-patterned monolayer. Soft Matter, 2010, 6, 5302.	1.2	10
229	Battery Drivable Organic Singleâ€Crystalline Transistors Based on Surface Grafting Ultrathin Polymer Dielectric. Advanced Functional Materials, 2009, 19, 2987-2991.	7.8	28
230	Creating Inâ€Plane Metallicâ€Nanowire Arrays by Cornerâ€Mediated Electrodeposition. Advanced Materials, 2009, 21, 3576-3580.	11.1	26
231	Selective Adsorption of DNA on Chiral Surfaces: Supercoiled or Relaxed Conformation. Angewandte Chemie - International Edition, 2009, 48, 5282-5286.	7.2	44
232	Self-assembly of luminescent twisted fibers based on achiral quinacridone derivatives. Nano Research, 2009, 2, 493-499.	5.8	18
233	A Strategy for Patterning Conducting Polymers Using Nanoimprint Lithography and Isotropic Plasma Etching. Small, 2009, 5, 583-586.	5. 2	45
234	Structured Polymer Brushes by AFM Lithography. Small, 2009, 5, 919-923.	5.2	42

#	Article	IF	CITATIONS
235	Oneâ€Dimensional Arrangement of Gold Nanoparticles with Tunable Interparticle Distance. Small, 2009, 5, 2819-2822.	5.2	75
236	Broadband antireflective Si nanopillar arrays produced by nanosphere lithography. Microelectronic Engineering, 2009, 86, 850-852.	1.1	25
237	Alternating the Crystalline Structural Transition of Coronene Molecular Overlayers on Ag(110) through Temperature Increase. Journal of Physical Chemistry C, 2009, 113, 17643-17647.	1.5	9
238	Fabrication of TiO2 Arrays Using Solvent-Assisted Soft Lithography. Langmuir, 2009, 25, 9639-9643.	1.6	20
239	Fabrication of Functional Silver Nanobowl Arrays via Sphere Lithography. Langmuir, 2009, 25, 11216-11220.	1.6	59
240	Electrochemical Deposition of Silver Nanoparticle Arrays with Tunable Density. Langmuir, 2009, 25, 55-58.	1.6	37
241	Langmuirâ-'Blodgett Monolayer Masked Chemical Etching: An Approach to Broadband Antireflective Surfaces. Chemistry of Materials, 2009, 21, 1802-1805.	3.2	21
242	Weak Epitaxy Growth of Copper Hexadecafluorophthalocyanine (F ₁₆ CuPc) on <i>p</i> -Sexiphenyl Monolayer Film. Journal of Physical Chemistry B, 2009, 113, 2333-2337.	1.2	22
243	A Simple and Efficient Process for the Preparation of 1,6-Dimethoxynaphthalene. Organic Process Research and Development, 2009, 13, 647-651.	1.3	1
244	Single-Molecule Study on Intermolecular Interaction between C60and Porphyrin Derivatives: Toward Understanding the Strength of the Multivalency. Langmuir, 2009, 25, 6627-6632.	1.6	43
245	Color Tuning via Adjusting the Dye-Loading Capacity of a Polymer. Langmuir, 2009, 25, 4352-4355.	1.6	6
246	Simple Approach to Wafer-Scale Self-Cleaning Antireflective Silicon Surfaces. Langmuir, 2009, 25, 7769-7772.	1.6	132
247	Interfacial Assembly of Nanoparticles into Higher-order Patterned Structures. Frontiers of Nanoscience, 2009, 1, 326-365.	0.3	1
248	Creating Bicolor Patterns via Selective Photobleaching with A Single Dye Species. Langmuir, 2009, 25, 3894-3897.	1.6	11
249	Surface-Mounted Molecular Rotors with Variable Functional Groups and Rotation Radii. Nano Letters, 2009, 9, 4387-4391.	4.5	36
250	Biomimetic Antireflective Si Nanopillar Arrays. Small, 2008, 4, 1972-1975.	5.2	113
251	Reversible and Reproducible Conductance Transition in a Polyimide Thin Film. Journal of Physical Chemistry C, 2008, 112, 17038-17041.	1.5	8
252	Site-Selective Patterning of Organic Luminescent Molecules via Gas Phase Deposition. Langmuir, 2008, 24, 5315-5318.	1.6	18

#	Article	IF	CITATIONS
253	Self-Assembled Monolayers of CH ₃ COSâ^' Terminated Surfactant-Encapsulated Polyoxometalate Complexes. Langmuir, 2008, 24, 4693-4699.	1.6	14
