Friedrich C Simmel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9014295/publications.pdf

Version: 2024-02-01

170 papers 15,495 citations

25034 57 h-index 120 g-index

209 all docs

209 docs citations

209 times ranked 12297 citing authors

#	Article	IF	CITATIONS
1	Artificial Organelles. , 2022, , 1-3.		O
2	Single DNA Origami Detection by Nanoimpact Electrochemistry. ChemElectroChem, 2022, 9, .	3.4	6
3	Emergence of Colloidal Patterns in ac Electric Fields. Physical Review Letters, 2022, 128, 058002.	7.8	11
4	Bacterial Growth, Communication, and Guided Chemotaxis in 3D-Bioprinted Hydrogel Environments. ACS Applied Materials & Samp; Interfaces, 2022, 14, 15871-15880.	8.0	14
5	Synthetic cell–based materials extract positional information from morphogen gradients. Science Advances, 2022, 8, eabl9228.	10.3	15
6	Transcriptional Interference in Toehold Switch-Based RNA Circuits. ACS Synthetic Biology, 2022, 11, 1735-1745.	3.8	7
7	Riboswitch-inspired toehold riboregulators for gene regulation in <i>Escherichia coli</i> Acids Research, 2022, 50, 4784-4798.	14.5	8
8	Complex dynamics in a synchronized cell-free genetic clock. Nature Communications, 2022, 13, .	12.8	8
9	Tiny robots made from biomolecules. Europhysics News, 2022, 53, 24-27.	0.3	2
10	Cell-free production of personalized therapeutic phages targeting multidrug-resistant bacteria. Cell Chemical Biology, 2022, 29, 1434-1445.e7.	5 . 2	23
11	DNA origami. Nature Reviews Methods Primers, 2021, 1, .	21.2	382
12	Small Antisense DNA-Based Gene Silencing Enables Cell-Free Bacteriophage Manipulation and Genome Replication. ACS Synthetic Biology, 2021, 10, 459-465.	3.8	6
13	Evaluation of an <i>E. coli</i> Cell Extract Prepared by Lysozymeâ€Assisted Sonication via Gene Expression, Phage Assembly and Proteomics. ChemBioChem, 2021, 22, 2805-2813.	2.6	19
14	A synthetic tubular molecular transport system. Nature Communications, 2021, 12, 4393.	12.8	23
15	Towards quantification and differentiation of protein aggregates and silicone oil droplets in the low micrometer and submicrometer size range by using oil-immersion flow imaging microscopy and convolutional neural networks. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 169, 97-102.	4.3	7
16	Controlling Gene Expression in Mammalian Cells Using Multiplexed Conditional Guide RNAs for Cas12a**. Angewandte Chemie - International Edition, 2021, 60, 23894-23902.	13.8	18
17	Barcoded DNA origami structures for multiplexed optimization and enrichment of DNA-based protein-binding cavities. Nature Chemistry, 2020, 12, 852-859.	13.6	45
18	Single Cell Characterization of a Synthetic Bacterial Clock with a Hybrid Feedback Loop Containing dCas9-sgRNA. ACS Synthetic Biology, 2020, 9, 3377-3387.	3.8	13

