Bart Vandekerckhove

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9013827/publications.pdf

Version: 2024-02-01

95 papers 4,140 citations

33 h-index 62 g-index

97 all docs 97
docs citations

97 times ranked 5438 citing authors

#	Article	IF	CITATIONS
1	Small-scale manufacturing of neoantigen-encoding messenger RNA for early-phase clinical trials. Cytotherapy, 2022, 24, 213-222.	0.7	8
2	Photoporation with Biodegradable Polydopamine Nanosensitizers Enables Safe and Efficient Delivery of mRNA in Human T Cells. Advanced Functional Materials, 2021, 31, 2102472.	14.9	31
3	Cas9 RNP transfection by vapor nanobubble photoporation for exÂvivo cell engineering. Molecular Therapy - Nucleic Acids, 2021, 25, 696-707.	5.1	17
4	<i>In vitro</i> OP9-DL1 co-culture and subsequent maturation in the presence of IL-21 generates tumor antigen-specific T cells with a favorable less-differentiated phenotype and enhanced functionality. Oncolmmunology, 2021, 10, 1954800.	4.6	3
5	Photothermal nanofibres enable safe engineering of therapeutic cells. Nature Nanotechnology, 2021, 16, 1281-1291.	31.5	192
6	T-BET and EOMES Accelerate and Enhance Functional Differentiation of Human Natural Killer Cells. Frontiers in Immunology, 2021, 12, 732511.	4.8	0
7	T-BET and EOMES Accelerate and Enhance Functional Differentiation of Human Natural Killer Cells. Frontiers in Immunology, 2021, 12, 732511.	4.8	24
8	TARP is an immunotherapeutic target in acute myeloid leukemia expressed in the leukemic stem cell compartment. Haematologica, 2020, 105, 1306-1316.	3 . 5	9
9	Intracellular Delivery of mRNA in Adherent and Suspension Cells by Vapor Nanobubble Photoporation. Nano-Micro Letters, 2020, 12, 185.	27.0	42
10	Human Thymic CD10+ PD-1+ Intraepithelial Lymphocyte Precursors Acquire Interleukin-15 Responsiveness at the CD1a– CD95+ CD28– CCR7– Developmental Stage. International Journal of Molecular Sciences, 2020, 21, 8785.	4.1	7
11	Conventional and Computational Flow Cytometry Analyses Reveal Sustained Human Intrathymic T Cell Development From Birth Until Puberty. Frontiers in Immunology, 2020, 11, 1659.	4.8	3
12	Distinct and temporary-restricted epigenetic mechanisms regulate human $\hat{l}\pm\hat{l}^2$ and $\hat{l}^3\hat{l}$ T cell development. Nature Immunology, 2020, 21, 1280-1292.	14.5	43
13	HES1 and HES4 have non-redundant roles downstream of Notch during early human T-cell development. Haematologica, 2020, 106, 130-141.	3.5	20
14	The human fetal thymus generates invariant effector $\hat{I}^3\hat{I}$ T cells. Journal of Experimental Medicine, 2020, 217, .	8.5	57
15	Distinct Notch1 and <i>BCL11B</i> requirements mediate human γδ/αβ T cell development. EMBO Reports, 2020, 21, e49006.	4.5	31
16	The transcription factor ETS1 is an important regulator of human NK cell development and terminal differentiation. Blood, 2020, 136, 288-298.	1.4	33
17	T-cells with a single tumor antigen-specific T-cell receptor can be generated <i>in vitro</i> from clinically relevant stem cell sources. Oncolmmunology, 2020, 9, 1727078.	4.6	4
18	iPSC-Based Modeling of RAG2 Severe Combined Immunodeficiency Reveals Multiple T Cell Developmental Arrests. Stem Cell Reports, 2020, 14, 300-311.	4.8	18