254	Two Dimensional Chiral Networks Emerging from the Arylâ^F···H Hydrogen-Bond-Driven Self-Assembly of Partially Fluorinated Rigid Molecular Structures. Journal of the American Chemical Society, 2008, 130, 10840-10841.	6.6	126
255	Influence of Substrate Treatment on Self-Organized Pattern Formation by Langmuirâ^'Blodgett Transfer. Journal of Physical Chemistry B, 2008, 112, 824-827.	1.2	15
256	Fabrication of Multicolor Patterns with a Single Dye Species on a Polymer Surface. Langmuir, 2008, 24, 12745-12747.	1.6	6
257	Tuning CuTCNQ Nanostructures on Patterned Copper Films. Journal of Physical Chemistry C, 2008, 112, 17625-17630.	1.5	28
258	Stereoselective Interaction between DNA and Chiral Surfaces. Journal of the American Chemical Society, 2008, 130, 11284-11285.	6.6	81
259	Correlating Dynamics and Selectivity in Adsorption of Semiconductor Nanocrystals onto a Self-Organized Pattern. Nano Letters, 2007, 7, 3483-3488.	4.5	15
260	Langmuir–Blodgett Patterning: A Bottom–Up Way To Build Mesostructures over Large Areas. Accounts of Chemical Research, 2007, 40, 393-401.	7.6	207
261	Structures and Stability of Ferrocene Derivative Monolayers on Ag(110):  Scanning Tunneling Microscopy Study. Journal of Physical Chemistry C, 2007, 111, 12139-12144.	1.5	11
262	Stereospecific Interaction between Immune Cells and Chiral Surfaces. Journal of the American Chemical Society, 2007, 129, 1496-1497.	6.6	135
263	Studies on the Influence of Phasins on Accumulation and Degradation of PHB and Nanostructure of PHB Granules inRalstoniaeutrophaH16. Biomacromolecules, 2007, 8, 657-662.	2.6	68
264	Capillary-Induced Contact Guidance. Langmuir, 2007, 23, 10216-10223.	1.6	29
265	Fabrication of Gradient Mesostructures by Langmuirâ^'Blodgett Rotating Transfer. Langmuir, 2007, 23, 2280-2283.	1.6	32
266	Site-Selective Surface-Initiated Polymerization by Langmuir–Blodgett Lithography. Angewandte Chemie - International Edition, 2007, 46, 5231-5233.	7.2	40
267	Multicolor Emission on Prepatterned Substrates Using a Single Dye Species. Advanced Materials, 2007, 19, 2119-2123.	11.1	34
268	Long Chain-Substituted and Triply Functionalized Molecular Knots – Synthesis, Topological Chirality and Monolayer Formation. European Journal of Organic Chemistry, 2007, 2007, 45-52.	1.2	15
269	Influence of an Amide Group in Methyl Octadecanoates on the Monolayer Stability. Langmuir, 2006, 22, 1586-1594.	1.6	2
270	Hierarchical Luminescence Patterning Based on Multiscaled Self-Assembly. Journal of the American Chemical Society, 2006, 128, 9592-9593.	6.6	51

#	Article	IF	Citations
271	Tetradecylferrocene:Â Ordered Molecular Array of an Organometallic Amphiphile in the Crystal and in a Two-dimensional Assembled Structure on a Surface. Langmuir, 2006, 22, 3161-3165.	1.6	23
272	Langmuirâ^Blodgett Patterning of Phospholipid Microstripes:  Effect of the Second Component. Journal of Physical Chemistry B, 2006, 110, 8039-8046.	1.2	40
273	Synthesis and Surface Properties of New Ureas and Amides at Different Interfaces. Langmuir, 2006, 22, 1619-1625.	1.6	10
274	Interface Interaction Controlled Transport of CdTe Nanoparticles in the Microcontact Printing Process. Langmuir, 2006, 22, 7807-7811.	1.6	15
275	Oligoethylene Chains Terminated by Ferrocenyl End Groups: Synthesis, Structural Properties, and Two-Dimensional Self-Assembly on Surfaces. Chemistry - A European Journal, 2006, 12, 1618-1628.	1.7	38
276	Anisotropic aggregation and phase transition in Langmuir monolayers of methyl/ethyl esters of 2,3-dihydroxy fatty acids. Journal of Colloid and Interface Science, 2005, 285, 814-820.	5.0	5
