Tsanyang Jake Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9013963/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeting the Fusion Process of SARS-CoV-2 Infection by Small Molecule Inhibitors. MBio, 2022, 13, e0323821.	1.8	11
2	A dual conditional CRISPR-Cas9 system to activate gene editing and reduce off-target effects in human stem cells. Molecular Therapy - Nucleic Acids, 2022, 28, 656-669.	2.3	9
3	Discovery and Optimization of a 4-Aminopiperidine Scaffold for Inhibition of Hepatitis C Virus Assembly. Journal of Medicinal Chemistry, 2021, 64, 9431-9443.	2.9	2
4	Discovery of Small Molecule Entry Inhibitors Targeting the Fusion Peptide of SARS-CoV-2 Spike Protein. ACS Medicinal Chemistry Letters, 2021, 12, 1267-1274.	1.3	16
5	Infection courses, virological features and IFN-α responses of HBV genotypes in cell culture and animal models. Journal of Hepatology, 2021, 75, 1335-1345.	1.8	12
6	Modeling PNPLA3â€Associated NAFLD Using Humanâ€Induced Pluripotent Stem Cells. Hepatology, 2021, 74, 2998-3017.	3.6	35
7	Controlled Human Infection Model — Fast Track to HCV Vaccine?. New England Journal of Medicine, 2021, 385, 1235-1240.	13.9	22
8	Nâ€Terminal PreS1 Sequence Regulates Efficient Infection of Cellâ€Culture–Generated Hepatitis B Virus. Hepatology, 2021, 73, 520-532.	3.6	17
9	Hepatitis B: a new weapon against an old enemy. Nature Medicine, 2021, 27, 1672-1673.	15.2	5
10	Genetically edited hepatic cells expressing the NTCP-S267F variant are resistant to hepatitis B virus infection. Molecular Therapy - Methods and Clinical Development, 2021, 23, 597-605.	1.8	11
11	Hepatitis B virus – recent therapeutic advances and challenges to cure. Journal of Hepatology, 2020, 73, 694-695.	1.8	12
12	Coronavirus Disease-19 Has Come Home to Roost in Gastroenterology. Gastroenterology, 2020, 159, 36-38.	0.6	1
13	Fluoxazolevir inhibits hepatitis C virus infection in humanized chimeric mice by blocking viral membrane fusion. Nature Microbiology, 2020, 5, 1532-1541.	5.9	10
14	Metabolic Profiling Reveals Aggravated Non-Alcoholic Steatohepatitis in High-Fat High-Cholesterol Diet-Fed Apolipoprotein E-Deficient Mice Lacking Ron Receptor Signaling. Metabolites, 2020, 10, 326.	1.3	3
15	Stem cell-derived HCV infection systems illustrate the bright future of human hepatocyte research. Gut, 2020, 69, 1550-1551.	6.1	0
16	Chlorcyclizine Inhibits Viral Fusion of Hepatitis C Virus Entry by Directly Targeting HCV Envelope Glycoprotein 1. Cell Chemical Biology, 2020, 27, 780-792.e5.	2.5	18
17	Is SARS-CoV-2 Also an Enteric Pathogen With Potential Fecal–Oral Transmission? A COVID-19 Virological and Clinical Review. Gastroenterology, 2020, 159, 53-61.	0.6	157
18	Diminished hepatic IFN response following HCV clearance triggers HBV reactivation in coinfection. Journal of Clinical Investigation, 2020, 130, 3205-3220.	3.9	38

