
## Luis Carrasco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9016514/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Polymicrobial Infections and Neurodegenerative Diseases. Current Clinical Microbiology Reports, 2020, 7, 20-30.                                                                          | 3.4 | 5         |
| 2  | Parkinson's Disease: A Comprehensive Analysis of Fungi and Bacteria in Brain Tissue. International<br>Journal of Biological Sciences, 2020, 16, 1135-1152.                               | 6.4 | 37        |
| 3  | A viral RNA motif involved in signaling the initiation of translation on non-AUG codons. Rna, 2019, 25, 431-452.                                                                         | 3.5 | 8         |
| 4  | Searching for Bacteria in Neural Tissue From Amyotrophic Lateral Sclerosis. Frontiers in Neuroscience, 2019, 13, 171.                                                                    | 2.8 | 27        |
| 5  | System-wide Profiling of RNA-Binding Proteins Uncovers Key Regulators of Virus Infection. Molecular<br>Cell, 2019, 74, 196-211.e11.                                                      | 9.7 | 137       |
| 6  | Brain Microbiota in Huntington's Disease Patients. Frontiers in Microbiology, 2019, 10, 2622.                                                                                            | 3.5 | 24        |
| 7  | Human and Microbial Proteins From Corpora Amylacea of Alzheimer's Disease. Scientific Reports, 2018,<br>8, 9880.                                                                         | 3.3 | 37        |
| 8  | The Initiation Factors eIF2, eIF2A, eIF2D, eIF4A, and eIF4G Are Not Involved in Translation Driven by<br>Hepatitis C Virus IRES in Human Cells. Frontiers in Microbiology, 2018, 9, 207. | 3.5 | 31        |
| 9  | Infection of Fungi and Bacteria in Brain Tissue From Elderly Persons and Patients With Alzheimer's<br>Disease. Frontiers in Aging Neuroscience, 2018, 10, 159.                           | 3.4 | 125       |
| 10 | The Regulation of Translation in Alphavirus-Infected Cells. Viruses, 2018, 10, 70.                                                                                                       | 3.3 | 63        |
| 11 | Multiple sclerosis and mixed microbial infections. Direct identification of fungi and bacteria in nervous tissue. Neurobiology of Disease, 2018, 117, 42-61.                             | 4.4 | 39        |
| 12 | Identification of Fungal Species in Brain Tissue from Alzheimer's Disease by Next-Generation<br>Sequencing. Journal of Alzheimer's Disease, 2017, 58, 55-67.                             | 2.6 | 89        |
| 13 | Fungal infection in neural tissue of patients with amyotrophic lateral sclerosis. Neurobiology of<br>Disease, 2017, 108, 249-260.                                                        | 4.4 | 64        |
| 14 | Translation of Sindbis Subgenomic mRNA is Independent of eIF2, eIF2A and eIF2D. Scientific Reports, 2017, 7, 43876.                                                                      | 3.3 | 30        |
| 15 | Polymicrobial Infections In Brain Tissue From Alzheimer's Disease Patients. Scientific Reports, 2017, 7,<br>5559.                                                                        | 3.3 | 99        |
| 16 | Fungal Enolase, β-Tubulin, and Chitin Are Detected in Brain Tissue from Alzheimer's Disease Patients.<br>Frontiers in Microbiology, 2016, 7, 1772.                                       | 3.5 | 57        |
| 17 | Corpora Amylacea of Brain Tissue from Neurodegenerative Diseases Are Stained with Specific<br>Antifungal Antibodies. Frontiers in Neuroscience, 2016, 10, 86.                            | 2.8 | 59        |
| 18 | Influence of glutathione availability on cell damage induced by human immunodeficiency virus type 1<br>viral protein R. Virus Research, 2016, 213, 116-123.                              | 2.2 | 9         |

| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A Viral mRNA Motif at the 3′-Untranslated Region that Confers Translatability in a Cell-Specific<br>Manner. Implications for Virus Evolution. Scientific Reports, 2016, 6, 19217.                               | 3.3 | 21        |
| 20 | Different Brain Regions are Infected with Fungi in Alzheimer's Disease. Scientific Reports, 2015, 5, 15015.                                                                                                     | 3.3 | 210       |
| 21 | Cerebrospinal Fluid from Alzheimer's Disease Patients Contains Fungal Proteins and DNA. Journal of<br>Alzheimer's Disease, 2015, 47, 873-876.                                                                   | 2.6 | 30        |
| 22 | Viroporins: Structures and functions beyond cell membrane permeabilization. Viruses, 2015, 7, 5169-5171.                                                                                                        | 3.3 | 20        |
| 23 | Differential action of pateamine A on translation of genomic and subgenomic mRNAs from Sindbis virus. Virology, 2015, 484, 41-50.                                                                               | 2.4 | 19        |
| 24 | Evidence for Fungal Infection in Cerebrospinal Fluid and Brain Tissue from Patients with Amyotrophic<br>Lateral Sclerosis. International Journal of Biological Sciences, 2015, 11, 546-558.                     | 6.4 | 87        |
| 25 | Inhibition of host protein synthesis by Sindbis virus: correlation with viral RNA replication and release of nuclear proteins to the cytoplasm. Cellular Microbiology, 2015, 17, 520-541.                       | 2.1 | 10        |
| 26 | Initiation codon selection is accomplished by a scanning mechanism without crucial initiation factors in Sindbis virus subgenomic mRNA. Rna, 2015, 21, 93-112.                                                  | 3.5 | 15        |
| 27 | Impact of Vesicular Stomatitis Virus M Proteins on Different Cellular Functions. PLoS ONE, 2015, 10, e0131137.                                                                                                  | 2.5 | 19        |
| 28 | L protease from foot and mouth disease virus confers eIF2â€independent translation for mRNAs bearing<br>picornavirus IRES. FEBS Letters, 2014, 588, 4053-4059.                                                  | 2.8 | 10        |
| 29 | Direct Visualization of Fungal Infection in Brains from Patients with Alzheimer's Disease. Journal of<br>Alzheimer's Disease, 2014, 43, 613-624.                                                                | 2.6 | 85        |
| 30 | Fungal Infection in Patients with Alzheimer's Disease. Journal of Alzheimer's Disease, 2014, 41, 301-311.                                                                                                       | 2.6 | 128       |
| 31 | Alzheimer's disease and disseminated mycoses. European Journal of Clinical Microbiology and<br>Infectious Diseases, 2014, 33, 1125-1132.                                                                        | 2.9 | 59        |