277	Elucidating the role of charge density on the growth of CaCO3 crystals underneath Calix[4]arene monolayers. Materials Science and Engineering C, 2005, 25, 161-167.	3.8	30
278	Mechanism of Regular Pattern Formation in Reactive Dewetting. ChemPhysChem, 2005, 6, 2495-2498.	1.0	29
279	Ion-Specific Aggregation of Gold?DNA Nanoparticles Using the dG Quartet Hairpin 5?-d(G4T4G4). Chemistry and Biodiversity, 2005, 2, 84-91.	1.0	19
280	Self-Organized Patterning: Regular and Spatially Tunable Luminescent Submicrometer Stripes Over Large Areas. Advanced Materials, 2005, 17, 2881-2885.	11.1	34
281	Osteoblast alignment, elongation and migration on grooved polystyrene surfaces patterned by Langmuir–Blodgett lithography. Biomaterials, 2005, 26, 563-570.	5.7	168
282	Fabrication of Polypyrrole Wires Between Microelectrodes. Small, 2005, 1, 520-524.	5.2	43
283	Branched Wires of CdTe Nanocrystals Using Amphiphilic Molecules as Templates. Small, 2005, 1, 524-527.	5.2	37
284	GOLD DNA-CONJUGATES: ION SPECIFIC SELF-ASSEMBLY OF GOLD NANOPARTICLES VIA THE DG-QUARTET. Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 843-846.	0.4	4
285	Unconventional Air-Stable Interdigitated Bilayer Formed by 2,3-Disubstituted Fatty Acid Methyl Esters. Journal of Physical Chemistry B, 2005, 109, 19866-19875.	1.2	16
286	Simple and Complex Lattices of N-Alkyl Fatty Acid Amides on a Highly Oriented Pyrolytic Graphite Surface. Langmuir, 2005, 21, 1364-1370.	1.6	26
287	Phase Behavior of 2,3-Disubstituted Methyl Octadecanoate Monolayers at the Airâ^'Water Interface. Langmuir, 2005, 21, 3376-3383.	1.6	4
288	Field Emission Properties of Large-Area Nanowires of Organic Charge-Transfer Complexes. Journal of the American Chemical Society, 2005, 127, 1120-1121.	6.6	228

#	Article	IF	CITATIONS
289	Regular Arrays of Copper Wires Formed by Template-Assisted Electrodeposition. Advanced Materials, 2004, 16, 409-413.	11.1	70
290	Self-Organized Complex Patterning: Langmuir–Blodgett Lithography. Advanced Materials, 2004, 16, 619-624.	11.1	65
291	Lateral Patterning of Luminescent CdSe Nanocrystals by Selective Dewetting from Self-Assembled Organic Templates. Nano Letters, 2004, 4, 885-888.	4.5	86
292	Molecular-Template-Mediated Chemical Decoration. ChemPhysChem, 2003, 4, 490-494.	1.0	20
293	Molecular Arrangement of Fatty Acids at the Solid-Liquid Interface Visualized by Chemical Decoration. ChemPhysChem, 2003, 4, 494-498.	1.0	24
294	Highly Ordered Self-Assembled Architectures of Modified Terpyridines on Highly Ordered Pyrolitic Graphite Imaged by Scanning Tunneling Microscopy. Advanced Functional Materials, 2003, 13, 277-280.	7.8	19
295	Synthesis, Photophysical Properties, and Nanocrystal Formation of a New Class of Tetra-N-Substituted Perylenes. Angewandte Chemie - International Edition, 2003, 42, 2677-2681.	7.2	17
296	Nanoimprinting of Biomaterial Interfaces. Microscopy and Microanalysis, 2003, 9, 458-459.	0.2	0
297	Connecting Nanowires Consisting of Au55 with Model Electrodes. Nano Letters, 2002, 2, 1097-1099.	4.5	15
298	Surface Micelles of Single Chain Amphiphiles Bearing Azobenzene. Langmuir, 2002, 18, 8006-8009.	1.6	11
299	Formation of Au55 Strands on a Molecular Template at the Solidâ^Liquid Interface. Nano Letters, 2002, 2, 459-463.	4.5	41
300	Supramolecular DNA-Streptavidin Nanocircles with a Covalently Attached Oligonucleotide Moiety. Journal of Biomolecular Structure and Dynamics, 2002, 20, 223-230.	2.0	21
301	Two-Dimensional Networks via Quasi One-Dimensional Arrangements of Gold Clusters. Nano Letters, 2002, 2, 709-711.	4.5	74