#	Article	IF	CITATIONS
19	Rapid and Effective Generation of Nanobody Based CARs using PCR and Gibson Assembly. International Journal of Molecular Sciences, 2020, 21, 883.	4.1	24
20	Treatment of a patient with severe cytomegalovirus (CMV) infection after haploidentical stem cell transplantation with donor-derived CMV-specific T cells. Acta Clinica Belgica, 2020, 76, 1-5.	1.2	1
21	Integrated scRNA-Seq Identifies Human Postnatal Thymus Seeding Progenitors and Regulatory Dynamics of Differentiating Immature Thymocytes. Immunity, 2020, 52, 1088-1104.e6.	14.3	7 9
22	Clinical Significance of <i>TARP</i> Expression in Pediatric Acute Myeloid Leukemia. HemaSphere, 2020, 4, e346.	2.7	3
23	Dendritic Cell-Based Immunotherapy in Lung Cancer. Frontiers in Immunology, 2020, 11, 620374.	4.8	31
24	Safe eradication of large established tumors using neovasculatureâ€ŧargeted tumor necrosis factorâ€based therapies. EMBO Molecular Medicine, 2020, 12, e11223.	6.9	33
25	Immunopathology and Immunotherapy of Myeloid Leukemia. , 2020, , 103-117.		0
26	TCR Sequencing Reveals the Distinct Development of Fetal and Adult Human VÎ ³ 9VÎ ² T Cells. Journal of Immunology, 2019, 203, 1468-1479.	0.8	48
27	Delivering Type I Interferon to Dendritic Cells Empowers Tumor Eradication and Immune Combination Treatments. Cancer Research, 2018, 78, 463-474.	0.9	70
28	Nanobody Based Dual Specific CARs. International Journal of Molecular Sciences, 2018, 19, 403.	4.1	88
29	Antigen receptor-redirected T cells derived from hematopoietic precursor cells lack expression of the endogenous TCR/CD3 receptor and exhibit specific antitumor capacities. Oncolmmunology, 2017, 6, e1283460.	4.6	22
30	A Murine Intestinal Intraepithelial NKp46-Negative Innate Lymphoid Cell Population Characterized by Group 1 Properties. Cell Reports, 2017, 19, 1431-1443.	6.4	24
31	The checkpoint for agonist selection precedes conventional selection in human thymus. Science Immunology, 2017, 2, .	11.9	40
32	A new transcript in the <i>TCRB</i> locus unveils the human ortholog of the mouse preâ€ <i>Dß1</i> promoter. Immunity, Inflammation and Disease, 2017, 5, 346-354.	2.7	0
33	The Ly49E Receptor Inhibits the Immune Control of Acute Trypanosoma cruzi Infection. Frontiers in Immunology, 2016, 7, 472.	4.8	5
34	GATA3 induces human T-cell commitment by restraining Notch activity and repressing NK-cell fate. Nature Communications, 2016, 7, 11171.	12.8	57
35	Gene Correction of iPSCs from a Wiskott-Aldrich Syndrome Patient Normalizes the Lymphoid Developmental and Functional Defects. Stem Cell Reports, 2016, 7, 139-148.	4.8	43
36	Expression of the inhibitory Ly49E receptor is not critically involved in the immune response against cutaneous, pulmonary or liver tumours. Scientific Reports, 2016, 6, 30564.	3.3	7

#	Article	IF	Citations
37	The role of Ly49E receptor expression on murine intraepithelial lymphocytes in intestinal cancer development and progression. Cancer Immunology, Immunotherapy, 2016, 65, 1365-1375.	4.2	4
38	Humanized Mice to Study Human T Cell Development. Methods in Molecular Biology, 2016, 1323, 253-272.	0.9	2
39	Pluripotent stem cell based gene therapy for hematological diseases. Critical Reviews in Oncology/Hematology, 2016, 97, 238-246.	4.4	15
40	The Checkpoint for Agonist Selection Precedes Conventional Selection in Human Thymus. Blood, 2016, 128, 860-860.	1.4	0
41	In vitro human embryonic stem cell hematopoiesis mimics MYB-independent yolk sac hematopoiesis. Haematologica, 2015, 100, 157-166.	3.5	40
42	Contribution of the Ly49E Natural Killer Receptor in the Immune Response to Plasmodium berghei Infection and Control of Hepatic Parasite Development. PLoS ONE, 2014, 9, e87463.	2.5	4
43	Ly49E Expression on CD8αα-Expressing Intestinal Intraepithelial Lymphocytes Plays No Detectable Role in the Development and Progression of Experimentally Induced Inflammatory Bowel Diseases. PLoS ONE, 2014, 9, e110015.	2.5	9
44	Notch3 Activation Is Sufficient but Not Required for Inducing Human T-Lineage Specification. Journal of Immunology, 2014, 193, 5997-6004.	0.8	17
45	Abundant stage-dependent Ly49E expression by liver NK cells is not essential for their differentiation and function. Journal of Leukocyte Biology, 2013, 93, 699-711.	3.3	18
46	Can immunotherapy specifically target acute myeloid leukemic stem cells?. Oncolmmunology, 2013, 2, e22943.	4.6	20
47	Specific Notch receptor–ligand interactions control human TCR-αβ/Ĵ³Î´ development by inducing differential Notch signal strength. Journal of Experimental Medicine, 2013, 210, 683-697.	8.5	95
48	Differential < i>Ly49e < /i> Expression Pathways in Resting versus TCR-Activated Intraepithelial $\hat{I}^3\hat{I}$ T Cells. Journal of Immunology, 2013, 190, 1982-1990.	0.8	12
49	Specific Notch receptor–ligand interactions control human TCR-ab/gd development by inducing differential Notch signal strength. Journal of Cell Biology, 2013, 201, i2-i2.	5.2	O
50	Notch induces human T-cell receptor $\hat{I}^3\hat{I}$ + thymocytes to differentiate along a parallel, highly proliferative and bipotent CD4 CD8 double-positive pathway. Leukemia, 2012, 26, 127-138.	7.2	26
51	RHAMM/HMMR (CD168) is not an ideal target antigen for immunotherapy of acute myeloid leukemia. Haematologica, 2012, 97, 1539-1547.	3.5	32
52	Recommendations in the event of a suspected transfusion-related acute lung injury (TRALI). Acta Clinica Belgica, 2012, 67, 201-8.	1.2	2
53	In vitro generation of immune cells from pluripotent stem cells. Frontiers in Bioscience - Landmark, 2011, 16, 1488.	3.0	8
54	T-lymphoid differentiation potential measured in vitro is higher in CD34+CD38-/lo hematopoietic stem cells from umbilical cord blood than from bone marrow and is an intrinsic property of the cells. Haematologica, 2011, 96, 646-654.	3.5	33

