Kenneth J Marians

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9010564/publications.pdf

Version: 2024-02-01

101543 123424 5,846 63 36 61 citations g-index h-index papers 65 65 65 3454 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The MukB-topoisomerase IV interaction mutually suppresses their catalytic activities. Nucleic Acids Research, 2022, 50, 2621-2634.	14.5	9
2	Intersubunit and intrasubunit interactions driving the MukBEF ATPase. Journal of Biological Chemistry, 2022, 298, 101964.	3.4	2
3	Bypass of complex co-directional replication-transcription collisions by replisome skipping. Nucleic Acids Research, 2021, 49, 9870-9885.	14.5	9
4	Replisome bypass of transcription complexes and R-loops. Nucleic Acids Research, 2020, 48, 10353-10367.	14.5	26
5	Two components of DNA replication-dependent LexA cleavage. Journal of Biological Chemistry, 2020, 295, 10368-10379.	3.4	8
6	Dissecting DNA Compaction by the Bacterial Condensin MukB. Methods in Molecular Biology, 2019, 2004, 169-180.	0.9	2
7	Topoisomerase III Acts at the Replication Fork To Remove Precatenanes. Journal of Bacteriology, 2019, 201, .	2.2	38
8	The recombination mediator proteins RecFOR maintain RecA* levels for maximal DNA polymerase V Mut activity. Journal of Biological Chemistry, 2019, 294, 852-860.	3.4	8
9	Lesion Bypass and the Reactivation of Stalled Replication Forks. Annual Review of Biochemistry, 2018, 87, 217-238.	11.1	135
10	Independent and Stochastic Action of DNA Polymerases in the Replisome. Cell, 2017, 169, 1201-1213.e17.	28.9	136
11	The MukB–topoisomerase IV interaction is required for proper chromosome compaction. Journal of Biological Chemistry, 2017, 292, 16921-16932.	3.4	17
12	The bacterial condensin MukB compacts DNA by sequestering supercoils and stabilizing topologically isolated loops. Journal of Biological Chemistry, 2017, 292, 16904-16920.	3.4	26
13	Replisome-mediated translesion synthesis by a cellular replicase. Journal of Biological Chemistry, 2017, 292, 13833-13842.	3.4	21
14	MukB-mediated Catenation of DNA Is ATP and MukEF Independent. Journal of Biological Chemistry, 2016, 291, 23999-24008.	3.4	13
15	Regression of Replication Forks Stalled by Leading-strand Template Damage. Journal of Biological Chemistry, 2014, 289, 28376-28387.	3.4	39
16	Regression of Replication Forks Stalled by Leading-strand Template Damage. Journal of Biological Chemistry, 2014, 289, 28388-28398.	3.4	15
17	Replisome-mediated Translesion Synthesis and Leading Strand Template Lesion Skipping Are Competing Bypass Mechanisms. Journal of Biological Chemistry, 2014, 289, 32811-32823.	3.4	38
18	Rescuing US biomedical research: Some comments on Alberts, Kirschner, Tilghman, and Varmus. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2632-3.	7.1	7

#	Article	IF	CITATIONS
19	Dynamics of Leading-Strand Lesion Skipping by the Replisome. Molecular Cell, 2013, 52, 855-865.	9.7	72
20	Characterization of the Nucleoid-associated Protein YejK. Journal of Biological Chemistry, 2013, 288, 31503-31516.	3.4	17
21	Rescuing Stalled or Damaged Replication Forks. Cold Spring Harbor Perspectives in Biology, 2013, 5, a012815-a012815.	5.5	197
22	The MukB-ParC Interaction Affects the Intramolecular, Not Intermolecular, Activities of Topoisomerase IV. Journal of Biological Chemistry, 2013, 288, 7653-7661.	3.4	36
23	Protein–DNA complexes are the primary sources of replication fork pausing in <i>Escherichia coli</i> Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7252-7257.	7.1	71
24	A role for topoisomerase <scp>III</scp> in <i><scp>E</scp>scherichia coli</i> chromosome segregation. Molecular Microbiology, 2012, 86, 1007-1022.	2.5	40
25	A role for topoisomerase III inEscherichia colichromosome segregation. Molecular Microbiology, 2012, 86, 1548-1548.	2.5	1
26	The <i>Escherichia coli</i> Replisome Is Inherently DNA Damage Tolerant. Science, 2011, 334, 235-238.	12.6	121
27	Structure of the SSB-DNA polymerase III interface and its role in DNA replication. EMBO Journal, 2011, 30, 4236-4247.	7.8	132
28	Recruitment to stalled replication forks of the PriA DNA helicase and replisome-loading activities is essential for survival. DNA Repair, 2010, 9, 202-209.	2.8	95
29	Physical and functional interaction between the condensin MukB and the decatenase topoisomerase IV in <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18826-18831.	7.1	97
30	DNA chirality-dependent stimulation of topoisomerase IV activity by the C-terminal AAA+ domain of FtsK. Nucleic Acids Research, 2010, 38, 3031-3040.	14.5	27
31	Actin Homolog MreB Affects Chromosome Segregation by Regulating Topoisomerase IV in Escherichia coli. Molecular Cell, 2009, 33, 171-180.	9.7	45
32	Understanding how the replisome works. Nature Structural and Molecular Biology, 2008, 15, 125-127.	8.2	19
33	Resolution of Converging Replication Forks by RecQ and Topoisomerase III. Molecular Cell, 2008, 30, 779-789.	9.7	123
34	Replisome assembly and the direct restart of stalled replication forks. Nature Reviews Molecular Cell Biology, 2006, 7, 932-943.	37.0	259
35	Replication fork reactivation downstream of a blocked nascent leading strand. Nature, 2006, 439, 557-562.	27.8	285
36	The Disposition of Nascent Strands at Stalled Replication Forks Dictates the Pathway of Replisome Loading during Restart. Molecular Cell, 2005, 17, 733-743.	9.7	137