| 32 | Translation of viral mRNAs that do not require eIF4E is blocked by the inhibitor 4EGI-1. Virology, 2013, 444, 171-180.                                                                                          | 2.4 | 6         |
| 33 | Fungal infection in cerebrospinal fluid from some patients with multiple sclerosis. European Journal of Clinical Microbiology and Infectious Diseases, 2013, 32, 795-801.                                       | 2.9 | 33        |
| 34 | Phosphorylation of eIF2α is responsible for the failure of the picornavirus internal ribosome entry site<br>to direct translation from Sindbis virus replicons. Journal of General Virology, 2013, 94, 796-806. | 2.9 | 11        |
| 35 | Participation of eIF4F complex in Junin virus infection: blockage of eIF4E does not impair virus<br>replication. Cellular Microbiology, 2013, 15, n/a-n/a.                                                      | 2.1 | 22        |
| 36 | Requirements for eIF4A and eIF2 during translation of Sindbis virus subgenomic mRNA in vertebrate<br>and invertebrate host cells. Cellular Microbiology, 2013, 15, 823-840.                                     | 2.1 | 29        |

| #  | Article                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Poliovirus 2A Protease Triggers a Selective Nucleo-Cytoplasmic Redistribution of Splicing Factors to<br>Regulate Alternative Pre-mRNA Splicing. PLoS ONE, 2013, 8, e73723.                          | 2.5  | 34        |
| 38 | A non-infectious cell-based phenotypic assay for the assessment of HIV-1 susceptibility to protease inhibitors. Journal of Antimicrobial Chemotherapy, 2012, 67, 32-38.                             | 3.0  | 7         |
| 39 | Membrane-Active Peptides Derived from Picornavirus 2B Viroporin. Current Protein and Peptide Science, 2012, 13, 632-643.                                                                            | 1.4  | 15        |
| 40 | Viroporins: structure and biological functions. Nature Reviews Microbiology, 2012, 10, 563-574.                                                                                                     | 28.6 | 388       |
| 41 | Translation Directed by Hepatitis A Virus IRES in the Absence of Active eIF4F Complex and eIF2. PLoS ONE, 2012, 7, e52065.                                                                          | 2.5  | 23        |
| 42 | Alternative splicing, a new target to block cellular gene expression by poliovirus 2A protease.<br>Biochemical and Biophysical Research Communications, 2011, 414, 142-147.                         | 2.1  | 10        |
| 43 | Translation of Viral mRNA without Active eIF2: The Case of Picornaviruses. PLoS ONE, 2011, 6, e22230.                                                                                               | 2.5  | 24        |
| 44 | Translation without eIF2 Promoted by Poliovirus 2A Protease. PLoS ONE, 2011, 6, e25699.                                                                                                             | 2.5  | 26        |
| 45 | Functional impairment of elF4A and elF4G factors correlates with inhibition of influenza virus mRNA translation. Virology, 2011, 413, 93-102.                                                       | 2.4  | 24        |
| 46 | Fungal infection in a patient with multiple sclerosis. European Journal of Clinical Microbiology and Infectious Diseases, 2011, 30, 1173-1180.                                                      | 2.9  | 20        |
| 47 | Membrane Integration of Poliovirus 2B Viroporin. Journal of Virology, 2011, 85, 11315-11324.                                                                                                        | 3.4  | 43        |
| 48 | The Multifaceted Poliovirus 2A Protease: Regulation of Gene Expression by Picornavirus Proteases.<br>Journal of Biomedicine and Biotechnology, 2011, 2011, 1-23.                                    | 3.0  | 66        |
| 49 | Association between multiple sclerosis and Candida species: evidence from a case-control study.<br>European Journal of Clinical Microbiology and Infectious Diseases, 2010, 29, 1139-1145.          | 2.9  | 49        |
| 50 | Cell permeabilization by poliovirus 2B viroporin triggers bystander permeabilization in neighbouring cells through a mechanism involving gap junctions. Cellular Microbiology, 2010, 12, 1144-1157. | 2.1  | 14        |
| 51 | Translation Driven by Picornavirus IRES Is Hampered from Sindbis Virus Replicons: Rescue by Poliovirus 2A Protease. Journal of Molecular Biology, 2010, 402, 101-117.                               | 4.2  | 21        |
| 52 | A peptide based on the pore-forming domain of pro-apoptotic poliovirus 2B viroporin targets<br>mitochondria. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 52-58.                       | 2.6  | 12        |
| 53 | Dual Mechanism for the Translation of Subgenomic mRNA from Sindbis Virus in Infected and Uninfected Cells. PLoS ONE, 2009, 4, e4772.                                                                | 2.5  | 44        |
| 54 | HIV- 1 Protease Inhibits Cap- and Poly(A)-Dependent Translation upon eIF4GI and PABP Cleavage. PLoS<br>ONE, 2009, 4, e7997.                                                                         | 2.5  | 59        |

| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Regulation of Host Translational Machinery by African Swine Fever Virus. PLoS Pathogens, 2009, 5, e1000562.                                                                                              | 4.7 | 69        |
| 56 | RNA nuclear export is blocked by poliovirus 2A protease and is concomitant with nucleoporin cleavage. Journal of Cell Science, 2009, 122, 3799-3809.                                                     | 2.0 | 83        |
| 57 | Translation of mRNAs from Vesicular Stomatitis Virus and Vaccinia Virus Is Differentially Blocked in<br>Cells with Depletion of eIF4GI and/or eIF4GII. Journal of Molecular Biology, 2009, 394, 506-521. | 4.2 | 24        |
| 58 | Functional and Structural Characterization of 2B Viroporin Membranolytic Domains. Biochemistry, 2008, 47, 10731-10739.                                                                                   | 2.5 | 18        |
| 59 | Fungal Infection in Patients with Serpiginous Choroiditis or Acute Zonal Occult Outer Retinopathy.<br>Journal of Clinical Microbiology, 2008, 46, 130-135.                                               | 3.9 | 35        |
| 60 | Fungal Infection in Patients with Multiple Sclerosis. The Open Mycology Journal, 2008, 2, 22-28.                                                                                                         | 0.8 | 12        |
| 61 | Evolution of antibody response and fungal antigens in the serum of a patient infected with Candida famata. Journal of Medical Microbiology, 2007, 56, 571-578.                                           | 1.8 | 11        |
