kamla Rawat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9012372/publications.pdf

Version: 2024-02-01

331670 434195 1,340 80 21 31 h-index citations g-index papers 82 82 82 1784 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Multimode sensing of riboflavin via Ag@carbon dot conjugates. Applied Nanoscience (Switzerland), 2020, 10, 281-291.	3.1	11
2	Fluorescent MoS ₂ Quantum Dot–DNA Nanocomposite Hydrogels for Organic Light-Emitting Diodes. ACS Applied Nano Materials, 2020, 3, 1289-1297.	5.0	18
3	Multifunctional, fluorescent DNA-derived carbon dots for biomedical applications: bioimaging, luminescent DNA hydrogels, and dopamine detection. Journal of Materials Chemistry B, 2020, 8, 1277-1289.	5.8	59
4	pH responsive doxorubucin loaded zein nanoparticle crosslinked pectin hydrogel as effective site-specific anticancer substrates. International Journal of Biological Macromolecules, 2020, 152, 1027-1037.	7.5	30
5	Boron-doped carbon quantum dots: a â€~turn-off' fluorescent probe for dopamine detection. Nanotechnology, 2020, 32, 025501.	2.6	10
6	Fluorescent complex coacervates of agar and in situ formed zein nanoparticles: Role of electrostatic forces. Carbohydrate Polymers, 2019, 224, 115150.	10.2	21
7	Carbon dots-embedded fluorescent silica xerogel. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583, 123844.	4.7	11
8	Dual-probe (colorimetric and fluorometric) detection of ferritin using antibody-modified gold@carbon dot nanoconjugates. Mikrochimica Acta, 2019, 186, 687.	5.0	15
9	Heat-induced coacervation of elastin and its possible thermoreversibility. Colloid and Polymer Science, 2019, 297, 947-956.	2.1	4
10	Effect of organic and inorganic salt environment on the complex coacervation of in situ formed protein nanoparticles and DNA. International Journal of Biological Macromolecules, 2019, 122, 1290-1296.	7.5	7
11	Antifungal efficacy of Au@ carbon dots nanoconjugates against opportunistic fungal pathogen, Candida albicans. Colloids and Surfaces B: Biointerfaces, 2018, 163, 355-361.	5.0	36
12	Universal Validity of Einstein Relation and Size-Dependent Viscosity and Surface-Active Characteristics of Nanofluids. International Journal of Nanoscience, 2018, 17, 1850006.	0.7	0
13	Imidazolium based ionic liquid induced DNA gelation at remarkably low concentration. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538, 184-191.	4.7	15
14	pH and ionic strength induced complex coacervation of Pectin and Gelatin A. Food Hydrocolloids, 2018, 74, 132-138.	10.7	41
15	Antimicrobial and biocompatibility of highly fluorescent ZnSe core and ZnSe@ZnS core-shell quantum dots. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	17
16	Zener diode behavior of nitrogen-doped graphene quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 104, 36-41.	2.7	4
17	Mixing ratio dependent complex coacervation <i>versus</i> bicontinuous gelation of pectin with <i>in situ</i> formed zein nanoparticles. Soft Matter, 2018, 14, 6463-6475.	2.7	12
18	Bandgap Tunable AginS based Quantum Dots for High Contrast Cell Imaging with Enhanced Photodynamic and Antifungal Applications. Scientific Reports, 2018, 8, 9322.	3.3	64

#	Article	IF	Citations
19	Surface patch bindingâ€induced exfoliation of nanoclays and enhancement of physical properties of gelatin organogels. Polymer International, 2017, 66, 327-336.	3.1	1
20	Interaction of plasma proteins with ZnSe and ZnSe@ZnS core-shell quantum dots. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 520, 131-137.	4.7	23
21	Self-assembly and gelation of TX-100 in water. Colloid and Polymer Science, 2017, 295, 903-909.	2.1	O
22	Hydrophilic, fluorescent and superparamagnetic iron oxide-carbon composite nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 514, 218-225.	4.7	10
23	Au@carbon dot nanoconjugates as a dual mode enzyme-free sensing platform for cholesterol. Journal of Materials Chemistry B, 2017, 5, 5425-5432.	5.8	50
24	Self-healing gelatin ionogels. International Journal of Biological Macromolecules, 2017, 95, 603-607.	7. 5	28
25	ZnSe core and ZnSe@ZnS core-shell quantum dots as platform for folic acid sensing. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	9
26	Solvent hydrophobicity induced complex coacervation of dsDNA and in situ formed zein nanoparticles. Soft Matter, 2017, 13, 6784-6791.	2.7	9
27	Folic acid supramolecular ionogels. Physical Chemistry Chemical Physics, 2017, 19, 22934-22945.	2.8	9
28	Complex coacervation in charge complementary biopolymers: Electrostatic versus surface patch binding. Advances in Colloid and Interface Science, 2017, 250, 40-53.	14.7	56
29	A Facile Platform for Photocatalytic Reduction of Methylene Blue Dye By CdSe-TiO2 Nanoparticles. Water Conservation Science and Engineering, 2017, 2, 43-50.	1.7	12
30	Studies on clay-gelatin nanocomposite as urea sensor. Applied Clay Science, 2017, 146, 297-305.	5.2	21
31	A Differential Temperature-Dependent Dielectric Relaxation Study of Organoclay Cloisite \$\$^{mathrm{TM}}\$\$ TM. International Journal of Thermophysics, 2017, 38, 1.	2.1	0
32	DNA ionogel: Structure and self-assembly. Physical Chemistry Chemical Physics, 2017, 19, 804-812.	2.8	27
33	Thermo-reversibility, ergodicity and surface charge–temperature dependent phase diagram of anionic, cationic and neutral co-gels of gelatin–BSA complexes. RSC Advances, 2016, 6, 40123-40136.	3.6	4
34	Interface versus bulk gelation and UCST in hydrophobically assembled TX-100 molecular gels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 499, 113-122.	4.7	9
35	Influence of Structure, Charge, and Concentration on the Pectin–Calcium–Surfactant Complexes. Journal of Physical Chemistry B, 2016, 120, 4249-4257.	2.6	20
36	Size-dependent CdSe quantum dot–lysozyme interaction and effect on enzymatic activity. RSC Advances, 2016, 6, 46744-46754.	3.6	31

