Christopher C Abbott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/901656/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Neurobiological Effects of Electroconvulsive Therapy Studied Through Magnetic Resonance: What Have We Learned, and Where Do We Go?. Biological Psychiatry, 2022, 91, 540-549.	1.3	37
2	Whole-Brain Functional Connectivity Dynamics Associated With Electroconvulsive Therapy Treatment Response. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2022, 7, 312-322.	1.5	5
3	Electroconvulsive therapy, electric field, neuroplasticity, and clinical outcomes. Molecular Psychiatry, 2022, 27, 1676-1682.	7.9	28
4	Revisiting Hemispheric Asymmetry in Mood Regulation: Implications for rTMS for Major Depressive Disorder. Brain Sciences, 2022, 12, 112.	2.3	10
5	Five-Year Longitudinal Evidence Supports the Safety and Efficacy of Electroconvulsive Therapy for Older Adults With Major Depressive Disorder. American Journal of Geriatric Psychiatry, 2022, 30, 1295-1297.	1.2	1
6	Electroconvulsive Therapy Pulse Amplitude and Clinical Outcomes. American Journal of Geriatric Psychiatry, 2021, 29, 166-178.	1.2	20
7	Right prefrontal intermittent theta-burst stimulation for major depressive disorder: A case series. Brain Stimulation, 2021, 14, 97-99.	1.6	3
8	Abnormal Dynamic Functional Network Connectivity Estimated from Default Mode Network Predicts Symptom Severity in Major Depressive Disorder. Brain Connectivity, 2021, 11, 838-849.	1.7	24
9	Psychiatric Presentations of Creutzfeldt-Jakob Disease: A Case Report. Journal of the Academy of Consultation-Liaison Psychiatry, 2021, 62, 248-252.	0.4	3
10	Magnetic Resonance Spectroscopy in Depressed Subjects Treated With Electroconvulsive Therapy—A Systematic Review of Literature. Frontiers in Psychiatry, 2021, 12, 608857.	2.6	15
11	Elevated body weight modulates subcortical volume change and associated clinical response following electroconvulsive therapy. Journal of Psychiatry and Neuroscience, 2021, 46, E418-E426.	2.4	4
12	Dynamic Functional Connectivity Predicts Treatment Response to Electroconvulsive Therapy in Major Depressive Disorder. Frontiers in Human Neuroscience, 2021, 15, 689488.	2.0	15
13	Accounting for symptom heterogeneity can improve neuroimaging models of antidepressant response after electroconvulsive therapy. Human Brain Mapping, 2021, 42, 5322-5333.	3.6	9
14	OUP accepted manuscript. Schizophrenia Bulletin, 2021, , .	4.3	1
15	Brain Changes Induced by Electroconvulsive Therapy Are Broadly Distributed. Biological Psychiatry, 2020, 87, 451-461.	1.3	72
16	Depressive Symptom Dimensions in Treatment-Resistant Major Depression and Their Modulation With Electroconvulsive Therapy. Journal of ECT, 2020, 36, 123-129.	0.6	12
17	Preliminary prediction of individual response to electroconvulsive therapy using whole-brain functional magnetic resonance imaging data. NeuroImage: Clinical, 2020, 26, 102080.	2.7	26
18	Anterior cingulate gammaâ€aminobutyric acid concentrations and electroconvulsive therapy. Brain and Behavior, 2020, 10, e01833.	2.2	11