| 62 | Viral Translation Is Coupled to Transcription in Sindbis Virus-Infected Cells. Journal of Virology, 2007, 81, 7061-7068.                                                                                 | 3.4 | 36        |
| 63 | Plasma Membrane-porating Domain in Poliovirus 2B Protein. A Short Peptide Mimics Viroporin Activity.<br>Journal of Molecular Biology, 2007, 374, 951-964.                                                | 4.2 | 41        |
| 64 | Attachment and entry of <i>Candida famata</i> in monocytes and epithelial cells. Microscopy<br>Research and Technique, 2007, 70, 975-986.                                                                | 2.2 | 23        |
| 65 | Viroporins from RNA viruses induce caspase-dependent apoptosis. Cellular Microbiology, 2007, 10, 071027034427002-???.                                                                                    | 2.1 | 91        |
| 66 | Differential inhibition of cellular and Sindbis virus translation by brefeldin A. Virology, 2007, 363, 430-436.                                                                                          | 2.4 | 10        |
| 67 | Translation of Sindbis Virus 26S mRNA Does Not Require Intact Eukariotic Initiation Factor 4G. Journal of Molecular Biology, 2006, 355, 942-956.                                                         | 4.2 | 45        |
| 68 | HIV protease cleaves poly(A)-binding protein. Biochemical Journal, 2006, 396, 219-226.                                                                                                                   | 3.7 | 85        |
| 69 | Antiviral effect of the mammalian translation initiation factor 2α kinase GCN2 against RNA viruses.<br>EMBO Journal, 2006, 25, 1730-1740.                                                                | 7.8 | 170       |
| 70 | Translational resistance of late alphavirus mRNA to eIF2Â phosphorylation: a strategy to overcome the<br>antiviral effect of protein kinase PKR. Genes and Development, 2006, 20, 87-100.                | 5.9 | 176       |
| 71 | Differential Cleavage of eIF4GI and eIF4GII in Mammalian Cells. Journal of Biological Chemistry, 2006, 281, 33206-33216.                                                                                 | 3.4 | 38        |
| 72 | Regulation of HIV-1 env mRNA translation by Rev protein. Biochimica Et Biophysica Acta - Molecular<br>Cell Research, 2005, 1743, 169-175.                                                                | 4.1 | 34        |

| #  | Article                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Involvement of HIV-1 protease in virus-induced cell killing. Antiviral Research, 2005, 66, 47-55.                                                                                              | 4.1 | 23        |
| 74 | Requirement of the vesicular system for membrane permeabilization by Sindbis virus. Virology, 2005, 332, 307-315.                                                                              | 2.4 | 33        |
| 75 | Isolation of Candida famata from a Patient with Acute Zonal Occult Outer Retinopathy. Journal of<br>Clinical Microbiology, 2005, 43, 635-640.                                                  | 3.9 | 38        |
| 76 | Viroporin activity of murine hepatitis virus E protein. FEBS Letters, 2005, 579, 3607-3612.                                                                                                    | 2.8 | 70        |
| 77 | The Alphavirus 6K Protein. , 2005, , 233-244.                                                                                                                                                  |     | 4         |
| 78 | Viral Proteins that Enhance Membrane Permeability. , 2005, , 79-90.                                                                                                                            |     | 1         |
| 79 | Membrane-permeabilizing motif in Semliki forest virus E1 glycoprotein. FEBS Letters, 2004, 576, 417-422.                                                                                       | 2.8 | 10        |
| 80 | Individual expression of poliovirus 2Apro and 3Cpro induces activation of caspase-3 and PARP cleavage in HeLa cells. Virus Research, 2004, 104, 39-49.                                         | 2.2 | 74        |
| 81 | Individual Expression of Sindbis Virus Glycoproteins. E1 Alone Promotes Cell Fusion. Virology, 2003, 305, 463-472.                                                                             | 2.4 | 21        |
| 82 | Cleavage of eIF4G by HIV-1 protease: effects on translation. FEBS Letters, 2003, 533, 89-94.                                                                                                   | 2.8 | 49        |
| 83 | Viroporins. FEBS Letters, 2003, 552, 28-34.                                                                                                                                                    | 2.8 | 324       |
| 84 | Mechanisms of membrane permeabilization by picornavirus 2B viroporin. FEBS Letters, 2003, 552, 68-73.                                                                                          | 2.8 | 64        |
| 85 | The Eukaryotic Translation Initiation Factor 4GI Is Cleaved by Different Retroviral Proteases. Journal of Virology, 2003, 77, 12392-12400.                                                     | 3.4 | 73        |
| 86 | Interfacial Domains in Sindbis Virus 6K Protein. Journal of Biological Chemistry, 2003, 278, 2051-2057.                                                                                        | 3.4 | 53        |
| 87 | Cell Killing by HIV-1 Protease. Journal of Biological Chemistry, 2003, 278, 1086-1093.                                                                                                         | 3.4 | 68        |
| 88 | Antiviral Activity of Seven Iridoids, Three Saikosaponins and One Phenylpropanoid Glycoside Extracted<br>from Bupleurum rigidum and Scrophularia scorodonia. Planta Medica, 2002, 68, 106-110. | 1.3 | 81        |
| 89 | Viroporin-mediated Membrane Permeabilization. Journal of Biological Chemistry, 2002, 277, 40434-40441.                                                                                         | 3.4 | 124       |
| 90 | Entry of Poliovirus into Cells Is Blocked by Valinomycin and Concanamycin Aâ€. Biochemistry, 2001, 40, 3589-3600.                                                                              | 2.5 | 34        |

| #   | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Human Immunodeficiency Virus Type 1 VPU Protein Affects Sindbis Virus Glycoprotein Processing and Enhances Membrane Permeabilization. Virology, 2001, 279, 201-209.                                                                        | 2.4 | 29        |
| 92  | HIV-1 protease cleaves eukaryotic initiation factor 4G and inhibits cap-dependent translation.<br>Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 12966-12971.                                  | 7.1 | 115       |
