Tao Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9016308/publications.pdf

Version: 2024-02-01

257450 243625 2,391 80 24 44 citations h-index g-index papers 81 81 81 2355 citing authors docs citations times ranked all docs

#	Article	lF	Citations
1	NeoDTI: neural integration of neighbor information from a heterogeneous network for discovering new drugâ€"target interactions. Bioinformatics, 2019, 35, 104-111.	4.1	218
2	SCALE method for single-cell ATAC-seq analysis via latent feature extraction. Nature Communications, 2019, 10, 4576.	12.8	162
3	IsoLasso: A LASSO Regression Approach to RNA-Seq Based Transcriptome Assembly. Journal of Computational Biology, 2011, 18, 1693-1707.	1.6	139
4	Assignment of Orthologous Genes via Genome Rearrangement. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2005, 2, 302-315.	3.0	120
5	Transcriptome assembly and isoform expression level estimation from biased RNA-Seq reads. Bioinformatics, 2012, 28, 2914-2921.	4.1	87
6	TITER: predicting translation initiation sites by deep learning. Bioinformatics, 2017, 33, i234-i242.	4.1	83
7	TransComb: genome-guided transcriptome assembly via combing junctions in splicing graphs. Genome Biology, 2016, 17, 213.	8.8	75
8	MSOAR 2.0: Incorporating tandem duplications into ortholog assignment based on genome rearrangement. BMC Bioinformatics, 2010, 11, 10.	2.6	72
9	EFFICIENT INFERENCE OF HAPLOTYPES FROM GENOTYPES ON A PEDIGREE. Journal of Bioinformatics and Computational Biology, 2003, 01, 41-69.	0.8	71
10	Computing the Minimum Recombinant Haplotype Configuration from Incomplete Genotype Data on a Pedigree by Integer Linear Programming. Journal of Computational Biology, 2005, 12, 719-739.	1.6	71
11	MSOAR: A High-Throughput Ortholog Assignment System Based on Genome Rearrangement. Journal of Computational Biology, 2007, 14, 1160-1175.	1.6	67
12	TAPAS: tool for alternative polyadenylation site analysis. Bioinformatics, 2018, 34, 2521-2529.	4.1	62
13	The longest common subsequence problem for sequences with nested arc annotations. Journal of Computer and System Sciences, 2002, 65, 465-480.	1.2	61
14	Analysis of Ribosome Stalling and Translation Elongation Dynamics by Deep Learning. Cell Systems, 2017, 5, 212-220.e6.	6.2	58
15	Inference of Isoforms from Short Sequence Reads. Journal of Computational Biology, 2011, 18, 305-321.	1.6	54
16	The longest common subsequence problem for arc-annotated sequences. Journal of Discrete Algorithms, 2004, 2, 257-270.	0.7	53
17	A Class of Edit Kernels for SVMs to Predict Translation Initiation Sites in Eukaryotic mRNAs. Journal of Computational Biology, 2005, 12, 702-718.	1.6	52
18	Pattern languages with and without erasing. International Journal of Computer Mathematics, 1994, 50, 147-163.	1.8	49