#	Article	IF	Citations
19	Growth of Giant Peptide Vesicles Driven by Compartmentalized Transcription–Translation Activity. Chemistry - A European Journal, 2020, 26, 17356-17360.	3.3	16
20	Programming Diffusion and Localization of DNA Signals in 3Dâ€Printed DNAâ€Functionalized Hydrogels. Small, 2020, 16, e2001815.	10.0	20
21	Genetically Encoded Membranes for Bottomâ€Up Biology. ChemSystemsChem, 2019, 1, e1900016.	2.6	11
22	Principles and Applications of Nucleic Acid Strand Displacement Reactions. Chemical Reviews, 2019, 119, 6326-6369.	47.7	506
23	In Vesiculo Synthesis of Peptide Membrane Precursors for Autonomous Vesicle Growth. Journal of Visualized Experiments, 2019, , .	0.3	1
24	Frontispiece: Establishing Communication Between Artificial Cells. Chemistry - A European Journal, 2019, 25, .	3.3	0
25	De novo-designed translation-repressing riboregulators for multi-input cellular logic. Nature Chemical Biology, 2019, 15, 1173-1182.	8.0	90
26	Periodic Operation of a Dynamic DNA Origami Structure Utilizing the Hydrophilic–Hydrophobic Phaseâ€Transition of Stimulusâ€Sensitive Polypeptides. Small, 2019, 15, 1903541.	10.0	16
27	Establishing Communication Between Artificial Cells. Chemistry - A European Journal, 2019, 25, 12659-12670.	3.3	42
28	Switching the activity of Cas12a using guide RNA strand displacement circuits. Nature Communications, 2019, 10, 2092.	12.8	95
29	Out-of-Plane Aptamer Functionalization of RNA Three-Helix Tiles. Nanomaterials, 2019, 9, 507.	4.1	17
30	Controlling Chirality across Length Scales using DNA. Small, 2019, 15, e1805419.	10.0	15
31	Genetically Encoded Membranes for Bottomâ€Up Biology. ChemSystemsChem, 2019, 1, e1900055.	2.6	1
32	A low-cost fluorescence reader for in vitro transcription and nucleic acid detection with Cas13a. PLoS ONE, 2019, 14, e0220091.	2.5	44
33	Self-Propulsion Strategies for Artificial Cell-Like Compartments. Nanomaterials, 2019, 9, 1680.	4.1	12
34	DNA origami cryptography for secure communication. Nature Communications, 2019, 10, 5469.	12.8	84
35	A large size-selective DNA nanopore with sensing applications. Nature Communications, 2019, 10, 5655.	12.8	126
36	Signalling and differentiation in emulsion-based multi-compartmentalized in vitro gene circuits. Nature Chemistry, 2019, 11, 32-39.	13.6	160

#	Article	lF	Citations
37	Solving mazes with single-molecule DNA navigators. Nature Materials, 2019, 18, 273-279.	27.5	190
38	Synthetic organelles. Emerging Topics in Life Sciences, 2019, 3, 587-595.	2.6	10
39	A low-cost fluorescence reader for in vitro transcription and nucleic acid detection with Cas $13a., 2019, 14, e0220091.$		0
40	A low-cost fluorescence reader for in vitro transcription and nucleic acid detection with Cas13a., 2019, 14, e0220091.		0
41	A low-cost fluorescence reader for in vitro transcription and nucleic acid detection with Cas13a. , 2019, 14, e0220091.		0
42	A low-cost fluorescence reader for in vitro transcription and nucleic acid detection with Cas13a. , 2019, 14, e0220091.		0
43	Gene Expression on DNA Biochips Patterned with Strandâ€Displacement Lithography. Angewandte Chemie - International Edition, 2018, 57, 4783-4786.	13.8	27
44	Genexpression auf DNAâ€Biochips: Strukturierung durch StrangverdrÃngungsâ€Lithographie. Angewandte Chemie, 2018, 130, 4873-4876.	2.0	4
45	A self-assembled nanoscale robotic arm controlled by electric fields. Science, 2018, 359, 296-301.	12.6	306
46	Real Time Actuation of a DNA Based Robotic Arm. Biophysical Journal, 2018, 114, 693a.	0.5	0
47	Optimized Assembly of a Multifunctional RNA-Protein Nanostructure in a Cell-Free Gene Expression System. Nano Letters, 2018, 18, 2650-2657.	9.1	24
48	Enhanced Efficiency of an Enzyme Cascade on DNA-Activated Silica Surfaces. Langmuir, 2018, 34, 14780-14786.	3.5	20
49	Towards synthetic cells using peptide-based reaction compartments. Nature Communications, 2018, 9, 3862.	12.8	75
50	$K\tilde{A}\frac{1}{4}$ nstliche, gelbasierte Organellen f $\tilde{A}\frac{1}{4}$ r die r \tilde{A} umliche Organisation von zellfreien Genexpressionsreaktionen. Angewandte Chemie, 2018, 130, 17491-17495.	2.0	6
51	Artificial Gelâ€Based Organelles for Spatial Organization of Cellâ€Free Gene Expression Reactions. Angewandte Chemie - International Edition, 2018, 57, 17245-17248.	13.8	63
52	Functional Surface-immobilization of Genes Using Multistep Strand Displacement Lithography. Journal of Visualized Experiments, 2018, , .	0.3	0
53	Filamentation and restoration of normal growth in Escherichia coli using a combined CRISPRi sgRNA/antisense RNA approach. PLoS ONE, 2018, 13, e0198058.	2.5	27
54	A DNA Nanorobot Uprises against Cancer. Trends in Molecular Medicine, 2018, 24, 591-593.	6.7	16