| 93  | Sindbis Virus Variant with a Deletion in the 6K Gene Shows Defects in Glycoprotein Processing and<br>Trafficking: Lack of Complementation by a Wild-Type 6K Gene in trans. Journal of Virology, 2001, 75,<br>7778-7784.                    | 3.4 | 48        |
| 94  | Antipoliovirus Flavonoids from <i>Psiadia Dentata</i> . Antiviral Chemistry and Chemotherapy, 2001, 12, 283-291.                                                                                                                           | 0.6 | 37        |
| 95  | Search for antiviral activity in higher plant extracts. Phytotherapy Research, 2000, 14, 604-607.                                                                                                                                          | 5.8 | 85        |
| 96  | Poliovirus Induces Apoptosis in the Human U937 Promonocytic Cell Line. Virology, 2000, 272, 250-256.                                                                                                                                       | 2.4 | 41        |
| 97  | Poliovirus Protease 3Cpro Kills Cells by Apoptosis. Virology, 2000, 266, 352-360.                                                                                                                                                          | 2.4 | 116       |
| 98  | A Stable HeLa Cell Line That Inducibly Expresses Poliovirus 2Apro: Effects on Cellular and Viral Gene<br>Expression. Journal of Virology, 2000, 74, 2383-2392.                                                                             | 3.4 | 35        |
| 99  | Eukaryotic Translation Initiation Factor 4GI Is a Cellular Target for NS1 Protein, a Translational Activator of Influenza Virus. Molecular and Cellular Biology, 2000, 20, 6259-6268.                                                      | 2.3 | 181       |
| 100 | The Amino-Terminal Nine Amino Acid Sequence of Poliovirus Capsid VP4 Protein Is Sufficient To Confer<br>N-Myristoylation and Targeting to Detergent-Insoluble Membranesâ€. Biochemistry, 2000, 39, 1083-1090.                              | 2.5 | 28        |
| 101 | Nonradioactive Methods for the Detection of RNA-Protein Interaction. , 2000, , 783-791.                                                                                                                                                    |     | 0         |
| 102 | Antiviral activity of Bolivian plant extracts. General Pharmacology, 1999, 32, 499-503.                                                                                                                                                    | 0.7 | 66        |
| 103 | Cleavage of Eukaryotic Translation Initiation Factor 4G by Exogenously Added Hybrid Proteins<br>Containing Poliovirus 2A <sup>pro</sup> in HeLa Cells: Effects on Gene Expression. Molecular and<br>Cellular Biology, 1999, 19, 2445-2454. | 2.3 | 50        |
| 104 | Genetic Selection of Poliovirus 2A pro -Binding Peptides. Journal of Virology, 1999, 73, 814-818.                                                                                                                                          | 3.4 | 12        |
| 105 | Antiviral activity of some South American medicinal plants. Phytotherapy Research, 1999, 13, 142-146.                                                                                                                                      | 5.8 | 0         |
| 106 | Poliovirus 2A proteinase cleaves directly the eIF-4G subunit of eIF-4F complex. FEBS Letters, 1998, 435, 79-83.                                                                                                                            | 2.8 | 63        |
| 107 | The Human Immunodeficiency Virus Type 1 Vpu Protein Enhances Membrane Permeability. Biochemistry, 1998, 37, 13710-13719.                                                                                                                   | 2.5 | 64        |
| 108 | Mutational Analysis of Poliovirus 2Apro. Journal of Biological Chemistry, 1998, 273, 27960-27967.                                                                                                                                          | 3.4 | 33        |

| #   | Article                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Effect of Nitric Oxide on Poliovirus Infection of Two Human Cell Lines. Journal of Virology, 1998, 72, 2538-2540.                                                                   | 3.4 | 32        |
| 110 | Identification of Regions of Poliovirus 2BC Protein That Are Involved in Cytotoxicity. Journal of Virology, 1998, 72, 3560-3570.                                                    | 3.4 | 35        |
| 111 | The Yeast Saccharomyces cerevisiae as a Genetic System for Obtaining Variants of Poliovirus Protease<br>2A. Journal of Biological Chemistry, 1997, 272, 12683-12691.                | 3.4 | 16        |
| 112 | Cleavage of p220 by Purified Poliovirus 2Aproin Cell-Free Systems: Effects on Translation of Capped and Uncapped mRNAsâ€. Biochemistry, 1997, 36, 7802-7809.                        | 2.5 | 23        |
| 113 | Permeabilization of Mammalian Cells to Proteins: Poliovirus 2Aproas a Probe to Analyze Entry of<br>Proteins into Cells. Experimental Cell Research, 1997, 232, 186-190.             | 2.6 | 0         |
| 114 | The N-Terminal Arg-Rich Region of Human Immunodeficiency Virus Types 1 and 2 and Simian<br>Immunodeficiency Virus Nef is Involved in RNA Binding. FEBS Journal, 1997, 246, 38-44.   | 0.2 | 10        |
| 115 | Entry of Semliki Forest Virus into Cells: Effects of Concanamycin A and Nigericin on Viral Membrane<br>Fusion and Infection. Virology, 1997, 227, 488-492.                          | 2.4 | 34        |
| 116 | Membrane Permeability Changes Induced inEscherichia coliby the SH Protein of Human Respiratory<br>Syncytial Virus. Virology, 1997, 235, 342-351.                                    | 2.4 | 66        |
| 117 | Antiviral activity of medicinal plant extracts. Phytotherapy Research, 1997, 11, 198-202.                                                                                           | 5.8 | 36        |
| 118 | Human Immunodeficiency Virus (HIV) Nef is an RNA Binding Protein in Cell-free Systems. Journal of<br>Molecular Biology, 1996, 262, 640-651.                                         | 4.2 | 10        |
| 119 | Screening for Membrane-Permeabilizing Mutants of the Poliovirus Protein 3AB. Journal of General Virology, 1996, 77, 2109-2119.                                                      | 2.9 | 18        |
| 120 | Membrane Permeabilization by Poliovirus Proteins 2B and 2BC. Journal of Biological Chemistry, 1996, 271, 23134-23137.                                                               | 3.4 | 121       |
| 121 | Biotin-Labeled Riboprobes to Study RNA-Binding Proteins. , 1996, , 215-225.                                                                                                         |     | 1         |
