Ingrid Dahlman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9009644/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Long-term improvement of adipocyte insulin action during body weight relapse after bariatric surgery: a longitudinal cohort study. Surgery for Obesity and Related Diseases, 2022, , .	1.0	1
2	Shared genetic loci for body fat storage and adipocyte lipolysis in humans. Scientific Reports, 2022, 12, 3666.	1.6	3
3	The long noncoding RNA ADIPINT regulates human adipocyte metabolism via pyruvate carboxylase. Nature Communications, 2022, 13, .	5.8	11
4	Exocrine and Endocrine Insufficiency in Autoimmune Pancreatitis: A Matter of Treatment or Time?. Journal of Clinical Medicine, 2022, 11, 3724.	1.0	3
5	LRIG proteins regulate lipid metabolism via BMP signaling and affect the risk of type 2 diabetes. Communications Biology, 2021, 4, 90.	2.0	12
6	Low Bone Mineral Density and Risk for Osteoporotic Fractures in Patients with Chronic Pancreatitis. Nutrients, 2021, 13, 2386.	1.7	17
7	Prospective analyses of white adipose tissue gene expression in relation to long-term body weight changes. International Journal of Obesity, 2020, 44, 377-387.	1.6	9
8	Adiposeâ€specific inactivation of thyroid stimulating hormone receptors in mice modifies body weight, temperature and gene expression in adipocytes. Physiological Reports, 2020, 8, e14538.	0.7	9
9	Longâ€ŧerm changes in adipose tissue gene expression following bariatric surgery. Journal of Internal Medicine, 2020, 288, 219-233.	2.7	20
10	Age-Induced Reduction in Human Lipolysis: A Potential Role for Adipocyte Noradrenaline Degradation. Cell Metabolism, 2020, 32, 1-3.	7.2	42
11	Genome-wide association study of adipocyte lipolysis in the GENetics of adipocyte lipolysis (GENiAL) cohort. Molecular Metabolism, 2020, 34, 85-96.	3.0	11
12	Genome-Wide Association Study of Diabetogenic Adipose Morphology in the GENetics of Adipocyte Lipolysis (GENiAL) Cohort. Cells, 2020, 9, 1085.	1.8	7
13	Improved metabolism and body composition beyond normal levels following gastric bypass surgery: a longitudinal study. Journal of Internal Medicine, 2019, 285, 92-101.	2.7	18
14	The effect of different sources of fish and camelina sativa oil on immune cell and adipose tissue mRNA expression in subjects with abnormal fasting glucose metabolism: a randomized controlled trial. Nutrition and Diabetes, 2019, 9, 1.	1.5	33
15	MicroRNA-196a links human body fat distribution to adipose tissue extracellular matrix composition. EBioMedicine, 2019, 44, 467-475.	2.7	22
16	Epigenetic regulation of diabetogenic adipose morphology. Molecular Metabolism, 2019, 25, 159-167.	3.0	24
17	Apolipoprotein M: a novel adipokine decreasing with obesity and upregulated by calorie restriction. American Journal of Clinical Nutrition, 2019, 109, 1499-1510.	2.2	30
18	Healthy Nordic Diet Modulates the Expression of Genes Related to Mitochondrial Function and Immune Response in Peripheral Blood Mononuclear Cells from Subjects with Metabolic Syndrome–A SYSDIET Sub‣tudy. Molecular Nutrition and Food Research, 2019, 63, e1801405.	1.5	10

#	Article	IF	CITATIONS
19	Insulin action is severely impaired in adipocytes of apparently healthy overweight and obese subjects. Journal of Internal Medicine, 2019, 285, 578-588.	2.7	21
20	Evaluation of the Genetic Association Between Adult Obesity and Neuropsychiatric Disease. Diabetes, 2019, 68, 2235-2246.	0.3	7