TSANYANG JAKE LIANG

#	Article	IF	CITATIONS
19	Hepatitis C Virus Infection Induces Hepatic Expression of NF-κB-Inducing Kinase and Lipogenesis by Downregulating miR-122. MBio, 2019, 10, .	1.8	12
20	A randomized, proof-of-concept clinical trial on repurposing chlorcyclizine for the treatment of chronic hepatitis C. Antiviral Research, 2019, 163, 149-155.	1.9	6
21	Hepatitis B Surface Antigen Activates Unfolded Protein Response in Forming Ground Glass Hepatocytes of Chronic Hepatitis B. Viruses, 2019, 11, 386.	1.5	35
22	Discovery and characterization of a novel HCV inhibitor targeting the late stage of HCV life cycle. Antiviral Therapy, 2019, 24, 371-381.	0.6	5
23	A global scientific strategy to cure hepatitis B. The Lancet Gastroenterology and Hepatology, 2019, 4, 545-558.	3.7	342
24	Development of Direct-acting Antiviral and Host-targeting Agents for Treatment of Hepatitis B Virus Infection. Gastroenterology, 2019, 156, 311-324.	0.6	85
25	17â€Beta Hydroxysteroid Dehydrogenase 13Âls a Hepatic Retinol Dehydrogenase Associated With Histological Features of Nonalcoholic Fatty Liver Disease. Hepatology, 2019, 69, 1504-1519.	3.6	200
26	MicroRNA-135a Modulates Hepatitis C Virus Genome Replication through Downregulation of Host Antiviral Factors. Virologica Sinica, 2019, 34, 197-210.	1.2	19
27	Preclinical Pharmacological Development of Chlorcyclizine Derivatives for the Treatment of Hepatitis C Virus Infection. Journal of Infectious Diseases, 2018, 217, 1761-1769.	1.9	11
28	Baseline Intrahepatic and Peripheral Innate Immunity are Associated with Hepatitis C Virus Clearance During Directâ€Acting Antiviral Therapy. Hepatology, 2018, 68, 2078-2088.	3.6	38
29	N-Myc Downstream-Regulated Gene 1 Restricts Hepatitis C Virus Propagation by Regulating Lipid Droplet Biogenesis and Viral Assembly. Journal of Virology, 2018, 92, .	1.5	24
30	TM6SF2 Promotes Lipidation and Secretion of Hepatitis C Virus in Infected Hepatocytes. Gastroenterology, 2018, 155, 1923-1935.e8.	0.6	11
31	Hepatitis B Virus Deregulates the Cell Cycle To Promote Viral Replication and a Premalignant Phenotype. Journal of Virology, 2018, 92, .	1.5	43
32	Hepatitis B Reactivation Associated With Immune Suppressive and Biological Modifier Therapies: Current Concepts, Management Strategies, and Future Directions. Gastroenterology, 2017, 152, 1297-1309.	0.6	442
33	Development of an Aryloxazole Class of Hepatitis C Virus Inhibitors Targeting the Entry Stage of the Viral Replication Cycle. Journal of Medicinal Chemistry, 2017, 60, 6364-6383.	2.9	12
34	Rhesus iPSC Safe Harbor Gene-Editing Platform for Stable Expression of Transgenes in Differentiated Cells of All Germ Layers. Molecular Therapy, 2017, 25, 44-53.	3.7	26
35	Cellular microRNA networks regulate host dependency of hepatitis C virus infection. Nature Communications, 2017, 8, 1789.	5.8	70
36	Hepatitis B virus evades innate immunity of hepatocytes but activates cytokine production by macrophages. Hepatology, 2017, 66, 1779-1793.	3.6	128