#	Article	IF	CITATIONS
55	Preparative refolding of small monomeric outer membrane proteins. Protein Expression and Purification, 2017, 132, 171-181.	1.3	10
56	Molecular Transport through Large Diameter DNA Origami Channels. Biophysical Journal, 2017, 112, 416a.	0.5	1
57	Nanostructure evolution. Nature Materials, 2017, 16, 974-976.	27.5	4
58	Self-organizing materials built with DNA. MRS Bulletin, 2017, 42, 913-919.	3.5	19
59	Single Cell Analysis of a Bacterial Sender-Receiver System. PLoS ONE, 2016, 11, e0145829.	2.5	21
60	Self-Assembled Active Plasmonic Waveguide with a Peptide-Based Thermomechanical Switch. ACS Nano, 2016, 10, 11377-11384.	14.6	40
61	Electrotransfection of Polyamine Folded DNA Origami Structures. Nano Letters, 2016, 16, 6683-6690.	9.1	61
62	DNA condensation in one dimension. Nature Nanotechnology, 2016, 11, 1076-1081.	31.5	24
63	Molecular transport through large-diameter DNA nanopores. Nature Communications, 2016, 7, 12787.	12.8	160
64	Long-range movement of large mechanically interlocked DNA nanostructures. Nature Communications, 2016, 7, 12414.	12.8	98
65	Chemical communication between bacteria and cell-free gene expression systems within linear chains of emulsion droplets. Integrative Biology (United Kingdom), 2016, 8, 564-570.	1.3	83
66	Orthogonale Assemblierung von Proteinen auf DNAâ€Nanostrukturen mithilfe von Relaxasen. Angewandte Chemie, 2016, 128, 4421-4425.	2.0	7
67	Orthogonal Protein Assembly on DNA Nanostructures Using Relaxases. Angewandte Chemie - International Edition, 2016, 55, 4348-4352.	13.8	40
68	Building a Synthetic Transcriptional Oscillator. Methods in Molecular Biology, 2016, 1342, 185-199.	0.9	8
69	A Compact DNA Cube with Side Length 10 nm. Small, 2015, 11, 5200-5205.	10.0	22
70	Nanopores Suggest a Negligible Influence of CpG Methylation on Nucleosome Packaging and Stability. Nano Letters, 2015, 15, 783-790.	9.1	32
71	Partitioning Variability of a Compartmentalized <i>In Vitro</i> Transcriptional Thresholding Circuit. ACS Synthetic Biology, 2015, 4, 1136-1143.	3.8	10
72	Membrane-Assisted Growth of DNA Origami Nanostructure Arrays. ACS Nano, 2015, 9, 3530-3539.	14.6	151

#	Article	IF	Citations
73	Diffusive Transport of Molecular Cargo Tethered to a DNA Origami Platform. Nano Letters, 2015, 15, 2693-2699.	9.1	46
74	Bacterial computing with engineered populations. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140218.	3.4	9
75	Deadly DNA. Nature Chemistry, 2015, 7, 17-18.	13.6	4
76	Hydrophobic Actuation of a DNA Origami Bilayer Structure. Angewandte Chemie - International Edition, 2014, 53, 4236-4239.	13.8	97
77	Diversity in the dynamical behaviour of a compartmentalized programmable biochemical oscillator. Nature Chemistry, 2014, 6, 295-302.	13.6	201
78	Robustness of Localized DNA Strand Displacement Cascades. ACS Nano, 2014, 8, 8487-8496.	14.6	81
79	Communication and Computation by Bacteria Compartmentalized within Microemulsion Droplets. Journal of the American Chemical Society, 2014, 136, 72-75.	13.7	78
80	Single Molecule Characterization of DNA Binding and Strand Displacement Reactions on Lithographic DNA Origami Microarrays. Nano Letters, 2014, 14, 1627-1633.	9.1	54
81	Surfaceâ€Assisted Largeâ€6cale Ordering of DNA Origami Tiles. Angewandte Chemie - International Edition, 2014, 53, 7665-7668.	13.8	152
82	DNA Nanostructures Interacting with Lipid Bilayer Membranes. Accounts of Chemical Research, 2014, 47, 1807-1815.	15.6	142
83	Crowded genes perform differently. Nature Nanotechnology, 2013, 8, 545-546.	31.5	4
84	DNA Nanostructures for Electrophysiology. Biophysical Journal, 2013, 104, 517a-518a.	0.5	0
85	Comparison of four different particle sizing methods for siRNA polyplex characterization. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 84, 255-264.	4.3	55
86	Nanopore Force Spectroscopy on Nucleic Acid Structures & Diological and Synthetic Ion Channels. Biophysical Journal, 2013, 104, 521a.	0.5	0
87	Nanopore Force Spectroscopy of Aptamer–Ligand Complexes. Biophysical Journal, 2013, 105, 1199-1207.	0.5	23
88	Synthetic Lipid Membrane Channels formed by Designed DNA Nanostructures. Biophysical Journal, 2013, 104, 545a.	0.5	4
89	DNAâ€Nanotechnologie. Chemie in Unserer Zeit, 2013, 47, 164-173.	0.1	5
90	Programming the Dynamics of Biochemical Reaction Networks. ACS Nano, 2013, 7, 6-10.	14.6	22