#	Article	IF	Citations
19	Approximation algorithms for tree alignment with a given phylogeny. Algorithmica, 1996, 16, 302-315.	1.3	49
20	DeepHINT: understanding HIV-1 integration via deep learning with attention. Bioinformatics, 2019, 35, 1660-1667.	4.1	41
21	A novel machine learning framework for automated biomedical relation extraction from large-scale literature repositories. Nature Machine Intelligence, 2020, 2, 347-355.	16.0	37
22	THE STRUCTURE AND COMPLEXITY OF MINIMAL NFA'S OVER A UNARY ALPHABET. International Journal of Foundations of Computer Science, 1991, 02, 163-182.	1.1	36
23	DeepPASTA: deep neural network based polyadenylation site analysis. Bioinformatics, 2019, 35, 4577-4585.	4.1	35
24	Efficient rule-based haplotyping algorithms for pedigree data. , 2003, , .		35
25	Differential gene expression analysis using coexpression and RNA-Seq data. Bioinformatics, 2013, 29, 2153-2161.	4.1	32
26	DIFFUSE: predicting isoform functions from sequences and expression profiles via deep learning. Bioinformatics, 2019, 35, i284-i294.	4.1	28
27	Orchestrating quartets: approximation and data correction. , 0, , .		24
28	An exact solution for finding minimum recombinant haplotype configurations on pedigrees with missing data by integer linear programming. , 2004 , , .		24
29	Modeling multi-species RNA modification through multi-task curriculum learning. Nucleic Acids Research, 2021, 49, 3719-3734.	14.5	23
30	Minimum Recombinant Haplotype Configuration on Tree Pedigrees. Lecture Notes in Computer Science, 2003, , 339-353.	1.3	22
31	Automated assignment of backbone NMR peaks using constrained bipartite matching. Computing in Science and Engineering, 2002, 4, 50-62.	1.2	20
32	DeeplsoFun: a deep domain adaptation approach to predict isoform functions. Bioinformatics, 2019, 35, 2535-2544.	4.1	20
33	The average-case area of Heilbronn-type triangles*. Random Structures and Algorithms, 2002, 20, 206-219.	1.1	19
34	Approximation algorithms for NMR spectral peak assignment. Theoretical Computer Science, 2003, 299, 211-229.	0.9	19
35	Differential regulation enrichment analysis via the integration of transcriptional regulatory network and gene expression data. Bioinformatics, 2015, 31, 563-571.	4.1	19
36	A deep boosting based approach for capturing the sequence binding preferences of RNA-binding proteins from high-throughput CLIP-seq data. Nucleic Acids Research, 2017, 45, e129-e129.	14.5	19

#	Article	IF	Citations
37	Improved Approximation Algorithms for the Maximum Happy Vertices and Edges Problems. Algorithmica, 2018, 80, 1412-1438.	1.3	19
38	DNA sequencing and string learning. Mathematical Systems Theory, 1996, 29, 387-405.	0.5	18
39	A SURVEY ON HAPLOTYPING ALGORITHMS FOR TIGHTLY LINKED MARKERS. Journal of Bioinformatics and Computational Biology, 2008, 06, 241-259.	0.8	18
40	An approximation scheme for some Steiner tree problems in the plane. Networks, 1996, 28, 187-193.	2.7	17
41	A Further Improved Approximation Algorithm for Breakpoint Graph Decomposition. Journal of Combinatorial Optimization, 2004, 8, 183-194.	1.3	17
42	Complexity and approximation of the minimum recombinant haplotype configuration problem. Theoretical Computer Science, 2007, 378, 316-330.	0.9	16
43	New applications of the incompressibility method: Part II. Theoretical Computer Science, 2000, 235, 59-70.	0.9	15
44	A lower bound on the average-case complexity of shellsort. Journal of the ACM, 2000, 47, 905-911.	2.2	15
45	DeepLPI: a multimodal deep learning method for predicting the interactions between lncRNAs and protein isoforms. BMC Bioinformatics, 2021, 22, 24.	2.6	13
46	Improved Approximation Algorithms for the Maximum Happy Vertices and Edges Problems. Lecture Notes in Computer Science, 2015, , 159-170.	1.3	13
47	Dysregulation of Hypothalamic Gene Expression and the Oxytocinergic System by Soybean Oil Diets in Male Mice. Endocrinology, 2020, 161 , .	2.8	11
48	A Parsimony Approach to Genome-Wide Ortholog Assignment. Lecture Notes in Computer Science, 2006, , 578-594.	1.3	11
49	CLUSTERING OF MAIN ORTHOLOGS FOR MULTIPLE GENOMES. Journal of Bioinformatics and Computational Biology, 2008, 06, 573-584.	0.8	10
50	Mapping Clones with a Given Ordering or Interleaving. Algorithmica, 1998, 21, 262-284.	1.3	9
51	Average-case analysis of algorithms using Kolmogorov complexity. Journal of Computer Science and Technology, 2000, 15, 402-408.	1.5	9
52	Efficient Algorithms for Reconstructing Zero-Recombinant Haplotypes on a Pedigree Based on Fast Elimination of Redundant Linear Equations. SIAM Journal on Computing, 2009, 38, 2198-2219.	1.0	9
53	Some Algorithmic Challenges in Genome-Wide Ortholog Assignment. Journal of Computer Science and Technology, 2010, 25, 42-52.	1.5	9
54	An Efficient Algorithm for Haplotype Inference on Pedigrees with Recombinations and Mutations. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2012, 9, 12-25.	3.0	9