#	Article	IF	Citations
37	Smoluchowski aggregation kinetics, gelation, ergodicity breaking and aging dynamics of $(1:1)$ Laponite-Montmorillonite mixed clay dispersions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 501, 55-64.	4.7	2
38	Cadmium-free aqueous synthesis of ZnSe and ZnSe@ZnS core–shell quantum dots and their differential bioanalyte sensing potential. Materials Research Express, 2016, 3, 105014.	1.6	11
39	CulnGaSe nanocrystals for detection of trace amount of water in D ₂ O (at ppm level). Crystal Research and Technology, 2016, 51, 561-568.	1.3	23
40	Hierarchical Internal Structures in Gelatin–Bovine Serum Albumin/β-Lactoglobulin Gels and Coacervates. Journal of Physical Chemistry B, 2016, 120, 9506-9512.	2.6	9
41	Room temperature synthesis of fluorescent band gap tunable Cu $1 \ln 1\hat{a}^2$ x Ga x Se 2.5 nanocrystals . Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 509, 182-189.	4.7	7
42	Comparative evaluation of enzyme-free nanoclay-ionic liquid based electrodes for detection of bioanalytes. RSC Advances, 2016, 6, 66120-66129.	3.6	3
43	Spectroscopic profile of surfactant functionalized CdSe quantum dots and their interaction with globular plasma protein BSA. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 506, 495-506.	4.7	14
44	Self-assembly of synthetic liposome-like curcumin nanoparticles. RSC Advances, 2016, 6, 73677-73682.	3.6	4
45	Surface patch binding induced interaction of anisotropic nanoclays with globular plasma proteins. RSC Advances, 2016, 6, 104117-104125.	3.6	11
46	Effect of hydrogen ion implantation on cholesterol sensing using enzyme-free LAPONITEA®-montmorillonite electrodes. RSC Advances, 2016, 6, 22664-22672.	3.6	9
47	Mechanistic evaluation of the size dependent antimicrobial activity of water soluble QDs. Analytical Methods, 2016, 8, 1060-1068.	2.7	8
48	Hot injection versus room temperature synthesis of CdSe quantum dots: A differential spectroscopic and bioanalyte sensing efficacy evaluation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 494, 162-169.	4.7	36
49	Characterization of microstructure, viscoelasticity, heterogeneity and ergodicity in pectin–laponite–CTAB–calcium nanocomposite hydrogels. Carbohydrate Polymers, 2016, 136, 242-249.	10.2	4
50	Potential of Gelatinâ€Zinc Oxide Nanocomposite as Ascorbic Acid Sensor. Electroanalysis, 2015, 27, 2448-2457.	2.9	14
51	Charge heterogeneity induced binding and phase stability in β-lacto-globulin–gelatin B gels and coacervates at their common pl. RSC Advances, 2015, 5, 67066-67076.	3.6	11
52	Physical, antimicrobial and cytotoxic characterisation of LaF _{3:Eu³⁺ ion doped nanocrystals. International Journal of Nanoparticles, 2015, 8, 184.}	0.3	0
53	Enzyme-free and biocompatible nanocomposite based cholesterol sensor. Biochemical Engineering Journal, 2015, 102, 69-73.	3.6	18
54	Interactions in globular proteins with polyampholyte: coacervation route for protein separation. RSC Advances, 2015, 5, 13579-13589.	3.6	26

