Ernesto T A Marques

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9013112/publications.pdf

Version: 2024-02-01

158 papers 6,769 citations

71102 41 h-index 76900 74 g-index

166 all docs

166 docs citations

166 times ranked 10046 citing authors

#	Article	IF	CITATIONS
1	Severe Acute Respiratory Syndrome Coronavirus 2 Viremia Is Associated With Coronavirus Disease 2019 Severity and Predicts Clinical Outcomes. Clinical Infectious Diseases, 2022, 74, 1525-1533.	5.8	96
2	Contribution of Coronavirus-Specific Immunoglobulin G Responses to Complement Overactivation in Patients with Severe Coronavirus Disease 2019. Journal of Infectious Diseases, 2022, 226, 766-777.	4.0	12
3	Co-circulation of Chikungunya Virus during the 2015–2017 Zika Virus Outbreak in Pernambuco, Brazil: An Analysis of the Microcephaly Epidemic Research Group Pregnancy Cohort. American Journal of Tropical Medicine and Hygiene, 2022, 106, 1711-1720.	1.4	4
4	Two-year Decay of Zika Virus Neutralizing Antibodies in People Living in an Endemic Region in Brazil. American Journal of Tropical Medicine and Hygiene, 2022, 107, 186-189.	1.4	3
5	Follow-Up Household Serosurvey in Northeast Brazil for Zika Virus: Sexual Contacts of Index Patients Have the Highest Risk for Seropositivity. Journal of Infectious Diseases, 2021, 223, 673-685.	4.0	10
6	Contact System Activation in Plasma from Dengue Patients Might Harness Endothelial Virus Replication through the Signaling of Bradykinin Receptors. Pharmaceuticals, 2021, 14, 56.	3.8	5
7	Zika-related adverse outcomes in a cohort of pregnant women with rash in Pernambuco, Brazil. PLoS Neglected Tropical Diseases, 2021, 15, e0009216.	3.0	19
8	High Incidence of Zika or Chikungunya Infection among Pregnant Women Hospitalized Due to Obstetrical Complications in Northeastern Brazilâ€"Implications for Laboratory Screening in Arbovirus Endemic Area. Viruses, 2021, 13, 744.	3.3	7
9	The Microcephaly Epidemic Research Group Paediatric Cohort (MERG–PC): A Cohort Profile. Viruses, 2021, 13, 602.	3.3	5
10	Diagnostic performance of anti-Zika virus IgM, IgAM and IgG ELISAs during co-circulation of Zika, dengue, and chikungunya viruses in Brazil and Venezuela. PLoS Neglected Tropical Diseases, 2021, 15, e0009336.	3.0	7
11	A Label and Probe-Free Zika Virus Immunosensor Prussian Blue@carbon Nanotube-Based for Amperometric Detection of the NS2B Protein. Biosensors, 2021, 11, 157.	4.7	9
12	NS1 glycoprotein detection in serum and urine as an electrochemical screening immunosensor for dengue and Zika virus. Analytical and Bioanalytical Chemistry, 2021, 413, 4873-4885.	3.7	12
13	COVID-19 and Future Disease X in Circular Economy Transition: Redesigning Pandemic Preparedness to Prevent a Global Disaster. Circular Economy and Sustainability, 2021, 1, 1463-1478.	5. 5	6
14	Zika vaccines: can we solve one problem without creating another one?. Lancet Infectious Diseases, The, 2021, 21, 1198-1200.	9.1	4
15	Are Zika virus cross-reactive antibodies against aquaporin-4 associated to Neuromyelitis Optica Spectrum Disorder?. Journal of Neuroimmunology, 2021, 360, 577697.	2.3	1
16	Risk of Sexually Transmitted Zika Virus in a Cohort of Economically Disadvantaged Urban Residents. Journal of Infectious Diseases, 2021, 224, 860-864.	4.0	8
17	Identification of a Zika NS2B epitope as a biomarker for severe clinical phenotypes. RSC Medicinal Chemistry, 2021, 12, 1525-1539.	3.9	2
18	Neighbourhood-level income and Zika virus infection during pregnancy in Recife, Pernambuco, Brazil: an ecological perspective, 2015–2017. BMJ Global Health, 2021, 6, e006811.	4.7	4