#	Article	IF	CITATIONS
91	Biomedical Applications for Nucleic Acid Nanodevices. , 2013, , 329-348.		O
92	Synthetic in vitro transcription circuits. Transcription, 2012, 3, 87-91.	3.1	8
93	DNA-based assembly lines and nanofactories. Current Opinion in Biotechnology, 2012, 23, 516-521.	6.6	85
94	Distance Dependence of Single-Fluorophore Quenching by Gold Nanoparticles Studied on DNA Origami. ACS Nano, 2012, 6, 3189-3195.	14.6	274
95	Synthetic Lipid Membrane Channels Formed by Designed DNA Nanostructures. Science, 2012, 338, 932-936.	12.6	659
96	Assembly and Microscopic Characterization of DNA Origami Structures. Advances in Experimental Medicine and Biology, 2012, 733, 87-96.	1.6	3
97	DNA origami – art, science, and engineering. Frontiers in Life Science: Frontiers of Interdisciplinary Research in the Life Sciences, 2012, 6, 3-9.	1.1	5
98	Quantitative Analysis of the Nanopore Translocation Dynamics of Simple Structured Polynucleotides. Biophysical Journal, 2012, 102, 85-95.	0.5	18
99	Probing DNA–Lipid Membrane Interactions with a Lipopeptide Nanopore. ACS Nano, 2012, 6, 3356-3363.	14.6	8
100	Nanoscale imaging in DNA nanotechnology. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2012, 4, 66-81.	6.1	20
101	DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature, 2012, 483, 311-314.	27.8	1,868
102	Electrophoretic Time-of-Flight Measurements of Single DNA Molecules with Two Stacked Nanopores. Nano Letters, 2011, 11, 5002-5007.	9.1	49
103	A pore-Cavity-Pore Device to Trap and Investigate Single Nano-Scale Objects in Femto-Liter Compartments: Confined Diffusion and Narrow Escape. Biophysical Journal, 2011, 100, 522a.	0.5	1
104	DNA origami-based nanoribbons: assembly, length distribution, and twist. Nanotechnology, 2011, 22, 275301.	2.6	59
105	Synthesis and Application of Functional Nucleic Acids. Journal of Nucleic Acids, 2011, 2011, 1-2.	1.2	4
106	Nucleic Acid Based Molecular Devices. Angewandte Chemie - International Edition, 2011, 50, 3124-3156.	13.8	527
107	Voltage-controlled insertion of single $\hat{l}\pm$ -hemolysin and <i>Mycobacterium smegmatis</i> nanopores into lipid bilayer membranes. Applied Physics Letters, 2011, 98, .	3.3	6
108	Timing molecular motion and production with a synthetic transcriptional clock. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E784-93.	7.1	208