#	Article	IF	CITATIONS
37	Infection of Hepatocytes With HCV Increases Cell Surface Levels of Heparan Sulfate Proteoglycans, Uptake of Cholesterol and Lipoprotein, and Virus Entry by Up-regulating SMAD6 and SMAD7. Gastroenterology, 2017, 152, 257-270.e7.	0.6	43
38	Human stem cell-derived hepatocytes as a model for hepatitis B virus infection, spreading and virus-host interactions. Journal of Hepatology, 2017, 66, 494-503.	1.8	105
39	Evaluation of antiviral drug synergy in an infectious HCV system. Antiviral Therapy, 2016, 21, 595-603.	0.6	18
40	Experimental models of hepatitis B and C $\hat{a} \in$ " new insights and progress. Nature Reviews Gastroenterology and Hepatology, 2016, 13, 362-374.	8.2	70
41	Hepatic differentiation of human pluripotent stem cells in miniaturized format suitable for high-throughput screen. Stem Cell Research, 2016, 16, 640-650.	0.3	74
42	Hepatitis C virus depends on E-cadherin as an entry factor and regulates its expression in epithelial-to-mesenchymal transition. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7620-7625.	3.3	50
43	Discovery, Optimization, and Characterization of Novel Chlorcyclizine Derivatives for the Treatment of Hepatitis C Virus Infection. Journal of Medicinal Chemistry, 2016, 59, 841-853.	2.9	30
44	Present and future therapies of hepatitis B: From discovery to cure. Hepatology, 2015, 62, 1893-1908.	3.6	269
45	Dynamic Interaction of Stress Granules, DDX3X, and IKK-α Mediates Multiple Functions in Hepatitis C Virus Infection. Journal of Virology, 2015, 89, 5462-5477.	1.5	67
46	Border Control in Hepatitis C Virus Infection: Inhibiting Viral Entry. ACS Infectious Diseases, 2015, 1, 416-419.	1.8	2
47	Repurposing of the antihistamine chlorcyclizine and related compounds for treatment of hepatitis C virus infection. Science Translational Medicine, 2015, 7, 282ra49.	5.8	118
48	Identification of novel anti-hepatitis C virus agents by a quantitative high throughput screen in a cell-based infection assay. Antiviral Research, 2015, 124, 20-29.	1.9	9
49	Hepatitis C virus treatment in the real world: optimising treatment and access to therapies: TableÂ1. Gut, 2015, 64, 1824-1833.	6.1	128
50	High-Throughput Screening, Discovery, and Optimization To Develop a Benzofuran Class of Hepatitis C Virus Inhibitors. ACS Combinatorial Science, 2015, 17, 641-652.	3.8	23
51	Single Strain Isolation Method for Cell Culture-Adapted Hepatitis C Virus by End-Point Dilution and Infection. PLoS ONE, 2014, 9, e98168.	1.1	7
52	Integrative Functional Genomics of Hepatitis C Virus Infection Identifies Host Dependencies in Complete Viral Replication Cycle. PLoS Pathogens, 2014, 10, e1004163.	2.1	101
53	Effect of ribavirin on viral kinetics and liver gene expression in chronic hepatitis C. Gut, 2014, 63, 161-169.	6.1	51
54	What is the future of ribavirin therapy for hepatitis C?. Antiviral Research, 2014, 104, 34-39.	1.9	41

TSANYANG JAKE LIANG

#	Article	IF	CITATIONS
55	Specific and Nonhepatotoxic Degradation of Nuclear Hepatitis B Virus cccDNA. Science, 2014, 343, 1221-1228.	6.0	774
56	Ribavirin improves the IFN-γ response of natural killer cells to IFN-based therapy of hepatitis C virus infection. Hepatology, 2014, 60, 1160-1169.	3.6	26
57	Therapy of Hepatitis C — Back to the Future. New England Journal of Medicine, 2014, 370, 2043-2047.	13.9	102
58	Direct, Interferon-Independent Activation of the CXCL10 Promoter by NF-κB and Interferon Regulatory Factor 3 during Hepatitis C Virus Infection. Journal of Virology, 2014, 88, 1582-1590.	1.5	96
59	Novel Cell-Based Hepatitis C Virus Infection Assay for Quantitative High-Throughput Screening of Anti-Hepatitis C Virus Compounds. Antimicrobial Agents and Chemotherapy, 2014, 58, 995-1004.	1.4	30
60	Engrafted human stem cell–derived hepatocytes establish an infectious HCV murine model. Journal of Clinical Investigation, 2014, 124, 4953-4964.	3.9	131
61	Hepatitis C virus infection activates an innate pathway involving IKK-α in lipogenesis and viral assembly. Nature Medicine, 2013, 19, 722-729.	15.2	167
62	Current progress in development of hepatitis C virus vaccines. Nature Medicine, 2013, 19, 869-878.	15.2	144
63	Current and Future Therapies for Hepatitis C Virus Infection. New England Journal of Medicine, 2013, 368, 1907-1917.	13.9	418
64	Reactivation of Hepatitis B During Immunosuppressive Therapy: Potentially Fatal Yet Preventable. Annals of Internal Medicine, 2012, 156, 743.	2.0	74
65	The Application and Mechanism of Action of Ribavirin in Therapy of Hepatitis C. Antiviral Chemistry and Chemotherapy, 2012, 23, 1-12.	0.3	109
66	HCV Infection Induces a Unique Hepatic Innate Immune Response Associated With Robust Production of Type III Interferons. Gastroenterology, 2012, 142, 978-988.	0.6	241
67	Hepatitis B virus–induced lipid alterations contribute to natural killer T cell–dependent protective immunity. Nature Medicine, 2012, 18, 1060-1068.	15.2	198
68	Ribavirin potentiates interferon action by augmenting interferon-stimulated gene induction in hepatitis C virus cell culture models. Hepatology, 2011, 53, 32-41.	3.6	140
69	In vivo adaptation of hepatitis C virus in chimpanzees for efficient virus production and evasion of apoptosis. Hepatology, 2011, 54, 425-433.	3.6	21
70	Both innate and adaptive immunity mediate protective immunity against hepatitis C virus infection in chimpanzees. Hepatology, 2011, 54, 1135-1148.	3.6	37
71	The association of genetic variability in patatin-like phospholipase domain-containing protein 3 (PNPLA3) with histological severity of nonalcoholic fatty liver disease. Hepatology, 2010, 52, 894-903. –	3.6	403
72	Novel Function of CD81 in Controlling Hepatitis C Virus Replication. Journal of Virology, 2010, 84, 3396-3407.	1.5	35