#	Article	IF	CITATIONS
19	Dengue Virus Targets Nrf2 for NS2B3-Mediated Degradation Leading to Enhanced Oxidative Stress and Viral Replication. Journal of Virology, 2020, 94, .	3.4	32
20	A Glimmer of Hope: Recent Updates and Future Challenges in Zika Vaccine Development. Viruses, 2020, 12, 1371.	3.3	20
21	Coronavirus Disease 2019: Understanding Immunopathogenesis Is the "Holy Grail―to Explain Why Children Have Less Severe Acute Disease. Pediatric Critical Care Medicine, 2020, 21, 1022-1023.	0.5	9
22	Vaccine development during global epidemics: the Zika experience. Lancet Infectious Diseases, The, 2020, 20, 998-999.	9.1	6
23	Zika virus infection in pregnancy: a protocol for the joint analysis of the prospective cohort studies of the ZIKAlliance, ZikaPLAN and ZIKAction consortia. BMJ Open, 2020, 10, e035307.	1.9	10
24	Reciprocal immune enhancement of dengue and Zika virus infection in human skin. JCI Insight, 2020, 5, .	5.0	21
25	The Transcriptional and Protein Profile From Human Infected Neuroprogenitor Cells Is Strongly Correlated to Zika Virus Microcephaly Cytokines Phenotype Evidencing a Persistent Inflammation in the CNS. Frontiers in Immunology, 2019, 10, 1928.	4.8	49
26	Zika virus infection in pregnancy: Establishing a case definition for clinical research onÂpregnant women with rash in an active transmission setting. PLoS Neglected Tropical Diseases, 2019, 13, e0007763.	3.0	30
27	Previous dengue or Zika virus exposure can drive to infection enhancement or neutralisation of other flaviviruses. Memorias Do Instituto Oswaldo Cruz, 2019, 114, e190098.	1.6	27
28	International prospective observational cohort study of Zika in infants and pregnancy (ZIP study): study protocol. BMC Pregnancy and Childbirth, 2019, 19, 282.	2.4	18
29	Influence of directional positive Darwinian selection-driven evolution on arboviruses Dengue and Zika virulence and pathogenesis. Molecular Phylogenetics and Evolution, 2019, 140, 106607.	2.7	1
30	The influence of biotinylation on the ability of a computer designed protein to detect B-cells producing anti-HIV-1 2F5 antibodies. Journal of Molecular Graphics and Modelling, 2019, 93, 107442.	2.4	4
31	Severe Dengue Prognosis Using Human Genome Data and Machine Learning. IEEE Transactions on Biomedical Engineering, 2019, 66, 2861-2868.	4.2	50
32	Perinatal analyses of Zika- and dengue virus-specific neutralizing antibodies: A microcephaly case-control study in an area of high dengue endemicity in Brazil. PLoS Neglected Tropical Diseases, 2019, 13, e0007246.	3.0	37
33	Impact of preexisting dengue immunity on Zika virus emergence in a dengue endemic region. Science, 2019, 363, 607-610.	12.6	202
34	Complex Scenario of Homotypic and Heterotypic Zika Virus Immune Enhancement. MBio, 2019, 10, .	4.1	3
35	Study protocol for the multicentre cohorts of Zika virus infection in pregnant women, infants, and acute clinical cases in Latin America and the Caribbean: the ZIKAlliance consortium. BMC Infectious Diseases, 2019, 19, 1081.	2.9	11
36	Familiar barriers still unresolvedâ€"a perspective on the Zika virus outbreak research response. Lancet Infectious Diseases, The, 2019, 19, e59-e62.	9.1	16