#	Article	IF	Citations
109	Protocols for Self-Assembly and Imaging of DNA Nanostructures. Methods in Molecular Biology, 2011, 749, 13-32.	0.9	1
110	Nanopore Translocation and Force Spectroscopy Experiments in Microemulsion Droplets. Small, 2010, 6, 190-194.	10.0	19
111	Nanopore Translocation Experiments in Microemulsion Droplets. Biophysical Journal, 2010, 98, 600a-601a.	0.5	0
112	Quantitative Analysis of Single Particle Trajectories: Mean Maximal Excursion Method. Biophysical Journal, 2010, 98, 1364-1372.	0.5	188
113	DNA Origami as a Nanoscopic Ruler For Super-Resolution Microscopy. Biophysical Journal, 2010, 98, 184a.	0.5	43
114	Structural DNA Nanotechnology: From Bases to Bricks, From Structure to Function. Journal of Physical Chemistry Letters, 2010, 1, 1994-2005.	4.6	63
115	Single-Molecule Kinetics and Super-Resolution Microscopy by Fluorescence Imaging of Transient Binding on DNA Origami. Nano Letters, 2010, 10, 4756-4761.	9.1	716
116	On-Chip Functionalization of Carbon Nanotubes with Photosystem I. Journal of the American Chemical Society, 2010, 132, 2872-2873.	13.7	37
117	Sequence-dependent unfolding kinetics of DNA hairpins studied by nanopore force spectroscopy. Journal of Physics Condensed Matter, 2010, 22, 454119.	1.8	10
118	Assembly and melting of DNA nanotubes from single-sequence tiles. Journal of Physics Condensed Matter, 2009, 21, 034112.	1.8	23
119	Processive Motion of Bipedal DNA Walkers. ChemPhysChem, 2009, 10, 2593-2597.	2.1	42
120	DNA Origami as a Nanoscopic Ruler for Superâ€Resolution Microscopy. Angewandte Chemie - International Edition, 2009, 48, 8870-8873.	13.8	260
121	Wiring-up ion channels. Nature Physics, 2009, 5, 783-784.	16.7	4
122	The optoelectronic properties of a photosystem lâ€"carbon nanotube hybrid system. Nanotechnology, 2009, 20, 345701.	2.6	34
123	Probing whole cell currents in high-frequency electrical fields: Identification of thermal effects. Biosensors and Bioelectronics, 2008, 23, 872-878.	10.1	4
124	Threeâ€Dimensional Nanoconstruction with DNA. Angewandte Chemie - International Edition, 2008, 47, 5884-5887.	13.8	93
125	Isothermal Assembly of DNA Origami Structures Using Denaturing Agents. Journal of the American Chemical Society, 2008, 130, 10062-10063.	13.7	123
126	From DNA nanotechnology to synthetic biology. HFSP Journal, 2008, 2, 99-109.	2.5	25

#	Article	IF	Citations
127	Artificial molecular switches made from DNA. Nucleic Acids Symposium Series, 2008, 52, 17-18.	0.3	O
128	Determination of DNA Melting Temperatures in Diffusion-Generated Chemical Gradients. Analytical Chemistry, 2007, 79, 5212-5216.	6. 5	14
129	Controlling DNA Polymerization with a Switchable Aptamer. ChemBioChem, 2007, 8, 1662-1666.	2.6	18
130	DNA-based nanodevices. Nano Today, 2007, 2, 36-41.	11.9	131
131	Controlled Trapping and Release of Quantum Dots in a DNAâ€Switchable Hydrogel. Small, 2007, 3, 1688-1693.	10.0	148
132	Towards biomedical applications for nucleic acid nanodevices. Nanomedicine, 2007, 2, 817-830.	3.3	85
133	Kinetics of protein-release by an aptamer-based DNA nanodevice. European Physical Journal E, 2007, 22, 33-40.	1.6	10
134	Single-Pair FRET Characterization of DNA Tweezers. Nano Letters, 2006, 6, 2814-2820.	9.1	78
135	A Surface-Bound DNA Switch Driven by a Chemical Oscillator. Angewandte Chemie - International Edition, 2006, 45, 5007-5010.	13.8	103
136	A modular DNA signal translator for the controlled release of a protein by an aptamer. Nucleic Acids Research, 2006, 34, 1581-1587.	14.5	78
137	Controlled Release of Thrombin Using Aptamer-Based Nanodevices. Advances in Science and Technology, 2006, 53, 116-121.	0.2	0
138	Detection of lipid bilayer and peptide pore formation at gigahertz frequencies. Applied Physics Letters, 2006, 88, 013902.	3.3	17
139	Design Variations for an Aptamer-Based DNA Nanodevice. Journal of Biomedical Nanotechnology, 2005, 1, 96-101.	1.1	26
140	DNA Nanodevices. Small, 2005, 1, 284-299.	10.0	225
141	Using Gene Regulation to Program DNA-Based Molecular Devices. Small, 2005, 1, 709-712.	10.0	45
142	Fluorescent Nanocrystals as Colloidal Probes in Complex Fluids Measured by Fluorescence Correlation Spectroscopy. Small, 2005, 1, 997-1003.	10.0	60
143	Switching the Conformation of a DNA Molecule with a Chemical Oscillator. Nano Letters, 2005, 5, 1894-1898.	9.1	200
144	Periodic DNA Nanotemplates Synthesized by Rolling Circle Amplification. Nano Letters, 2005, 5, 719-722.	9.1	146