| 122 | Effects of Poliovirus 2Apro on Vaccinia Virus Gene Expression. FEBS Journal, 1995, 234, 849-854.                                                                                    | 0.2 | 22        |
| 123 | Modification of Membrane Permeability by Animal Viruses. Advances in Virus Research, 1995, 45, 61-112.                                                                              | 2.1 | 200       |
| 124 | Cloning and inducible synthesis of poliovirus non-structural proteins in Saccharomyces cerevisiae.<br>Gene, 1995, 156, 19-25.                                                       | 2.2 | 12        |
| 125 | Induction of Membrane Proliferation by Poliovirus Proteins 2C and 2BC. Biochemical and Biophysical Research Communications, 1995, 206, 64-76.                                       | 2.1 | 135       |
| 126 | Efficient Cleavage of p220 by Poliovirus 2Apro Expression in Mammalian Cells: Effects on Vaccina<br>Virus. Biochemical and Biophysical Research Communications, 1995, 215, 928-936. | 2.1 | 48        |

| #   | Article                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Mutations in the hydrophobic domain of poliovirus protein 3AB abrogate its permeabilizing activity.<br>FEBS Letters, 1995, 367, 5-11.                                         | 2.8 | 27        |
| 128 | Poliovirus 2Aproexpression inhibits growth of yeast cells. FEBS Letters, 1995, 371, 4-8.                                                                                      | 2.8 | 17        |
| 129 | Expression of poliovirus 2Aproin mammalian cells: effects on translation. FEBS Letters, 1995, 377, 1-5.                                                                       | 2.8 | 22        |
| 130 | Poliovirus Protein 2C Contains Two Regions Involved in RNA Binding Activity. Journal of Biological<br>Chemistry, 1995, 270, 10105-10112.                                      | 3.4 | 119       |
| 131 | Requirement for vacuolar proton-ATPase activity during entry of influenza virus into cells. Journal of Virology, 1995, 69, 2306-2312.                                         | 3.4 | 114       |
| 132 | Membrane permeabilization by different regions of the human immunodeficiency virus type 1 transmembrane glycoprotein gp41. Journal of Virology, 1995, 69, 4095-4102.          | 3.4 | 51        |
| 133 | Enhanced intracellular calcium concentration during poliovirus infection. Journal of Virology, 1995, 69, 5142-5146.                                                           | 3.4 | 64        |
| 134 | Involvement of the vacuolar H+-ATPase in animal virus entry. Journal of General Virology, 1994, 75, 2595-2606.                                                                | 2.9 | 127       |
| 135 | Action of brefeldin A on translation in Semliki Forest virus-infected HeLa cells and cells doubly infected with poliovirus. Journal of General Virology, 1994, 75, 2197-2203. | 2.9 | 3         |
| 136 | Picornavirus inhibitors. , 1994, 64, 215-290.                                                                                                                                 |     | 52        |
| 137 | Concanamycin A: A Powerful Inhibitor of Enveloped Animal Virus Entry into Cells. Biochemical and<br>Biophysical Research Communications, 1994, 201, 1270-1278.                | 2.1 | 23        |
| 138 | Concanamycin A blocks influenza virus entry into cells under acidic conditions. FEBS Letters, 1994, 349, 327-330.                                                             | 2.8 | 27        |
| 139 | Entry of animal viruses and macromolecules into cells. FEBS Letters, 1994, 350, 151-154.                                                                                      | 2.8 | 60        |
| 140 | Hybrid proteins betweenPseudomonasexotoxin A and poliovirus protease 2Apro. FEBS Letters, 1994, 355, 45-48.                                                                   | 2.8 | 13        |
| 141 | Influenza virus M2 protein modifies membrane permeability inE. colicells. FEBS Letters, 1994, 343, 242-246.                                                                   | 2.8 | 53        |
| 142 | Activation of Phospholipase Activity during Semliki Forest Virus Infection. Virology, 1993, 194, 28-36.                                                                       | 2.4 | 17        |
| 143 | Brefeldin A blocks protein glycosylation and RNA replication of vesicular stomatitis virus. FEBS<br>Letters, 1993, 336, 496-500.                                              | 2.8 | 24        |
| 144 | High level expression in Escherichia coli cells and purification of poliovirus protein 2Apro. Journal<br>of General Virology, 1993, 74, 2645-2652.                            | 2.9 | 17        |

| #   | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Enhancement of phospholipase activity during poliovirus infection. Journal of General Virology, 1993, 74, 1063-1071.                                                                                                                    | 2.9 | 21        |
| 146 | Modification of Membrane Permeability by Animal Viruses. , 1993, , 283-303.                                                                                                                                                             |     | 22        |
| 147 | Cloning and inducible synthesis of poliovirus nonstructural proteins. Gene, 1992, 117, 185-192.                                                                                                                                         | 2.2 | 19        |
| 148 | Inducible expression of a toxic poliovirus membrane protein in Escherichia coli: Comparative studies using different expression systems based on T7 promoters. Biochemical and Biophysical Research Communications, 1992, 188, 972-981. | 2.1 | 26        |
| 149 | Involvement of membrane traffic in the replication of poliovirus genomes: Effects of brefeldin A.<br>Virology, 1992, 191, 166-175.                                                                                                      | 2.4 | 133       |
| 150 | Lack of direct correlation between p220 cleavage and the shut-off of host translation after poliovirus infection. Virology, 1992, 189, 178-186.                                                                                         | 2.4 | 87        |
| 151 | Gliotoxin: inhibitor of poliovirus RNA synthesis that blocks the viral RNA polymerase 3Dpol. Journal of Virology, 1992, 66, 1971-1976.                                                                                                  | 3.4 | 63        |
| 152 | Cell type determines the relative proportions of (â^') and (+) strand RNA during poliovirus replication.<br>Virus Research, 1991, 20, 23-29.                                                                                            | 2.2 | 9         |
| 153 | Cerulenin, an inhibitor of lipid synthesis, blocks vesicular stomatitis virus RNA replication. FEBS<br>Letters, 1991, 280, 129-133.                                                                                                     | 2.8 | 15        |