#	Article	IF	CITATIONS
37	Development of antibody biomarkers of long term and recent dengue virus infections. Journal of Virological Methods, 2018, 257, 62-68.	2.1	38
38	Interplay between Keratinocytes and Myeloid Cells Drives Dengue Virus Spread in Human Skin. Journal of Investigative Dermatology, 2018, 138, 618-626.	0.7	44
39	Development of an anti-dengue NS1 IgG ELISA to evaluate exposure to dengue virus. Journal of Virological Methods, 2018, 257, 48-57.	2.1	50
40	Mosquito-borne and sexual transmission of Zika virus: Recent developments and future directions. Virus Research, 2018, 254, 1-9.	2.2	33
41	Association between microcephaly, Zika virus infection, and other risk factors in Brazil: final report of a case-control study. Lancet Infectious Diseases, The, 2018, 18, 328-336.	9.1	267
42	Tradition and innovation in development of a Zika vaccine. Lancet, The, 2018, 391, 516-517.	13.7	3
43	R430: A potent inhibitor of DNA and RNA viruses. Scientific Reports, 2018, 8, 16662.	3.3	13
44	External Quality Assessment for Zika Virus Molecular Diagnostic Testing, Brazil. Emerging Infectious Diseases, 2018, 24, 888-892.	4.3	29
45	Detection of IgG3 antibodies specific to the human immunodeficiency virus type 1 (HIV-1) p24 protein as marker for recently acquired infection. Epidemiology and Infection, 2018, 146, 1293-1300.	2.1	7
46	Evaluation of the recombinant antigens Wb14 and WbT for the capture antibody diagnosis of lymphatic filariasis. Memorias Do Instituto Oswaldo Cruz, 2018, 113, e170435.	1.6	3
47	Dengue virus (DENV)-specific antibodies enhance Brazilian Zika virus (ZIKV) infection. Journal of Infectious Diseases, 2017, 215, jiw638.	4.0	115
48	Serum cytokine/chemokine profiles in patients with dengue fever (DF) and dengue hemorrhagic fever (FHD) by using protein array. Journal of Clinical Virology, 2017, 89, 39-45.	3.1	19
49	Development of potent class II transactivator gene delivery systems capable of inducing de novo MHC II expression in human cells, in vitro and ex vivo. Gene Therapy, 2017, 24, 342-352.	4.5	3
50	Rapid and specific detection of Asian- and African-lineage Zika viruses. Science Translational Medicine, 2017, 9, .	12.4	86
51	Establishment and cryptic transmission of Zika virus in Brazil and the Americas. Nature, 2017, 546, 406-410.	27.8	515
52	Enhancement of Zika Infection by Dengue-Specific Antibodies Does Not Alter the Production of Interleukin 6 in FcÎ ³ RII-Expressing K562 Cells. Journal of Infectious Diseases, 2017, 216, 614-615.	4.0	7
53	Rapid antigen tests for dengue virus serotypes and Zika virus in patient serum. Science Translational Medicine, 2017, 9, .	12.4	148
54	Incidence and risk factors for Dengue virus (DENV) infection in the first 2 years of life in a Brazilian prospective birth cohort. Epidemiology and Infection, 2017, 145, 2971-2979.	2.1	7