21	An Isocaloric Nordic Diet Modulates RELA and TNFRSF1A Gene Expression in Peripheral Blood Mononuclear Cells in Individuals with Metabolic Syndrome—A SYSDIET Sub-Study. Nutrients, 2019, 11, 2932.	1.7	16
22	Adipocyte Expression of SLC19A1 Links DNA Hypermethylation to Adipose Tissue Inflammation and Insulin Resistance. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 710-721.	1.8	29
23	FAM13A and POM121C are candidate genes for fasting insulin: functional follow-up analysis of a genome-wide association study. Diabetologia, 2018, 61, 1112-1123.	2.9	24
24	Regulatory variants at KLF14 influence type 2 diabetes risk via a female-specific effect on adipocyte size and body composition. Nature Genetics, 2018, 50, 572-580.	9.4	143
25	Screening of potential adipokines identifies S100A4 as a marker of pernicious adipose tissue and insulin resistance. International Journal of Obesity, 2018, 42, 2047-2056.	1.6	24
26	Long Non-Coding RNAs Associated with Metabolic Traits in Human White Adipose Tissue. EBioMedicine, 2018, 30, 248-260.	2.7	61
27	Family history of diabetes is associated with enhanced adipose lipolysis: Evidence for the implication of epigenetic factors. Diabetes and Metabolism, 2018, 44, 155-159.	1.4	16
28	Weight Gain and Impaired Glucose Metabolism in Women Are Predicted by Inefficient Subcutaneous Fat Cell Lipolysis. Cell Metabolism, 2018, 28, 45-54.e3.	7.2	95
29	Impact of polyunsaturated and saturated fat overfeeding on the DNA-methylation pattern in human adipose tissue: a randomized controlled trial1–3. American Journal of Clinical Nutrition, 2017, 105, 991-1000.	2.2	127
30	Depot-specific differences in fatty acid composition and distinct associations with lipogenic gene expression in abdominal adipose tissue of obese women. International Journal of Obesity, 2017, 41, 1295-1298.	1.6	26
31	Allele-specific quantitative proteomics unravels molecular mechanisms modulated by cis-regulatory PPARG locus variation. Nucleic Acids Research, 2017, 45, 3266-3279.	6.5	8
32	Comprehensive functional screening of miRNAs involved in fat cell insulin sensitivity among women. American Journal of Physiology - Endocrinology and Metabolism, 2017, 312, E482-E494.	1.8	29
33	Thyroid-Stimulating Hormone, Degree of Obesity, and Metabolic Risk Markers in a Cohort of Swedish Children with Obesity. Hormone Research in Paediatrics, 2017, 88, 140-146.	0.8	26
34	Epigenetic Regulation of PLIN 1 in Obese Women and its Relation to Lipolysis. Scientific Reports, 2017, 7, 10152.	1.6	19
35	Global transcriptome profiling identifies KLF15 and SLC25A10 as modifiers of adipocytes insulin sensitivity in obese women. PLoS ONE, 2017, 12, e0178485.	1.1	26
36	Effects of Genetic Loci Associated with Central Obesity on Adipocyte Lipolysis. PLoS ONE, 2016, 11, e0153990.	1.1	19

#	Article	IF	CITATIONS
37	Expression of FBN1 during adipogenesis: Relevance to the lipodystrophy phenotype in Marfan syndrome and related conditions. Molecular Genetics and Metabolism, 2016, 119, 174-185.	0.5	29
38	Datasets of genes coexpressed with FBN1 in mouse adipose tissue and during human adipogenesis. Data in Brief, 2016, 8, 851-857.	0.5	3
39	Adipose and Circulating CCL18 Levels Associate With Metabolic Risk Factors in Women. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 4021-4029.	1.8	32
40	An AMP-activated protein kinase–stabilizing peptide ameliorates adipose tissue wasting in cancer cachexia in mice. Nature Medicine, 2016, 22, 1120-1130.	15.2	106
41	The Adipose Transcriptional Response to Insulin Is Determined by Obesity, Not Insulin Sensitivity. Cell Reports, 2016, 16, 2317-2326.	2.9	35