| 154 | Mechanism of inhibition of HSV-1 replication by tumor necrosis factor and interferon γ. Virology, 1991, 180, 822-825.                                                                                                                   | 2.4 | 49        |
| 155 | Synthesis of Semliki Forest virus RNA requires continuous lipid synthesis. Virology, 1991, 183, 74-82.                                                                                                                                  | 2.4 | 48        |
| 156 | Effects of fatty acids on lipid synthesis and viral RNA replication in poliovirus-infected cells.<br>Virology, 1991, 185, 473-476.                                                                                                      | 2.4 | 29        |
| 157 | Restriction of poliovirus RNA translation in a human monocytic cell line. FEBS Journal, 1989, 186, 577-582.                                                                                                                             | 0.2 | 19        |
| 158 | Post-translational modifications of poliovirus proteins. Biochemical and Biophysical Research Communications, 1989, 158, 263-271.                                                                                                       | 2.1 | 14        |
| 159 | Modification of membrane permeability by animal viruses. , 1989, 40, 171-212.                                                                                                                                                           |     | 70        |
| 160 | Degradation of cellular proteins during poliovirus infection: studies by two-dimensional gel electrophoresis. Journal of Virology, 1989, 63, 4729-4735.                                                                                 | 3.4 | 52        |
| 161 | Human gamma interferon and tumor necrosis factor exert a synergistic blockade on the replication of herpes simplex virus Journal of Virology, 1989, 63, 1354-1359.                                                                      | 3.4 | 125       |
| 162 | The heat-shock response in Trypanosoma cruzi. FEBS Journal, 1988, 172, 121-127.                                                                                                                                                         | 0.2 | 22        |

| #   | Article                                                                                                                                                                            | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Inhibition of natural killer cytotoxicity by extracellular ppp(A2′p5′)nA oligonucleotides. International<br>Journal of Immunopharmacology, 1988, 10, 73-80.                        | 1.1 | 2         |
| 164 | Exogenous phospholipase C permeabilizes mammalian cells to proteins. Experimental Cell Research, 1988, 177, 154-161.                                                               | 2.6 | 18        |
| 165 | Megalomycin C, a macrolide antibiotic that blocks protein glycosylation and shows antiviral activity.<br>FEBS Letters, 1988, 231, 207-211.                                         | 2.8 | 18        |
| 166 | Reovirus type 3 synthesizes proteins in interferon-treated Hela cells without reversing the antiviral state. Virology, 1988, 164, 420-426.                                         | 2.4 | 12        |
| 167 | The P2 and P3 Regions of the Poliovirus Genome are Preferentially Translated at Alkaline pH in Infected<br>HeLa Cells. Journal of General Virology, 1988, 69, 583-590.             | 2.9 | 5         |
| 168 | Effects of Extracellular Cations on Translation in Poliovirus-infected Cells. Journal of General Virology, 1987, 68, 325-333.                                                      | 2.9 | 21        |
| 169 | Cation Content in Poliovirus-infected HeLa Cells. Journal of General Virology, 1987, 68, 335-342.                                                                                  | 2.9 | 39        |
| 170 | Proteins are cointernalized with virion particles during early infection. Virology, 1987, 160, 75-80.                                                                              | 2.4 | 52        |
| 171 | Proteins synthesized in African swine fever virus-infected cells analyzed by two-dimensional gel electrophoresis. Virology, 1987, 160, 286-291.                                    | 2.4 | 23        |
| 172 | Adenovirus infection reverses the antiviral state induced by human interferon. FEBS Letters, 1987, 214, 153-157.                                                                   | 2.8 | 7         |
| 173 | Control of membrane permeability in animal cells by divalent cations. Experimental Cell Research, 1987, 169, 531-542.                                                              | 2.6 | 15        |
| 174 | Animal viruses promote the entry of polysaccharides with antiviral activity into cells. Biochemical and Biophysical Research Communications, 1987, 146, 1303-1310.                 | 2.1 | 14        |
| 175 | Baciphelacin: a new eukaryotic translation inhibitor. Biochimie, 1987, 69, 797-802.                                                                                                | 2.6 | 7         |
| 176 | Polysaccharides as antiviral agents: antiviral activity of carrageenan. Antimicrobial Agents and Chemotherapy, 1987, 31, 1388-1393.                                                | 3.2 | 169       |
| 177 | Hexose-modified anti-viral analogues of uridine 5′-disphosphate glucose derivatives. European Journal of Medicinal Chemistry, 1987, 22, 59-65.                                     | 5.5 | 14        |
| 178 | 3-methylquercetin is a potent and selective inhibitor of poliovirus RNA synthesis. Virology, 1986, 152, 219-227.                                                                   | 2.4 | 86        |
| 179 | External ATP permeabilizes transformed cells to macromolecules. Biochemical and Biophysical Research Communications, 1986, 134, 453-460.                                           | 2.1 | 9         |
| 180 | The inhibition of nucleic acid synthesis in encephalomyocarditis virus-infected L929 cells: Effects on nucleoside transport. Molecular and Cellular Biochemistry, 1986, 71, 53-60. | 3.1 | 5         |

| #   | Article                                                                                                                                                              | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Mildiomycin: A nucleoside antibiotic that inhibits protein synthesis Journal of Antibiotics, 1985, 38, 415-419.                                                      | 2.0  | 38        |
| 182 | Increased inhibition of cellular RNA synthesis by alpha-amanitin during entry of viruses into animal cells. FEMS Microbiology Letters, 1985, 26, 221-225.            | 1.8  | 3         |