#	Article	IF	CITATIONS
55	Mapping Putative B-Cell Zika Virus NS1 Epitopes Provides Molecular Basis for Anti-NS1 Antibody Discrimination between Zika and Dengue Viruses. ACS Omega, 2017, 2, 3913-3920.	3.5	41
56	Zika puzzle in Brazil: peculiar conditions of viral introduction and dissemination - A Review. Memorias Do Instituto Oswaldo Cruz, 2017, 112, 319-327.	1.6	34
57	Zika virus displacement by a chikungunya outbreak in Recife, Brazil. PLoS Neglected Tropical Diseases, 2017, 11, e0006055.	3.0	50
58	Risk of microcephaly after Zika virus infection in Brazil, 2015 to 2016. Bulletin of the World Health Organization, 2017, 95, 191-198.	3.3	79
59	Central and peripheral nervous system involvement caused by Zika and chikungunya coinfection. PLoS Neglected Tropical Diseases, 2017, 11, e0005583.	3.0	26
60	Guillain–Barré Syndrome, Acute Disseminated Encephalomyelitis and Encephalitis Associated with Zika Virus Infection in Brazil: Detection of Viral RNA and Isolation of Virus during Late Infection. American Journal of Tropical Medicine and Hygiene, 2017, 97, 1405-1409.	1.4	58
61	Primary dengue haemorrhagic fever in patients from northeast of Brazil is associated with high levels of interferon- \hat{l}^2 during acute phase. Memorias Do Instituto Oswaldo Cruz, 2016, 111, 378-384.	1.6	20
62	Prospective birth cohort in a hyperendemic dengue area in Northeast Brazil: methods and preliminary results. Cadernos De Saude Publica, 2016, 32, .	1.0	6
63	High levels of exposure of Zika and Dengue infections detected using plaque reduction neutralization assay in Brazil. International Journal of Infectious Diseases, 2016, 53, 15.	3.3	1
64	Arbovirus epidemiology in pregnant women in Pernambuco state, Brazil. International Journal of Infectious Diseases, 2016, 53, 14.	3.3	0
65	Selection of a potential diagnostic biomarker for HIV infection from a random library of non-biological synthetic peptoid oligomers. Journal of Immunological Methods, 2016, 435, 85-89.	1.4	10
66	De Novo Design and Biophysical Characterization of an Affinity-Enhanced Protein Displaying the Structure of the Broadly Neutralizing HIV-1 2F5 Antibody Epitope. Biophysical Journal, 2016, 110, 346a.	0.5	0
67	Dendritic cells primed with a chimeric plasmid containing HIVâ€1― <i>gag</i> associated with lysosomalâ€associated proteinâ€1 (LAMP/ <i>gag</i>) is a potential therapeutic vaccine against HIV. FASEB Journal, 2016, 30, 2970-2984.	0.5	2
68	Type III Interferons Produced by Human Placental Trophoblasts Confer Protection against Zika Virus Infection. Cell Host and Microbe, 2016, 19, 705-712.	11.0	464
69	Placental Transfer of Dengue Virus (DENV)–Specific Antibodies and Kinetics of DENV Infection–Enhancing Activity in Brazilian Infants. Journal of Infectious Diseases, 2016, 214, 265-272.	4.0	36
70	Positive IgM for Zika virus in the cerebrospinal fluid of 30 neonates with microcephaly in Brazil. Lancet, The, 2016, 387, 1811-1812.	13.7	128
71	Results of a Zika Virus (ZIKV) Immunoglobulin M–Specific Diagnostic Assay Are Highly Correlated With Detection of Neutralizing Anti-ZIKV Antibodies in Neonates With Congenital Disease. Journal of Infectious Diseases, 2016, 214, 1897-1904.	4.0	53
72	High frequency of pre-existing neutralizing antibody responses in patients with dengue during an outbreak in Central Brazil. BMC Infectious Diseases, 2016, 16, 546.	2.9	5