#	Article	IF	CITATIONS
73	Natural Killer Cells Are Polarized Toward Cytotoxicity in Chronic Hepatitis C in an Interferon-Alfa–Dependent Manner. Gastroenterology, 2010, 138, 325-335.e2.	0.6	243
74	Ribavirin Improves Early Responses to Peginterferon Through Improved Interferon Signaling. Gastroenterology, 2010, 139, 154-162.e4.	0.6	108
75	A genome-wide genetic screen for host factors required for hepatitis C virus propagation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16410-16415.	3.3	333
76	Amphipathic DNA Polymers Inhibit Hepatitis C Virus Infection by Blocking Viral Entry. Gastroenterology, 2009, 137, 673-681.	0.6	78
77	Hepatitis C virus JFH-1 strain infection in chimpanzees is associated with low pathogenicity and emergence of an adaptive mutation. Hepatology, 2008, 48, 732-740.	3.6	56
78	Scavenger Receptor Class B Is Required for Hepatitis C Virus Uptake and Cross-Presentation by Human Dendritic Cells. Journal of Virology, 2008, 82, 3466-3479.	1.5	79
79	Mouse models for the study of HCV infection and virus–host interactions. Journal of Hepatology, 2008, 49, 134-142.	1.8	51
80	Systematic Review: The Effect of Preventive Lamivudine on Hepatitis B Reactivation during Chemotherapy. Annals of Internal Medicine, 2008, 148, 519.	2.0	407
81	Immunization with hepatitis C virus-like particles results in control of hepatitis C virus infection in chimpanzees. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8427-8432.	3.3	157
82	Production of Infectious Hepatitis C Virus of Various Genotypes in Cell Cultures. Journal of Virology, 2007, 81, 4405-4411.	1.5	95
83	Hepatic gene expression during treatment with peginterferon and ribavirin: Identifying molecular pathways for treatment response. Hepatology, 2007, 46, 1548-1563.	3.6	242
84	Cryo-electron microscopy and three-dimensional reconstructions of hepatitis C virus particles. Virology, 2007, 367, 126-134.	1.1	51
85	Src Homology 3 Domain of Hepatitis C Virus NS5A Protein Interacts With Bin1 and Is Important for Apoptosis and Infectivity. Gastroenterology, 2006, 130, 794-809.	0.6	62
86	Hepatitis C — identifying patients with progressive liver injury. Hepatology, 2006, 43, S194-S206.	3.6	82
87	Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nature Medicine, 2005, 11, 791-796.	15.2	2,561
88	An in vitro model of hepatitis C virion production. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2579-2583.	3.3	104
89	Inhibition of Cellular Proteasome Activities Enhances Hepadnavirus Replication in an HBX-Dependent Manner. Journal of Virology, 2004, 78, 4566-4572.	1.5	90
90	Induction of Sterilizing Immunity against West Nile Virus (WNV), by Immunization with WNV‣ike Particles Produced in Insect Cells. Journal of Infectious Diseases, 2004, 190, 2104-2108.	1.9	51