#	Article	IF	Citations
55	Interaction of Globular Plasma Proteins with Waterâ€Soluble CdSe Quantum Dots. ChemPhysChem, 2015, 16, 1777-1786.	2.1	8
56	Internal structure and thermo-viscoelastic properties of agar ionogels. Carbohydrate Polymers, 2015, 134, 617-626.	10.2	12
57	Antibacterial and Antifungal Activity of Biopolymers Modified with Ionic Liquid and Laponite. Applied Biochemistry and Biotechnology, 2015, 177, 267-277.	2.9	13
58	Electrochemical response of agar ionogels towards glucose detection. Analytical Methods, 2015, 7, 5876-5885.	2.7	15
59	Ionic liquid induced surface exclusion and anomalous first-order phase transition in Laponite dispersions. Journal of Molecular Liquids, 2015, 207, 177-184.	4.9	3
60	Biocompatible capped iron oxide nanoparticles for <i>Vibrio cholerae</i> detection. Nanotechnology, 2015, 26, 175302.	2.6	18
61	Biocompatible laponite ionogels based non-enzymatic oxalic acid sensor. Sensing and Bio-Sensing Research, 2015, 5, 105-111.	4.2	19
62	Heparin-like native protein aggregate dissociation by 1-alkyl-3-methyl imidazolium chloride ionic liquids. International Journal of Biological Macromolecules, 2015, 73, 23-30.	7.5	18
63	Gelatin-Ionic liquid Based Platform for Glucose Detection. Current Topics in Medicinal Chemistry, 2015, 15, 1257-1267.	2.1	3
64	Is surface patch binding between proteins symmetric about isoelectric pH?. RSC Advances, 2014, 4, 24710.	3.6	10
65	Hierarchical Surface Charge Dependent Phase States of Gelatin–Bovine Serum Albumin Dispersions Close to Their Common pl. Journal of Physical Chemistry B, 2014, 118, 11161-11171.	2.6	13
66	Effect of solvent hydrophobicity on gelation kinetics and phase diagram of gelatin ionogels. Soft Matter, 2014, 10, 862-872.	2.7	21
67	Coexistence of Iso-Nonergodic Laponite Gel and Glass in 1-Methyl-3-Octylimidazolium Chloride Ionic Liquid Solutions. Journal of Physical Chemistry B, 2014, 118, 6329-6338.	2.6	6
68	Hierarchical self-assembly, relaxations and ergodic–non-ergodic transition in laponite ionogels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 461, 66-75.	4.7	5
69	Cellular uptake induced biotoxicity of surface-modified CdSe quantum dots. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	21
70	Response of Gelatin Modified Electrode towards Sensing of Different Metabolites. Applied Biochemistry and Biotechnology, 2014, 174, 1032-1042.	2.9	10
71	Surface patch binding and mesophase separation in biopolymeric polyelectrolyte–polyampholyte solutions. International Journal of Biological Macromolecules, 2014, 63, 29-37.	7.5	19
72	Aspect Ratio Dependent Cytotoxicity and Antimicrobial Properties of Nanoclay. Applied Biochemistry and Biotechnology, 2014, 174, 936-944.	2.9	33

#	Article	IF	CITATION
73	Effect of Aspect Ratio of Nano-Clay on the Secondary Structure of ds DNA. Advanced Science Focus, 2014, 2, 37-41.	0.1	1
74	Cytotoxicity and Antimicrobial Activity of Transition Metal Oxide Nanoparticles. Advanced Science Letters, 2014, 20, 1650-1653.	0.2	7
75	Secondary Structure of Proteins is Affected by Complexation with Water Soluble CdSe Quantum Dots. Advanced Science Focus, 2014, 2, 47-51.	0.1	0
76	Single Electron Transfer-Driven Multi-Dimensional Signal Read-out Function of TCNQ as an "Off-the-Shelf―Detector for Cyanide. ACS Applied Materials & mp; Interfaces, 2013, 5, 6996-7000.	8.0	41
77	Effect of persistence length on binding of DNA to polyions and overcharging of their intermolecular complexes in aqueous and in 1-methyl-3-octyl imidazolium chloride ionic liquid solutions. Physical Chemistry Chemical Physics, 2013, 15, 12262.	2.8	24
78	DNA–Gelatin Complex Coacervation, UCST and First-Order Phase Transition of Coacervate to Anisotropic ion gel in 1-Methyl-3-octylimidazolium Chloride Ionic Liquid Solutions. Journal of Physical Chemistry B, 2012, 116, 14805-14816.	2.6	39
79	Universal Charge Quenching and Stability of Proteins in 1-Methyl-3-alkyl (Hexyl/Octyl) Imidazolium Chloride Ionic Liquid Solutions. Journal of Physical Chemistry B, 2012, 116, 11065-11074.	2.6	67
80	Low dilution hydration boundary in liquid–liquid phase equilibria of 1-methyl-3-alkyl (hexyl/octyl) imidazolium chloride ionic liquids. Journal of Molecular Liquids, 2012, 169, 136-143.	4.9	10