#	Article	IF	CITATIONS
73	Association between Zika virus infection and microcephaly in Brazil, January to May, 2016: preliminary report of a case-control study. Lancet Infectious Diseases, The, 2016, 16, 1356-1363.	9.1	402
74	Initial Description of the Presumed Congenital Zika Syndrome. American Journal of Public Health, 2016, 106, 598-600.	2.7	236
75	¹ H Nuclear Magnetic Resonance Metabolomics of Plasma Unveils Liver Dysfunction in Dengue Patients. Journal of Virology, 2016, 90, 7429-7443.	3.4	28
76	Clinical evaluation of dengue and identification of risk factors for severe disease: protocol for a multicentre study in 8 countries. BMC Infectious Diseases, 2016, 16, 120.	2.9	56
77	Teratogenic effects of the Zika virus and the role of the placenta. Lancet, The, 2016, 387, 1587-1590.	13.7	142
78	Lipid droplet levels vary heterogeneously in response to simulated gastrointestinal stresses in different probiotic Saccharomyces cerevisiae strains. Journal of Functional Foods, 2016, 21, 193-200.	3.4	8
79	Assessing protein conformational sampling and structural stability via de novo design and molecular dynamics simulations. Biopolymers, 2015, 103, 351-361.	2.4	7
80	Molecular classification of outcomes from dengue virus -3 infections. Journal of Clinical Virology, 2015, 64, 97-106.	3.1	14
81	A DNA Vaccine against Yellow Fever Virus: Development and Evaluation. PLoS Neglected Tropical Diseases, 2015, 9, e0003693.	3.0	29
82	Probiotic Saccharomyces cerevisiae strains as biotherapeutic tools: is there room for improvement?. Applied Microbiology and Biotechnology, 2015, 99, 6563-6570.	3.6	74
83	The Availability and Consistency of Dengue Surveillance Data Provided Online by the World Health Organization. PLoS Neglected Tropical Diseases, 2015, 9, e0003511.	3.0	16
84	Emerging Concepts in Dengue Pathogenesis: Interplay between Plasmablasts, Platelets, and Complement in Triggering Vasculopathy. Critical Reviews in Immunology, 2014, 34, 227-240.	0.5	33
85	Novel insights in genetic transformation of the probiotic yeast <i>Saccharomyces boulardii</i> Bioengineered, 2014, 5, 21-29.	3.2	23
86	Risk of Dengue for Tourists and Teams during the World Cup 2014 in Brazil. PLoS Neglected Tropical Diseases, 2014, 8, e3063.	3.0	25
87	Regulation of HIV-Gag Expression and Targeting to the Endolysosomal/Secretory Pathway by the Luminal Domain of Lysosomal-Associated Membrane Protein (LAMP-1) Enhance Gag-Specific Immune Response. PLoS ONE, 2014, 9, e99887.	2.5	9
88	Draft Genome Sequence of the Probiotic Yeast Saccharomyces cerevisiae var. <i>boulardii</i> Strain ATCC MYA-796. Genome Announcements, 2014, 2, .	0.8	10
89	Dengue virus specific dual HLA binding T cell epitopes induce CD8 ⁺ T cell responses in seropositive individuals. Human Vaccines and Immunotherapeutics, 2014, 10, 3531-3543.	3.3	13
90	C1q binding to dengue virus decreases levels of infection and inflammatory molecules transcription in THP-1 cells. Virus Research, 2014, 179, 231-234.	2.2	19

#	Article	IF	Citations
91	Dengue virus-infected human dendritic cells reveal hierarchies of naturally expressed novel NS3 CD8 T cell epitopes. Clinical and Experimental Immunology, 2014, 177, 696-702.	2.6	12
92	A thiophene-modified screen printed electrode for detection of dengue virus NS1 protein. Talanta, 2014, 128, 505-510.	5.5	49
93	A two-plasmid strategy for engineering a dengue virus type 3 infectious clone from primary Brazilian isolate. Anais Da Academia Brasileira De Ciencias, 2014, 86, 1749-1759.	0.8	10
94	De novo design of immunoreactive conformation-specific HIV-1 epitopes based on Top7 scaffold. RSC Advances, 2013, 3, 11790.	3.6	14
95	Sequential Seasonal H1N1 Influenza Virus Infections Protect Ferrets against Novel 2009 H1N1 Influenza Virus. Journal of Virology, 2013, 87, 1400-1410.	3.4	63
96	Vaccine research, development, and innovation in Brazil: A translational science perspective. Vaccine, 2013, 31, B54-B60.	3.8	14
97	Complement factor H gene (CFH) polymorphisms C-257T, G257A and haplotypes are associated with protection against severe dengue phenotype, possible related with high CFH expression. Human Immunology, 2013, 74, 1225-1230.	2.4	21
98	T-Cell Memory Responses Elicited by Yellow Fever Vaccine are Targeted to Overlapping Epitopes Containing Multiple HLA-I and -II Binding Motifs. PLoS Neglected Tropical Diseases, 2013, 7, e1938.	3.0	38
99	HLA-B*44 Is Associated with Dengue Severity Caused by DENV-3 in a Brazilian Population. Journal of Tropical Medicine, 2013, 2013, 1-11.	1.7	20
100	Identification of Conserved and HLA Promiscuous DENV3 T-Cell Epitopes. PLoS Neglected Tropical Diseases, 2013, 7, e2497.	3.0	39
101	Dengue Research Funded by the European Commission-Scientific Strategies of Three European Dengue Research Consortia. PLoS Neglected Tropical Diseases, 2013, 7, e2320.	3.0	29
102	Association between Magnitude of the Virus-Specific Plasmablast Response and Disease Severity in Dengue Patients. Journal of Immunology, 2013, 190, 80-87.	0.8	88
103	Selective Induction of CTL Helper Rather Than Killer Activity by Natural Epitope Variants Promotes Dendritic Cell–Mediated HIV-1 Dissemination. Journal of Immunology, 2013, 191, 2570-2580.	0.8	34
104	Force of infection of dengue serotypes in a population-based study in the northeast of Brazil. Epidemiology and Infection, 2013, 141, 1080-1088.	2.1	43
105	Construction and characterisation of a complete reverse genetics system of dengue virus type 3. Memorias Do Instituto Oswaldo Cruz, 2013, 108, 983-991.	1.6	12
106	Construction of yellow fever virus subgenomic replicons by yeast-based homologous recombination cloning technique. Anais Da Academia Brasileira De Ciencias, 2013, 85, 159-168.	0.8	7
107	Potential biomarkers for the clinical prognosis of severe dengue. Memorias Do Instituto Oswaldo Cruz, 2013, 108, 755-762.	1.6	14
108	Influence of Scaffold Stability and Electrostatics on Top7-Based Engineered Helical HIV-1 Epitopes. Lecture Notes in Computer Science, 2013, , 94-103.	1.3	2