| 183 | The Regulation of Translation in Reovirus-infected Cells. Journal of General Virology, 1985, 66, 2161-2170.                                                          | 2.9  | 13        |
| 184 | Analogues of Uridinediphosphatehexoses. A New Type of Protein Glycosylation Inhibitors That Show<br>Antiviral Activity. Nucleosides & Nucleotides, 1985, 4, 149-151. | 0.5  | 0         |
| 185 | Modification of membrane permeability during semliki forest virus infection. Virology, 1985, 146, 203-212.                                                           | 2.4  | 49        |
| 186 | Uridine 5'-diphosphate glucose analogs. Inhibitors of protein glycosylation that show antiviral activity. Journal of Medicinal Chemistry, 1985, 28, 40-46.           | 6.4  | 50        |
| 187 | Synthesis and antiviral evaluation of nucleosides of 5-methylimidazole-4-carboxamide. Journal of<br>Medicinal Chemistry, 1985, 28, 834-838.                          | 6.4  | 11        |
| 188 | Action of Human Lymphoblastoid Interferon on HeLa Cells Infected with RNA-containing Animal<br>Viruses. Journal of General Virology, 1984, 65, 377-390.              | 2.9  | 28        |
| 189 | Formation of Non-infective Herpesvirus Particles in Cultured Cells Treated with Human Interferon.<br>Journal of General Virology, 1984, 65, 1069-1078.               | 2.9  | 53        |
| 190 | Molecular bases for the action and selectivity of nucleoside antibiotics. Medicinal Research Reviews, 1984, 4, 471-512.                                              | 10.5 | 25        |
| 191 | Action of oligomycin on cultured mammalian cells. Permeabilization to translation inhibitors.<br>Molecular and Cellular Biochemistry, 1984, 61, 183-91.              | 3.1  | 8         |
| 192 | Synthesis of heat-shock proteins in HeLa cells: Inhibition by virus infection. Virology, 1984, 137, 150-159.                                                         | 2.4  | 60        |
| 193 | Screening for new compounds with antiherpes activity. Antiviral Research, 1984, 4, 231-244.                                                                          | 4.1  | 41        |
| 194 | Comparison of the antiviral action of different human interferons against DNA and RNA viruses. FEMS<br>Microbiology Letters, 1984, 21, 105-111.                      | 1.8  | 2         |
| 195 | Do cells treated with human interferon survive virus infection?. FEMS Microbiology Letters, 1983, 20, 317-321.                                                       | 1.8  | 0         |
| 196 | Effect of interferon treatment on blockade of protein synthesis induced by poliovirus infection. FEBS<br>Journal, 1983, 137, 623-629.                                | 0.2  | 14        |
| 197 | Cellular RNA is not degraded in interferon-treated HeLa cells after poliovirus infection. FEBS Letters, 1983, 160, 87-92.                                            | 2.8  | 11        |
| 198 | Permeabilization of cells during animal virus infection. , 1983, 23, 109-145.                                                                                        |      | 35        |

Permeabilization of cells during animal virus infection. , 1983, 23, 109-145. 198

| #   | Article                                                                                                                                                                                                                          | lF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Modification of Membrane Permeability in Poliovirus-infected HeLa Cells: Effect of Guanidine. Journal of General Virology, 1983, 64, 787-793.                                                                                    | 2.9 | 16        |
| 200 | Do cells treated with human interferon survive virus infection?. FEMS Microbiology Letters, 1983, 20, 317-321.                                                                                                                   | 1.8 | 0         |
| 201 | Protein Synthesis in HeLa Cells Double-infected with Encephalomyocarditis Virus and Poliovirus.<br>Journal of General Virology, 1982, 61, 15-24.                                                                                 | 2.9 | 14        |
| 202 | Translation of Capped Virus mRNA in Encephalomyocarditis Virus-infected Cells. Journal of General Virology, 1982, 60, 315-325.                                                                                                   | 2.9 | 5         |
| 203 | Modification of membrane permeability in vaccinia virus-infected cells. Virology, 1982, 117, 62-69.                                                                                                                              | 2.4 | 56        |
| 204 | Relationship between Membrane Integrity and the Inhibition of Host Translation in Virus-Infected<br>Mammalian Cells. Comparative Studies between Encephalomyocarditis Virus and Poliovirus. FEBS<br>Journal, 1982, 127, 359-366. | 0.2 | 45        |
| 205 | Molecular Basis of the Permeabilization of Mammalian Cells by Ionophores. FEBS Journal, 1982, 127, 567-569.                                                                                                                      | 0.2 | 33        |
| 206 | Permeabilization of mammalian cells to proteins by the ionophore nigericin. FEBS Letters, 1981, 127, 112-114.                                                                                                                    | 2.8 | 18        |
| 207 | Modification of membrane permeability induced by animal viruses early in infection. Virology, 1981, 113, 623-629.                                                                                                                | 2.4 | 88        |
| 208 | Selective inhibition of cellular protein synthesis by amphotericin B in EMC virus-infected cells.<br>Virology, 1981, 114, 247-251.                                                                                               | 2.4 | 10        |
| 209 | Reversal by Hypotonic Medium of the Antiviral State Induced by Lymphoblastoid Interferon in Human<br>HeLa Cells. Intervirology, 1981, 16, 106-113.                                                                               | 2.8 | 4         |
| 210 | Thionins: Plant Peptides that Modify Membrane Permeability in Cultured Mammalian Cells. FEBS<br>Journal, 1981, 116, 185-189.                                                                                                     | 0.2 | 124       |
| 211 | Action of Nucleotide Derivatives on Translation in Encephalomyocarditis Virus-infected Mouse Cells.<br>Journal of General Virology, 1981, 54, 125-134.                                                                           | 2.9 | 3         |
| 212 | Protein Synthesis and Membrane Integrity in Interferon-treated HeLa Cells Infected with Encephalomyocarditis Virus. Journal of General Virology, 1981, 56, 153-162.                                                              | 2.9 | 27        |