#	Article	IF	Citations
55	Jagged2 acts as a Delta-like Notch ligand during early hematopoietic cell fate decisions. Blood, 2011, 117, 4449-4459.	1.4	89
56	Inhibitory receptors specific for MHC class I educate murine NK cells but not CD8 $\hat{l}\pm\hat{l}\pm$ intestinal intraepithelial T lymphocytes. Blood, 2011, 118, 339-347.	1.4	15
57	CD27â€deficient mice show normal NKâ€cell differentiation but impaired function upon stimulation. Immunology and Cell Biology, 2011, 89, 803-811.	2.3	26
58	Langerhans cells are not required for epidermal $\hat{V^{3}}$ 3 T cell homeostasis and function. Journal of Leukocyte Biology, 2011, 90, 61-68.	3.3	10
59	Continuous CD27 triggering <i>in vivo</i> strongly reduces NK cell numbers. European Journal of Immunology, 2010, 40, 1107-1117.	2.9	23
60	Human T Cell Differentiation: New Techniques, Old Challenges. , 2010, , 351-371.		0
61	Endothelial progenitor cells: identity defined?. Journal of Cellular and Molecular Medicine, 2009, 13, 87-102.	3.6	439
62	Functionally Mature CD4 and CD8 TCR $\hat{1}$ ² Cells Are Generated in OP9-DL1 Cultures from Human CD34+ Hematopoietic Cells. Journal of Immunology, 2009, 183, 4859-4870.	0.8	46
63	Generation of T Cells from Human Embryonic Stem Cell-Derived Hematopoietic Zones. Journal of Immunology, 2009, 182, 6879-6888.	0.8	186
64	An early decrease in Notch activation is required for human TCR- $\hat{l}\pm\hat{l}^2$ lineage differentiation at the expense of TCR- \hat{l} $\hat{\jmath}$ \hat{l} T cells. Blood, 2009, 113, 2988-2998.	1.4	97
65	Notch signaling is required for proliferation but not for differentiation at a well-defined \hat{l}^2 -selection checkpoint during human T-cell development. Blood, 2009, 113, 3254-3263.	1.4	70
66	CD4 and CD8 TCR $\hat{1}$ ² Cells Are selected On MHC Expressed On Thymocyte Precursors in OP9-DL1 Cultures Blood, 2009, 114, 3670-3670.	1.4	1
67	Ly49E-dependent inhibition of natural killer cells by urokinase plasminogen activator. Blood, 2008, 112, 5046-5051.	1.4	20
68	OP9-DL1 Cell Line Supports the Development of Phenotypically and Functionally Mature $Tcr\hat{1}\pm\hat{1}^2$ And $Tcr\hat{1}^3\hat{1}$ T Cells, through Both Conventional and Aberrant Developmental Pathways. Blood, 2008, 112, 2902-2902.	1.4	0
69	Generation of T Cells from Human Embryonic Stem Cells Blood, 2008, 112, 1527-1527.	1.4	O
70	Endothelial Outgrowth Cells Are Not Derived From CD133+Cells or CD45+Hematopoietic Precursors. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 1572-1579.	2.4	331
71	Time-Dependent Effects on Coronary Remodeling and Epicardial Conductance after Intracoronary Injection of Enriched Hematopoietic Bone Marrow Stem Cells in Patients with Previous Myocardial Infarction. Cell Transplantation, 2007, 16, 919-925.	2.5	35
72	Differentiation assays of bone marrow-derived Multipotent Adult Progenitor Cell (MAPC)-like cells towards neural cells cannot depend on morphology and a limited set of neural markers. Experimental Neurology, 2007, 203, 542-554.	4.1	40