#	Article	IF	Citations
37	Untangling intracellular DNA topology. Molecular Microbiology, 2004, 52, 925-931.	2.5	89
38	Mechanisms of replication fork restart in Escherichia coli. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 71-77.	4.0	64
39	SetB: an integral membrane protein that affects chromosome segregation in <i>Escherichia coli</i> Molecular Microbiology, 2003, 50, 495-509.	2.5	59
40	Temporal Regulation of Topoisomerase IV Activity in E. coli. Molecular Cell, 2003, 11, 189-201.	9.7	102
41	PriA Mediates DNA Replication Pathway Choice at Recombination Intermediates. Molecular Cell, 2003, 11, 817-826.	9.7	106
42	Topoisomerase III Can Serve as the Cellular Decatenase in Escherichia coli. Journal of Biological Chemistry, 2003, 278, 8653-8660.	3.4	76
43	A Physical and Functional Interaction between Escherichia coli FtsK and Topoisomerase IV. Journal of Biological Chemistry, 2003, 278, 44639-44644.	3.4	101
44	Identification of a unique domain essential for Escherichia coli DNA topoisomerase III-catalysed decatenation of replication intermediates. Molecular Microbiology, 2000, 35, 888-895.	2.5	42
45	The importance of repairing stalled replication forks. Nature, 2000, 404, 37-41.	27.8	1,008
46	Characterization of the Unique C Terminus of the Escherichia coli Ï,, DnaX Protein. Journal of Biological Chemistry, 2000, 275, 15512-15519.	3.4	50
47	Purification and Characterization of DnaC810, a Primosomal Protein Capable of Bypassing PriA Function. Journal of Biological Chemistry, 2000, 275, 8196-8205.	3.4	32
48	Mutational Analysis of Escherichia coliTopoisomerase IV. Journal of Biological Chemistry, 2000, 275, 4099-4103.	3.4	9
49	Mutational Analysis of Escherichia coliTopoisomerase IV. Journal of Biological Chemistry, 2000, 275, 4104-4111.	3.4	11
50	Overexpression and Purification of Bacterial Topoisomerase IV., 1999, 94, 163-170.		12
51	dnaC mutations suppress defects in DNA replication- and recombination-associated functions in priB and priC double mutants in Escherichia coli K-12. Molecular Microbiology, 1999, 34, 91-101.	2.5	86
52	DNA gyrase and topoisomerase IV: biochemical activities, physiological roles during chromosome replication, and drug sensitivities. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1998, 1400, 29-43.	2.4	311
53	The Structure of Supercoiled Intermediates in DNA Replication. Cell, 1998, 94, 819-827.	28.9	153
54	Role of the Core DNA Polymerase III Subunits at the Replication Fork. Journal of Biological Chemistry, 1998, 273, 2452-2457.	3.4	52

#	Article	IF	Citations
55	Identification of dnaX as a High-Copy Suppressor of the Conditional Lethal and Partition Phenotypes of the parE10 Allele. Journal of Bacteriology, 1998, 180, 1232-1240.	2.2	21
56	Coupling of a Replicative Polymerase and Helicase: A τ–DnaB Interaction Mediates Rapid Replication Fork Movement. Cell, 1996, 84, 643-650.	28.9	374
57	\ddot{l} , Protects \hat{l}^2 in the Leading-strand Polymerase Complex at the Replication Fork. Journal of Biological Chemistry, 1996, 271, 4315-4318.	3.4	51
58	Two Distinct Modes of Strand Unlinking during $\hat{l}_{,}$ -Type DNA Replication. Journal of Biological Chemistry, 1996, 271, 21529-21535.	3.4	103
59	The Interaction between Helicase and Primase Sets the Replication Fork Clock. Journal of Biological Chemistry, 1996, 271, 21398-21405.	3.4	133
60	τCouples the Leading- and Lagging-strand Polymerases at the Escherichia coli DNA Replication Fork. Journal of Biological Chemistry, 1996, 271, 21406-21412.	3.4	103
61	[40] φX174-Type primosomal proteins: Purification and assay. Methods in Enzymology, 1995, 262, 507-521.	1.0	53
62	Prokaryotic DNA Replication. Annual Review of Biochemistry, 1992, 61, 673-715.	11.1	322
63	Replication Hits 50. , 0, , 167-176.		0