| 213 | Relationship between Membrane Permeability and the Translation Capacity of Human HeLa Cells<br>Studied by Means of the Ionophore Nigericin. FEBS Journal, 1981, 118, 289-294.                                                    | 0.2 | 19        |
| 214 | Reversion by hypotonic medium of the shutoff of protein synthesis induced by encephalomyocarditis virus. Journal of Virology, 1981, 37, 535-540.                                                                                 | 3.4 | 47        |
| 215 | Antibiotics that specifically block translation in virus-infected cells Journal of Antibiotics, 1980, 33, 441-446.                                                                                                               | 2.0 | 39        |
| 216 | Action of Membrane-Active Compounds on Mammalian Cells. Permeabilization of Human Cells by<br>Ionophores to Inhibitors of Translation and Transcription. FEBS Journal, 1980, 109, 535-540.                                       | 0.2 | 41        |

| #   | Article                                                                                                                                                                                            | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 217 | Inhibition of animal virus production by means of translation inhibitors unable to penetrate normal cells. Virology, 1980, 106, 123-132.                                                           | 2.4  | 49        |
| 218 | Selective inhibition of translation in transformed cells. FEBS Letters, 1980, 110, 341-343.                                                                                                        | 2.8  | 10        |
| 219 | Molecular biology of animal virus infection. , 1980, 9, 311-355.                                                                                                                                   |      | 48        |
| 220 | Viral infection permeabilizes mammalian cells to protein toxins. Cell, 1980, 20, 769-775.                                                                                                          | 28.9 | 197       |
| 221 | Selective inhibition of protein synthesis in virus-infected mammalian cells. Journal of Virology, 1979, 29, 114-122.                                                                               | 3.4  | 87        |
| 222 | The Development of New Antiviral Agents Based on Virus-Mediated Cell Modification. , 1979, , 623-631.                                                                                              |      | 4         |
| 223 | Membrane leakiness after viral infection and a new approach to the development of antiviral agents.<br>Nature, 1978, 272, 694-699.                                                                 | 27.8 | 184       |
| 224 | Inhibition, by selected antibiotics, of protein synthesis in cells growing in tissue cultures Journal of<br>Antibiotics, 1978, 31, 598-602.                                                        | 2.0  | 25        |
| 225 | Enzymic and nonenzymic translocation by yeast polysomes. Site of action of a number of inhibitors.<br>Biochemistry, 1977, 16, 4727-4730.                                                           | 2.5  | 69        |
| 226 | The inhibition of cell functions after viral infection A proposed general mechanism. FEBS Letters, 1977, 76, 11-15.                                                                                | 2.8  | 132       |
| 227 | Do viruses use calcium ions to shut off host cell functions? (reply). Nature, 1977, 267, 376-376.                                                                                                  | 27.8 | 1         |
| 228 | Site of action of ricin on the ribosome. Biochemistry, 1976, 15, 4364-4369.                                                                                                                        | 2.5  | 30        |
| 229 | Sodium ions and the shut-off of host cell protein synthesis by picornaviruses. Nature, 1976, 264, 807-809.                                                                                         | 27.8 | 248       |
| 230 | Specific Inhibition of Translocation by Tubulosine in Eukaryotic Polysomes. FEBS Journal, 1976, 64, 1-5.                                                                                           | 0.2  | 24        |
| 231 | Initiation of the Polypeptide Chain by Reticulocyte Cell-Free Systems. Survey of Different Inhibitors of<br>Translation. FEBS Journal, 1976, 68, 355-364.                                          | 0.2  | 50        |
| 232 | Antibiotics and compounds affecting translation by eukaryotic ribosomes. Specific enhancement of aminoacyl-tRNA binding by methylxanthines. Molecular and Cellular Biochemistry, 1976, 10, 97-122. | 3.1  | 33        |
| 233 | Binding of aminoacyl-tRNA to rat liver ribosomal proteins. Molecular Biology Reports, 1976, 2, 471-477.                                                                                            | 2.3  | 8         |
| 234 | Effects of Ricin on the Ribosomal Sites Involved in the Interaction of the Elongation Factors. FEBS<br>Journal, 1975, 54, 499-503.                                                                 | 0.2  | 80        |

| #   | Article                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | The Involvement of Sulphydryl Groups in the Peptidyl Transferase Centre of Eukaryotic Ribosomes.<br>FEBS Journal, 1975, 50, 317-323.                             | 0.2 | 16        |
| 236 | Ribosome Inactivation by the Toxic Lectins Abrin and Ricin. Kinetics of the Enzymic Activity of the Toxin<br>A-Chains. FEBS Journal, 1975, 60, 281-288.          | 0.2 | 196       |
| 237 | Narciclasine: an antitumour alkaloid which blocks peptide bond formation by eukaryotic ribosomes.<br>FEBS Letters, 1975, 52, 236-239.                            | 2.8 | 82        |
| 238 | The enhancement of polypeptide synthesis in mammalian systems by methylxanthines. FEBS Letters, 1974,<br>45, 132-135.                                            | 2.8 | 11        |
| 239 | Differences in eukaryotic ribosomes detected by the selective action of an antibiotic. Nucleic Acids and Protein Synthesis, 1973, 319, 209-215.                  | 1.7 | 40        |
| 240 | The trichodermin group of antibiotics, inhibitors of peptide bond formation by eukaryotic ribosomes.<br>Nucleic Acids and Protein Synthesis, 1973, 312, 368-376. | 1.7 | 92        |
| 241 | Ribosomal sites involved in binding of aminoacyl-tRNA and EF 2. mode of action of fusidic acid. FEBS<br>Letters, 1973, 32, 152-156.                              | 2.8 | 21        |
| 242 | SURVEY OF INHIBITORS IN DIFFERENT STEPS OF PROTEIN SYNTHESIS BY MAMMALIAN RIBOSOMES. Journal of Antibiotics, 1972, 25, 732-737.                                  | 2.0 | 30        |
| 243 | Effects of Viral Replication on Cellular Membrane Metabolism and Function. , 0, , 337-354.                                                                       |     | 6         |