TSANYANG JAKE LIANG

#	Article	IF	CITATIONS
91	Inhibition of Hepatitis C Virus-Like Particle Binding to Target Cells by Antiviral Antibodies in Acute and Chronic Hepatitis C. Journal of Virology, 2004, 78, 9030-9040.	1.5	70
92	Immunization with Hepatitis C Virus-Like Particles Induces Humoral and Cellular Immune Responses in Nonhuman Primates. Journal of Virology, 2004, 78, 6995-7003.	1.5	106
93	A pilot study of pioglitazone treatment for nonalcoholic steatohepatitis. Hepatology, 2004, 39, 188-196.	3.6	679
94	Pathogenesis of hepatitis C—associated hepatocellular carcinoma. Gastroenterology, 2004, 127, S62-S71.	0.6	203
95	Hepatitis C virus–like particles combined with novel adjuvant systems enhance virus-specific immune responses. Hepatology, 2003, 37, 52-59.	3.6	48
96	Maintenance therapy with ribavirin in patients with chronic hepatitis C who fail to respond to combination therapy with interferon alfa and ribavirin. Hepatology, 2003, 38, 66-74.	3.6	83
97	Progression of fibrosis in chronic hepatitis C. Gastroenterology, 2003, 124, 97-104.	0.6	368
98	Associations of chemokine system polymorphisms with clinical outcomes and treatment responses of chronic hepatitis C. Gastroenterology, 2003, 124, 352-360.	0.6	124
99	Immunization with hepatitis C virus-like particles protects mice from recombinant hepatitis C virus-vaccinia infection. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6753-6758.	3.3	152
100	Interaction of Hepatitis C Virus-Like Particles and Cells: a Model System for Studying Viral Binding and Entry. Journal of Virology, 2002, 76, 9335-9344.	1.5	113
101	Structural Features of Envelope Proteins on Hepatitis C Virus-like Particles as Determined by Anti-envelope Monoclonal Antibodies and CD81 Binding. Virology, 2002, 298, 124-132.	1.1	71
102	Hepatitis C virus–like particles induce virus-specific humoral and cellular immune responses in mice. Hepatology, 2001, 34, 417-423.	3.6	90
103	Monoclonal Antibodies with Broad Specificity for Hepatitis C Virus Hypervariable Region 1 Variants Can Recognize Viral Particles. Journal of Immunology, 2001, 167, 3878-3886.	0.4	29
104	Genetic Immunization of Wild-Type and Hepatitis C Virus Transgenic Mice Reveals a Hierarchy of Cellular Immune Response and Tolerance Induction against Hepatitis C Virus Structural Proteins. Journal of Virology, 2001, 75, 12121-12127.	1.5	30
105	Pathogenesis, Natural History, Treatment, and Prevention of Hepatitis C. Annals of Internal Medicine, 2000, 132, 296.	2.0	764
106	Antibodies Against Hepatitis C Virus–Like Particles and Viral Clearance in Acute and Chronic Hepatitis C. Hepatology, 2000, 32, 610-617.	3.6	72
107	Vaccine Development for Hepatitis C. Seminars in Liver Disease, 2000, 20, 211-226.	1.8	67
108	Combination Therapy for Hepatitis C Infection. New England Journal of Medicine, 1998, 339, 1549-1550.	13.9	48

#	Article	IF	CITATIONS
109	Hepatitis C Virus Structural Proteins Assemble into Viruslike Particles in Insect Cells. Journal of Virology, 1998, 72, 3827-3836.	1.5	345