#	Article	IF	Citations
109	West Nile Virus T-Cell Ligand Sequences Shared with Other Flaviviruses: a Multitude of Variant Sequences as Potential Altered Peptide Ligands. Journal of Virology, 2012, 86, 7616-7624.	3.4	14
110	Development of a Robust Cytopathic Effect-Based High-Throughput Screening Assay To Identify Novel Inhibitors of Dengue Virus. Antimicrobial Agents and Chemotherapy, 2012, 56, 3399-3401.	3.2	16
111	Immune transcript variations among Aedes aegypti populations with distinct susceptibility to dengue virus serotype 2. Acta Tropica, 2012, 124, 113-119.	2.0	24
112	Bradykinin enhances Sindbis virus infection in human brain microvascular endothelial cells. Virology, 2012, 422, 81-91.	2.4	14
113	Maternal LAMP/p55gagHIV-1 DNA Immunization Induces In Utero Priming and a Long-Lasting Immune Response in Vaccinated Neonates. PLoS ONE, 2012, 7, e31608.	2.5	10
114	Mucosal and systemic anti-GAG immunity induced by neonatal immunization with HIV LAMP/gag DNA vaccine in mice. Immunobiology, 2011, 216, 505-512.	1.9	15
115	Human Leukocyte Antigen (HLA) Class I Restricted Epitope Discovery in Yellow Fewer and Dengue Viruses: Importance of HLA Binding Strength. PLoS ONE, 2011, 6, e26494.	2.5	30
116	Description of a Prospective 17DD Yellow Fever Vaccine Cohort in Recife, Brazil. American Journal of Tropical Medicine and Hygiene, 2011, 85, 739-747.	1.4	39
117	From Re-Emergence to Hyperendemicity: The Natural History of the Dengue Epidemic in Brazil. PLoS Neglected Tropical Diseases, 2011, 5, e935.	3.0	125
118	Immunization of neonatal mice with LAMP/p55 HIV gag DNA elicits robust immune responses that last to adulthood. Virology, 2010, 406, 37-47.	2.4	12
119	Conservation and Diversity of Influenza A H1N1 HLA-Restricted T Cell Epitope Candidates for Epitope-Based Vaccines. PLoS ONE, 2010, 5, e8754.	2.5	42
120	Seroprevalence and risk factors for dengue infection in socio-economically distinct areas of Recife, Brazil. Acta Tropica, 2010, 113, 234-240.	2.0	158
121	Dendritic Cell Mediated Delivery of Plasmid DNA Encoding LAMP/HIV-1 Gag Fusion Immunogen Enhances T Cell Epitope Responses in HLA DR4 Transgenic Mice. PLoS ONE, 2010, 5, e8574.	2.5	18
122	Classification of Dengue Fever Patients Based on Gene Expression Data Using Support Vector Machines. PLoS ONE, 2010, 5, e11267.	2.5	36
123	Early molecular markers predictive of dengue hemorrhagic fever. Anais Da Academia Brasileira De Ciencias, 2009, 81, 671-677.	0.8	7
124	Membrane and envelope virus proteins co-expressed as lysosome associated membrane protein (LAMP) fused antigens: a potential tool to develop DNA vaccines against flaviviruses. Anais Da Academia Brasileira De Ciencias, 2009, 81, 663-669.	0.8	10
125	Identification of Continuous Human B-Cell Epitopes in the Envelope Glycoprotein of Dengue Virus Type 3 (DENV-3). PLoS ONE, 2009, 4, e7425.	2.5	23
126	In Silico Identification of New Genetic Variations as Potential Risk Factors for Alzheimer's Disease in a Microarray-oriented Simulation. Journal of Molecular Neuroscience, 2009, 39, 242-247.	2.3	5

