Yun-Long Hou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9013891/publications.pdf

Version: 2024-02-01

759233 752698 22 635 12 h-index citations papers

g-index 22 22 22 825 docs citations times ranked citing authors all docs

20

#	Article	IF	CITATIONS
1	Compatible with excellent gold/palladium trap and open sites for green Suzuki coupling by an imidazole-modified MOF. Microporous and Mesoporous Materials, 2022, 337, 111877.	4.4	4
2	Ecoâ€Friendly and Highly Efficient Lightâ€Emission Ferroelectric Scintillators by Precise Molecular Design. Advanced Functional Materials, 2021, 31, 2102848.	14.9	50
3	A highly stable, luminescent and layered zinc(II)-MOF: Iron(III)/copper(II) dual sensing and guest-assisted exfoliation. Chinese Chemical Letters, 2020, 31, 2211-2214.	9.0	25
4	A novel ferroelectric based on quinuclidine derivatives. Chinese Chemical Letters, 2020, 31, 1686-1689.	9.0	12
5	Side Chain Induced Self-Assembly and Selective Catalytic Oxidation Activity of Copper(I)–Copper(II)-N4 Complexes. Crystal Growth and Design, 2020, 20, 1237-1241.	3.0	4
6	Precise Molecular Design Toward Organic–Inorganic Zinc Chloride ABX ₃ Ferroelectrics. Journal of the American Chemical Society, 2020, 142, 6236-6243.	13.7	74
7	High-Performance Metal–Organic Framework-Templated Sorbent for Selective Eu(III) Capture. ACS Omega, 2020, 5, 7392-7398.	3.5	7
8	Sulfur-functionalized zirconium(IV)-based metal-organic frameworks relieves aggregation-caused quenching effect in efficient electrochemiluminescence sensor. Sensors and Actuators B: Chemical, 2020, 321, 128531.	7.8	9
9	High selective detection of mercury (II) ions by thioether side groups on metal-organic frameworks. Analytica Chimica Acta, 2019, 1081, 51-58.	5.4	74
10	Rare earth-free composites of carbon dots/metal–organic frameworks as white light emitting phosphors. Journal of Materials Chemistry C, 2019, 7, 2207-2211.	5.5	68
11	Janus triple tripods build up a microporous manifold for HgCl ₂ and I ₂ uptake. Chemical Communications, 2019, 55, 5091-5094.	4.1	9
12	An in Situ Embedded Square-Planar Cu ^{II} /Ni ^{II} N ₄ Metalloligand in Coordination Polymers for Visible-Light Photocatalysis. Inorganic Chemistry, 2018, 57, 2377-2380.	4.0	5
13	Improving stability against desolvation and mercury removal performance of Zr(<scp>iv</scp>)–carboxylate frameworks by using bulky sulfur functions. Journal of Materials Chemistry A, 2018, 6, 1648-1654.	10.3	43
14	Metal-Organic Frameworks for Heavy Metal Removal. Series on Chemistry, Energy and the Environment, 2018, , 377-410.	0.3	О
15	Single-Crystalline UiO-67-Type Porous Network Stable to Boiling Water, Solvent Loss, and Oxidation. Inorganic Chemistry, 2018, 57, 6198-6201.	4.0	21
16	Dramatic improvement of stability by <i>in situ</i> linker cyclization of a metal–organic framework. Chemical Communications, 2018, 54, 9470-9473.	4.1	19
17	A nanoporous graphene analog for superfast heavy metal removal and continuous-flow visible-light photoredox catalysis. Journal of Materials Chemistry A, 2017, 5, 20180-20187.	10.3	30
18	Electronic and Ionic Conductivity of Metal–Organic Frameworks. , 2017, , 399-423.		4

#	Article	IF	CITATION
19	Metalation Triggers Single Crystalline Order in a Porous Solid. Journal of the American Chemical Society, 2016, 138, 14852-14855.	13.7	48
20	Facile preparation and dual catalytic activity of copper(i)–metallosalen coordination polymers. Dalton Transactions, 2015, 44, 17360-17365.	3.3	17
21	A copper(<scp>i</scp>)/copper(<scp>ii</scp>)–salen coordination polymer as a bimetallic catalyst for three-component Strecker reactions and degradation of organic dyes. Chemical Communications, 2014, 50, 2295-2297.	4.1	111
22	SYNTHESIS AND CHARACTERIZATION OF SOME DITHIOCARBOHYDRAZONES. Synthetic Communications, 2002, 32, 3865-3869.	2.1	1