#	Article	IF	Citations
55	A linear-time algorithm for reconstructing zero-recombinant haplotype configuration on pedigrees without mating loops. Journal of Combinatorial Optimization, 2010, 19, 217-240.	1.3	7
56	A linear-time algorithm for reconstructing zero-recombinant haplotype configuration on a pedigree. BMC Bioinformatics, 2012, 13, S19.	2.6	7
57	AN IMPROVED GIBBS SAMPLING METHOD FOR MOTIF DISCOVERY VIA SEQUENCE WEIGHTING. , 2006, , .		7
58	Two heads are better than two tapes. Journal of the ACM, 1997, 44, 237-256.	2.2	6
59	Computational Assignment of Protein Backbone NMR Peaks by Efficient Bounding and Filtering. Journal of Bioinformatics and Computational Biology, 2003, 01, 387-409.	0.8	6
60	Constructing tissue-specific transcriptional regulatory networks via a Markov random field. BMC Genomics, 2018, 19, 884.	2.8	6
61	LEARNING POSITION WEIGHT MATRICES FROM SEQUENCE AND EXPRESSION DATA., 2007, , .		6
62	INFERRING HAPLOTYPES FROM GENOTYPES ON A PEDIGREE WITH MUTATIONS, GENOTYPING ERRORS AND MISSING ALLELES. Journal of Bioinformatics and Computational Biology, 2011, 09, 339-365.	0.8	5
63	A New Model of Multi-Marker Correlation for Genome-Wide Tag SNP Selection. , 2008, , .		5
64	Facile Fabrication of Multilayer Stretchable Electronics via a Two-mode Mechanical Cutting Process. ACS Nano, 2022, 16, 1533-1546.	14.6	5
65	More Reliable Protein NMR Peak Assignment via Improved 2-Interval Scheduling. Journal of Computational Biology, 2005, 12, 129-146.	1.6	4
66	Average-case analysis of QuickSort and Binary Insertion Tree height using incompressibility. Information Processing Letters, 2007, 103, 45-51.	0.6	3
67	Workshop: Transcriptome assembly from RNA-Seq data: Objectives, algorithms and challenges. , 2011, , .		3
68	SDEAP: a splice graph based differential transcript expression analysis tool for population data. Bioinformatics, 2016, 32, 3593-3602.	4.1	3
69	FreePSI: an alignment-free approach to estimating exon-inclusion ratios without a reference transcriptome. Nucleic Acids Research, 2018, 46, e11-e11.	14.5	3
70	FINER: enhancing the prediction of tissue-specific functions of isoforms by refining isoform interaction networks. NAR Genomics and Bioinformatics, 2021, 3, lqab057.	3.2	3
71	CLUSTERING OF MAIN ORTHOLOGS FOR MULTIPLE GENOMES. , 2007, , .		3
72	Beyond evolutionary trees. Natural Computing, 2010, 9, 421-435.	3.0	2

#	Article	IF	CITATIONS
73	An Efficient Algorithm for Haplotype Inference onÂPedigrees with a Small Number of Recombinants. Algorithmica, 2012, 62, 951-981.	1.3	2
74	Enhancement and Imputation of Peak Signal Enables Accurate Cell-Type Classification in scATAC-seq. Frontiers in Genetics, 2021, 12, 658352.	2.3	2
75	Riboexp: an interpretable reinforcement learning framework for ribosome density modeling. Briefings in Bioinformatics, 2021, 22, .	6.5	2
76	More Reliable Protein NMR Peak Assignment via Improved 2-Interval Scheduling. Lecture Notes in Computer Science, 2003, , 580-592.	1.3	2
77	A simulated annealing approach for resolution guided homogeneous cryoâ€electron microscopy image selection. Quantitative Biology, 2020, 8, 51-63.	0.5	1
78	Linear-Time Reconstruction of Zero-Recombinant Mendelian Inheritance on Pedigrees without Mating Loops. , 2007, , .		1
79	Polony Identification Using the EM Algorithm Based on a Gaussian Mixture Model. , 2010, , .		O
80	The Incompressibility Method. Lecture Notes in Computer Science, 2000, , 36-53.	1.3	0