#	Article	IF	Citations
127	Immune responses to T-cell epitopes of SARS CoV-N protein are enhanced by N immunization with a chimera of lysosome-associated membrane protein. Gene Therapy, 2009, 16, 1353-1362.	4.5	23
128	Comparison of DNA vaccines producing HIV-1 Gag and LAMP/Gag chimera in rhesus macaques reveals antigen-specific T-cell responses with distinct phenotypes. Vaccine, 2009, 27, 4840-4849.	3.8	19
129	Reliable Classifier to Differentiate Primary and Secondary Acute Dengue Infection Based on IgG ELISA. PLoS ONE, 2009, 4, e4945.	2.5	42
130	Alternative Complement Pathway Deregulation Is Correlated with Dengue Severity. PLoS ONE, 2009, 4, e6782.	2.5	95
131	Gene Expression Profiling during Early Acute Febrile Stage of Dengue Infection Can Predict the Disease Outcome. PLoS ONE, 2009, 4, e7892.	2.5	77
132	Comprehensive analysis of T cell epitope discovery strategies using 17DD yellow fever virus structural proteins and BALB/c (H2d) mice model. Virology, 2008, 378, 105-117.	2.4	23
133	MBL2 Gene polymorphisms protect against development of thrombocytopenia associated with severe dengue phenotype. Human Immunology, 2008, 69, 122-128.	2.4	48
134	Increased immune responses in rhesus macaques by DNA vaccination combined with electroporation. Vaccine, 2008, 26, 5223-5229.	3.8	88
135	Overcoming health inequity: potential benefits of a patient-centered open-source public health infostructure. Cadernos De Saude Publica, 2008, 24, 547-557.	1.0	16
136	Conservation and Variability of Dengue Virus Proteins: Implications for Vaccine Design. PLoS Neglected Tropical Diseases, 2008, 2, e272.	3.0	79
137	Single-tube nested PCR using immobilized internal primers for the identification of dengue virus serotypes. Journal of Virological Methods, 2007, 145, 76-79.	2.1	18
138	Extraction of Dengue 2 Plasmid DNA Vaccine (pD2) from Cell Lysates by Aqueous Two-Phase Systems. Biotechnology, 2007, 6, 520-526.	0.1	9
139	Characterization of a Dengue Patient Cohort in Recife, Brazil. American Journal of Tropical Medicine and Hygiene, 2007, 77, 1128-1134.	1.4	67
140	Characterization of a dengue patient cohort in Recife, Brazil. American Journal of Tropical Medicine and Hygiene, 2007, 77, 1128-34.	1.4	36
141	SARS coronavirus nucleocapsid immunodominant T-cell epitope cluster is common to both exogenous recombinant and endogenous DNA-encoded immunogens. Virology, 2006, 347, 127-139.	2.4	53
142	A systematic bioinformatics approach for selection of epitope-based vaccine targets. Cellular Immunology, 2006, 244, 141-147.	3.0	78
143	From Functional Genomics to Functional Immunomics: New Challenges, Old Problems, Big Rewards. PLoS Computational Biology, 2006, 2, e81.	3.2	54
144	Dendritic Cell-Lysosomal-Associated Membrane Protein (LAMP) and LAMP-1-HIV-1 Gag Chimeras Have Distinct Cellular Trafficking Pathways and Prime T and B Cell Responses to a Diverse Repertoire of Epitopes. Journal of Immunology, 2006, 177, 2265-2275.	0.8	56