Christopher C Abbott

#	Article	IF	CITATIONS
19	Electroconvulsive therapy treatment responsive multimodal brain networks. Human Brain Mapping, 2020, 41, 1775-1785.	3.6	20
20	Structural changes induced by electroconvulsive therapy are associated with clinical outcome. Brain Stimulation, 2020, 13, 696-704.	1.6	31
21	Electroconvulsive therapy electrode placement for bipolar state-related targeted engagement. International Journal of Bipolar Disorders, 2019, 7, 11.	2.2	5
22	Electric field causes volumetric changes in the human brain. ELife, 2019, 8, .	6.0	57
23	Targeted Electroconvulsive Therapy for Super Refractory Status Epilepticus: A Case Report and Literature Review. Psychosomatics, 2018, 59, 302-305.	2.5	12
24	SMRI Biomarkers Predict Electroconvulsive Treatment Outcomes: Accuracy with Independent Data Sets. Neuropsychopharmacology, 2018, 43, 1078-1087.	5.4	49
25	Increased Excitability Induced in the Primary Motor Cortex by Transcranial Ultrasound Stimulation. Frontiers in Neurology, 2018, 9, 1007.	2.4	65
26	Volume of the Human Hippocampus and Clinical Response Following Electroconvulsive Therapy. Biological Psychiatry, 2018, 84, 574-581.	1.3	138
27	Glutamatergic and Neuronal Dysfunction in Gray and White Matter: A Spectroscopic Imaging Study in a Large Schizophrenia Sample. Schizophrenia Bulletin, 2017, 43, sbw122.	4.3	50
28	Editorial Comment: Stress and Late-Life Depression. American Journal of Geriatric Psychiatry, 2017, 25, 978-979.	1.2	0
29	Data-driven cluster selection for subcortical shape and cortical thickness predicts recovery from depressive symptoms. , 2017, 2017, 502-506.		5
30	The Global ECT-MRI Research Collaboration (GEMRIC): Establishing a multi-site investigation of the neural mechanisms underlying response to electroconvulsive therapy. NeuroImage: Clinical, 2017, 14, 422-432.	2.7	68
31	Inter and intra-hemispheric structural imaging markers predict depression relapse after electroconvulsive therapy: a multisite study. Translational Psychiatry, 2017, 7, 1270.	4.8	21
32	From Behavioral Facilitation to Inhibition: The Neuronal Correlates of the Orienting and Reorienting of Auditory Attention. Frontiers in Human Neuroscience, 2017, 11, 293.	2.0	6
33	Reproducibility of phase rotation stimulated echo acquisition mode at 3T in schizophrenia: Emphasis on glutamine. Magnetic Resonance in Medicine, 2016, 75, 498-502.	3.0	12
34	Determining Electroconvulsive Therapy Response With Machine Learning. JAMA Psychiatry, 2016, 73, 545.	11.0	5
35	Hemodynamic response function abnormalities in schizophrenia during a multisensory detection task. Human Brain Mapping, 2016, 37, 745-755.	3.6	21
36	The Paradoxical Relationship between White Matter, Psychopathology and Cognition in Schizophrenia: A Diffusion Tensor and Proton Spectroscopic Imaging Study. Neuropsychopharmacology, 2015, 40, 2248-2257.	5.4	37

Christopher C Abbott

#	Article	IF	CITATIONS
37	Increased Glutamine in Patients Undergoing Long-term Treatment for Schizophrenia. JAMA Psychiatry, 2014, 71, 265.	11.0	77
38	Catatonia After Deep Brain Stimulation Successfully Treated With Lorazepam and Right Unilateral Electroconvulsive Therapy. Journal of ECT, 2014, 30, e13-e15.	0.6	11
39	A Review of Longitudinal Electroconvulsive Therapy. Journal of Geriatric Psychiatry and Neurology, 2014, 27, 33-46.	2.3	54
40	Catatonia After Cerebral Hypoxia: Do the Usual Treatments Apply?. Psychosomatics, 2014, 55, 525-535.	2.5	16
41	Thalamus and posterior temporal lobe show greater inter-network connectivity at rest and across sensory paradigms in schizophrenia. NeuroImage, 2014, 97, 117-126.	4.2	151
42	Electroconvulsive Therapy Response in Major Depressive Disorder: A Pilot Functional Network Connectivity Resting State fMRI Investigation. Frontiers in Psychiatry, 2013, 4, 10.	2.6	129
43	The Increasing Frequency of Mania and Bipolar Disorder. Journal of Nervous and Mental Disease, 2012, 200, 380-387.	1.0	16
44	Auditory orienting and inhibition of return in schizophrenia: A functional magnetic resonance imaging study. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2012, 37, 161-168.	4.8	7
45	Reliability of the amplitude of low-frequency fluctuations in resting state fMRI in chronic schizophrenia. Psychiatry Research - Neuroimaging, 2012, 201, 253-255.	1.8	63
46	Antipsychotic dose and diminished neural modulation: A multi-site fMRI study. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2011, 35, 473-482.	4.8	46
47	Decreased Default Mode Neural Modulation With Age in Schizophrenia. American Journal of Geriatric Psychiatry, 2010, 18, 897-907.	1.2	15
48	Are Second Generation Antipsychotics a Distinct Class?. Journal of Psychiatric Practice, 2008, 14, 225-231.	0.7	7