302	Fabrication of Chemically Patterned Surfaces Based on Template-Directed Self-Assembly. Advanced Materials, 2002, 14, 1812-1815.	11.1	38
303	Dynamic scanning force microscopy study of self-assembled DNA-protein nanostructures. Applied Physics A: Materials Science and Processing, 2002, 74, 447-452.	1.1	63
304	Immobilization of gold nanoparticles on solid supports utilizing DNA hybridization. Materials Science and Engineering C, 2002, 19, 47-50.	3.8	17
305	Nanostructured DNAâ°'Protein Aggregates Consisting of Covalent Oligonucleotideâ^'Streptavidin Conjugates. Bioconjugate Chemistry, 2001, 12, 364-371.	1.8	40
306	Ex Situ SFM Study of 2-D Aggregate Geometry of Azobenzene Containing Bolaform Amphiphiles after Adsorption at the Mica/Aqueous Solution Interface. Langmuir, 2001, 17, 3682-3688.	1.6	25

#	Article	IF	Citations
307	Nucleic Acid Supercoiling as a Means for Ionic Switching of DNA-Nanoparticle Networks. ChemBioChem, 2001, 2, 260-264.	1.3	80
308	Anisotropic Contact-Angle Hysteresis of Chemically Nanostructured Surfaces. ChemPhysChem, 2001, 2, 187-191.	1.0	59
309	High-Quality Mapping of DNA-Protein Complexes by Dynamic Scanning Force Microscopy. ChemPhysChem, 2001, 2, 384-388.	1.0	53
310	Investigation of the Covalently Attached Multilayer Architecture Based on Diazo-Resins and Poly(4-styrene sulfonate). Macromolecular Chemistry and Physics, 2001, 202, 967-973.	1.1	21
311	Substituent-Dependent Formation of Supramolecular Aggregates of 6-Hydroxy-trans-3-hexenoic Acids in the Solid State. European Journal of Organic Chemistry, 2000, 2000, 187-192.	1.2	3
312	Supramolecular Nanocircles Consisting of Streptavidin and DNA. Angewandte Chemie - International Edition, 2000, 39, 3055-3059.	7.2	93
313	Multilayer Assemblies of Copolymer PSOH and PVP on the Basis of Hydrogen Bonding. Langmuir, 2000, 16, 10490-10494.	1.6	95
314	Investigation into Self-Assembled Monolayers of a Polyether Dendron Thiol:Â Chemisorption, Kinetics, and Patterned Surface. Langmuir, 2000, 16, 3813-3817.	1.6	42
315	The Monolayer Behavior of Amphiphilic Polymer and Heterostructure of Polymer LB Film/CdS Clusters. Journal of Colloid and Interface Science, 1999, 211, 238-242.	5.0	3
316	From Achiral Molecular Components to Chiral Supermolecules and Supercoil Self-Assembly. Chemistry - A European Journal, 1999, 5, 1144-1149.	1.7	94
317	STM Investigations of Thiol Self-Assembled Monolayers. Advanced Materials, 1998, 10, 839-842.	11.1	23
318	Sutural mineralization of rat calvaria characterized by atomic-force microscopy and transmission electron microscopy. Cell and Tissue Research, 1998, 294, 93-97.	1.5	13
319	Atomic force microscopic (AFM) study on a self-organizing polymer film. Polymer Bulletin, 1998, 41, 695-699.	1.7	7
320	Self-assembled Monolayers of Dendron-thiol on Solid Substrate. Chemistry Letters, 1998, 27, 1197-1198.	0.7	11
321	Buildup of Composite Films Containing TiO2/PbS Nanoparticles and Polyelectrolytes Based on Electrostatic Interaction. Langmuir, 1997, 13, 5168-5174.	1.6	72
322	A new approach for the fabrication of an alternating multilayer film of poly(4-vinylpyridine) and poly(acrylic acid) based on hydrogen bonding. Macromolecular Rapid Communications, 1997, 18, 509-514.	2.0	377
323	Abiotic Formation of Amide Bond via Surfaceâ€Supported Direct Carboxylâ€Amine Coupling. Angewandte Chemie, 0, , .	1.6	0
324	Onâ€Surface Debromination of 2,3â€Bis(dibromomethyl)―and 2,3â€Bis(bromomethyl)naphthalene: Dimerization or Polymerization?. Angewandte Chemie, 0, , .	1.6	0