#	Article	IF	Citations
145	DNA Encoding an HIV-1 Gag/Human Lysosome-Associated Membrane Protein-1 Chimera Elicits a Broad Cellular and Humoral Immune Response in Rhesus Macaques. PLoS ONE, 2006, 1, e135.	2.5	29
146	West Nile premembrane-envelope genetic vaccine encoded as a chimera containing the transmembrane and cytoplasmic domains of a lysosome-associated membrane protein: increased cellular concentration of the transgene product, targeting to the MHC II compartment, and enhanced neutralizing antibody response. Virology, 2005, 332, 66-77.	2.4	33
147	DNA vaccine encoding human immunodeficiency virus-1 Gag, targeted to the major histocompatibility complex II compartment by lysosomal-associated membrane protein, elicits enhanced long-term memory response. Immunology, 2004, 112, 126-135.	4.4	52
148	Inverted terminal repeat sequences of adeno-associated virus enhance the antibody and CD8+ responses to a HIV-1 p55Gag/LAMP DNA vaccine chimera. Virology, 2004, 323, 220-232.	2.4	29
149	Human dendritic cell lysosome-associated membrane protein expressed in lung type II pneumocytes. Archives of Biochemistry and Biophysics, 2004, 425, 147-157.	3.0	14
150	Dengue 2 PreM-E/LAMP chimera targeted to the MHC class II compartment elicits long-lasting neutralizing antibodies. Vaccine, 2003, 21, 2178-2189.	3.8	51
151	HIV-1 p55Gag Encoded in the Lysosome-associated Membrane Protein-1 as a DNA Plasmid Vaccine Chimera Is Highly Expressed, Traffics to the Major Histocompatibility Class II Compartment, and Elicits Enhanced Immune Responses. Journal of Biological Chemistry, 2003, 278, 37926-37936.	3.4	79
152	Synergistic Neutralizing Antibody Response to a Dengue Virus Type 2 DNA Vaccine by Incorporation of Lysosome-Associated Membrane Protein Sequences and Use of Plasmid Expressing GM-CSF. Virology, 2001, 290, 74-82.	2.4	72
153	Molecular characterization of a fucosyltransferase encoded by Schistosoma mansoni I his work is dedicated to the memory of the scientific spirit of our mentor and dear friend, Dr Mette Strand, who passed away October 10, 1997.12Note: The nucleotide sequence reported in this paper has been submitted to the GeneBankâ, ¢ with the accession number AF016899.2. Molecular and Biochemical	1.1	23
154	Ascorbic acid determination in biological fluids using ascorbate oxidase immobilized on alkylamine glass beads in a flow injection potentiometric system. Applied Biochemistry and Biotechnology, 1994, 44, 81-89.	2.9	8
155	Glucose Biosensor Using Glucose Oxidase Immobilized in Polyaniline. Applied Biochemistry and Biotechnology, 1992, 37, 267-273.	2.9	55
156	Ascorbic acid biosensor using ascorbate oxidase immobilized on alkylamine glass beads. Applied Biochemistry and Biotechnology, 1992, 32, 73-78.	2.9	11
157	A low cost oxygen meter. Biochemical Education, 1991, 19, 77-78.	0.1	7
158	Computational Intelligence applied to Human Genome Data for the Dengue Severity Prognosis. , 0, , .		0