#	Article	IF	Citations
73	In Vitro Expanded Cells Contributing to Rapid Severe Combined Immunodeficient Repopulation Activity Are CD34+38â°33+90+45RAâ°'. Stem Cells, 2007, 25, 107-114.	3.2	11
74	Intracoronary Delivery of Hematopoietic Bone Marrow Stem Cells and Luminal Loss of the Infarct-Related Artery in Patients With Recent Myocardial Infarction. Journal of the American College of Cardiology, 2006, 47, 1727-1730.	2.8	78
75	Endothelial Cells Are Not Derived from Hematopoietic Precursor Cells Blood, 2006, 108, 1815-1815.	1.4	O
76	Selecting cord blood units for storage by CD34+ cell counts. Transfusion, 2005, 45, 455-457.	1.6	8
77	Synovial intracellular citrullinated proteins colocalizing with peptidyl arginine deiminase as pathophysiologically relevant antigenic determinants of rheumatoid arthritis-specific humoral autoimmunity. Arthritis and Rheumatism, 2005, 52, 2323-2330.	6.7	122
78	Intracoronary Injection of CD133-Positive Enriched Bone Marrow Progenitor Cells Promotes Cardiac Recovery After Recent Myocardial Infarction. Circulation, 2005, 112, I178-83.	1.6	427
79	Viable CD34+ stem cell content of a cord blood graft: which measurement performed before transplantation is most representative?. Transfusion, 2004, 44, 547-554.	1.6	28
80	Safety and Efficacy of Pathogen-Inactivated Platelets Transfused in Routine Use to Pediatric Patients: An Interim Report Blood, 2004, 104, 3639-3639.	1.4	1
81	Active Form of Notch Imposes T Cell Fate in Human Progenitor Cells. Journal of Immunology, 2002, 169, 3021-3029.	0.8	100
82	Adapted NOD/SCID model supports development of phenotypically and functionally mature T cells from human umbilical cord blood CD34+ cells. Blood, 2002, 99, 1620-1626.	1.4	66
83	Both CD34+38+and CD34+38â^'Cells Home Specifically to the Bone Marrow of NOD/LtSZscid/scidMice but Show Different Kinetics in Expansion. Journal of Immunology, 2001, 167, 3692-3698.	0.8	63
84	Human T Lymphopoiesis: <i>In Vitro</i> and <i>In Vivo</i> Study Models. Annals of the New York Academy of Sciences, 2000, 917, 724-731.	3.8	39
85	Thymic Repopulation by CD34+ Human Cord Blood Cells After Expansion in Stroma-Free Culture. Blood, 1999, 94, 3644-3652.	1.4	20
86	Passive Particle Agglutination Test for Screening Of Treponema Pallidum Antibodies in Blood Bank Routine Acta Clinica Belgica, 1998, 53, 319-321.	1.2	0
87	Human Fetal Liver Cells Differentiate Into Thymocytes in Chimeric Mouse Fetal Thymus Organ Culture. Advances in Experimental Medicine and Biology, 1994, 355, 27-31.	1.6	6
88	Bacterial superantigens mediate T cell deletions in the mouse severe combined immunodeficiency-human liver/thymus model Journal of Experimental Medicine, 1993, 177, 1481-1485.	8.5	35
89	Chimerism and tolerance to host and donor in severe combined immunodeficiencies transplanted with fetal liver stem cells Journal of Clinical Investigation, 1993, 91, 1067-1078.	8.2	39
90	Human hematopoietic cells and thymic epithelial cells induce tolerance via different mechanisms in the SCID-hu mouse thymus Journal of Experimental Medicine, 1992, 175, 1033-1043.	8.5	74

#	Article	IF	CITATIONS
91	Thymic selection of the human T cell receptor V beta repertoire in SCID-hu mice Journal of Experimental Medicine, 1992, 176, 1619-1624.	8.5	69
92	AN INCREASE OF DONOR-SPECIFIC T HELPER PRECURSORS RESULTING FROM BLOOD TRANSFUSIONS. Transplantation, 1990, 49, 987-990.	1.0	12
93	Cytotoxic T Lymphocytes are the Prime Mediators of Suppression of the Mixed Lymphocyte Reaction by Alloactivated Cells. Scandinavian Journal of Immunology, 1989, 30, 659-664.	2.7	4
94	Analysis of cytotoxic T cell precursor frequencies directed against individual HLA-A and -B alloantigens. Journal of Immunological Methods, 1989, 121, 39-45.	1.4	51
95	Specific suppression of mixed lymphocyte reactions by alloactivated cells is correlated with cytotoxicity. Human Immunology, 1989, 24, 183-194.	2.4	4