#	Article	IF	Citations
145	A DNA-Based Machine That Can Cyclically Bind and Release Thrombin. Angewandte Chemie - International Edition, 2004, 43, 3550-3553.	13.8	247
146	Transcriptional Control of DNA-Based Nanomachines. Nano Letters, 2004, 4, 689-691.	9.1	85
147	Polyaniline nanowire synthesis templated by DNA. Nanotechnology, 2004, 15, 1524-1529.	2.6	117
148	Chains of semiconductor nanoparticles templated on DNA. Applied Physics Letters, 2004, 85, 633-635.	3.3	72
149	Towards molecular-scale electronics and biomolecular self-assembly. Superlattices and Microstructures, 2003, 33, 369-379.	3.1	17
150	Quantum interference in a one-dimensional silicon nanowire. Physical Review B, 2003, 68, .	3.2	69
151	DNA Fuel for Free-Running Nanomachines. Physical Review Letters, 2003, 90, 118102.	7.8	338
152	A DNA-based molecular device switchable between three distinct mechanical states. Applied Physics Letters, 2002, 80, 883-885.	3.3	106
153	Operation Kinetics of a DNA-Based Molecular Switch. Journal of Nanoscience and Nanotechnology, 2002, 2, 383-390.	0.9	10
154	Operation of a Purified DNA Nanoactuator. Lecture Notes in Computer Science, 2002, , 248-257.	1.3	2
155	Coulomb blockade in silicon nanostructures. Progress in Quantum Electronics, 2001, 25, 97-138.	7.0	59
156	<title>DNA molecular motors</title> ., 2001, , .		1
157	Using DNA to construct and power a nanoactuator. Physical Review E, 2001, 63, 041913.	2.1	104
158	Spacing and width of Coulomb blockade peaks in a silicon quantum dot. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 6, 382-387.	2.7	13
159	A DNA-fuelled molecular machine made of DNA. Nature, 2000, 406, 605-608.	27.8	2,247
160	Microwave spectroscopy on a double quantum dot with an on-chip Josephson oscillator. New Journal of Physics, 2000, 2, 2-2.	2.9	10
161	Statistics of the Coulomb-blockade peak spacings of a silicon quantum dot. Physical Review B, 1999, 59, R10441-R10444.	3.2	83
162	Anomalous Kondo Effect in a Quantum Dot at Nonzero Bias. Physical Review Letters, 1999, 83, 804-807.	7.8	228

#	Article	IF	CITATIONS
163	Nano-ploughed Josephson junctions as on-chip radiation sources. Superlattices and Microstructures, 1999, 25, 785-795.	3.1	9
164	Photon-induced transport through mesoscopic structures using nano-ploughed Josephson junctions. , 1999, , .		0
165	Josephson junctions defined by a nanoplough. Applied Physics Letters, 1998, 73, 2051-2053.	3.3	54
166	Statistics of conductance oscillations of a quantum dot in the Coulomb-blockade regime. Europhysics Letters, 1997, 38, 123-128.	2.0	96
167	Statistical measures for eigenfunctions of nonseparable quantum billiard systems. Physica D: Nonlinear Phenomena, 1996, 97, 517-530.	2.8	9
168	Avoided crossings: Curvature distribution and behavior of eigenfunctions of pseudointegrable and chaotic billiards. Physical Review E, 1995, 51, 5435-5441.	2.1	7
169	Towards <i>In Vivo</i> Nanomachines. Advances in Science and Technology, 0, , .	0.2	0
170	Kontrolle von Genexpression in SÃugetierzellen mithilfe von parallel schaltbaren Guideâ€RNAs fÃ⅓r Cas12a**. Angewandte Chemie, 0, , .	2.0	2