42	The epigenetic signature of systemic insulin resistance in obese women. Diabetologia, 2016, 59, 2393-2405.	2.9	62
43	Whole-Exome Sequencing Suggests <i>LAMB3</i> as a Susceptibility Gene for Morbid Obesity. Diabetes, 2016, 65, 2980-2989.	0.3	16
44	Effects of a healthy Nordic diet on gene expression changes in peripheral blood mononuclear cells in response to an oral glucose tolerance test in subjects with metabolic syndrome: a SYSDIET sub-study. Genes and Nutrition, 2016, 11, 3.	1.2	20
45	Numerous Genes in Loci Associated With Body Fat Distribution Are Linked to Adipose Function. Diabetes, 2016, 65, 433-437.	0.3	50
46	Adipose tissue transcriptomics and epigenomics in low birthweight men and controls: role of high-fat overfeeding. Diabetologia, 2016, 59, 799-812.	2.9	64
47	The epigenetic signature of subcutaneous fat cells is linked to altered expression of genes implicated in lipid metabolism in obese women. Clinical Epigenetics, 2015, 7, 93.	1.8	54
48	Saturated fatty acids in human visceral adipose tissue are associated with increased 11- β-hydroxysteroid-dehydrogenase type 1 expression. Lipids in Health and Disease, 2015, 14, 42.	1.2	23
49	Circulating Carnosine Dipeptidase 1 Associates with Weight Loss and Poor Prognosis in Gastrointestinal Cancer. PLoS ONE, 2015, 10, e0123566.	1.1	25
50	Potential role of milk fat globule membrane in modulating plasma lipoproteins, gene expression, and cholesterol metabolism in humans: a randomized study. American Journal of Clinical Nutrition, 2015, 102, 20-30.	2.2	110
51	Plexin D1 determines body fat distribution by regulating the type V collagen microenvironment in visceral adipose tissue. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4363-4368.	3.3	61
52	The fat cell epigenetic signature in post-obese women is characterized by global hypomethylation and differential DNA methylation of adipogenesis genes. International Journal of Obesity, 2015, 39, 910-919.	1.6	85
53	Candidate gene analysis and exome sequencing confirm LBX1 as a susceptibility gene for idiopathic scoliosis. Spine Journal, 2015, 15, 2239-2246.	0.6	53
54	MicroRNA-193b Controls Adiponectin Production in Human White Adipose Tissue. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E1084-E1088.	1.8	51

#	Article	IF	CITATIONS
55	Mesoderm-specific transcript (MEST) is a negative regulator of human adipocyte differentiation. International Journal of Obesity, 2015, 39, 1733-1741.	1.6	38
56	Exome sequencing followed by genotyping suggests SYPL2 as a susceptibility gene for morbid obesity. European Journal of Human Genetics, 2015, 23, 1216-1222.	1.4	21
57	Changes in Subcutaneous Fat Cell Volume and Insulin Sensitivity After Weight Loss. Diabetes Care, 2014, 37, 1831-1836.	4.3	84
58	MicroRNA profiling links miR-378 to enhanced adipocyte lipolysis in human cancer cachexia. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E267-E274.	1.8	57
59	Leveraging Cross-Species Transcription Factor Binding Site Patterns: From Diabetes Risk Loci to Disease Mechanisms. Cell, 2014, 156, 343-358.	13.5	113
60	Overfeeding Polyunsaturated and Saturated Fat Causes Distinct Effects on Liver and Visceral Fat Accumulation in Humans. Diabetes, 2014, 63, 2356-2368.	0.3	306
61	Early B Cell Factor 1 Regulates Adipocyte Morphology and Lipolysis in White Adipose Tissue. Cell Metabolism, 2014, 19, 981-992.	7.2	90
62	LXR is a negative regulator of glucose uptake in human adipocytes. Diabetologia, 2013, 56, 2044-2054.	2.9	54
63	Semaphorin 3C is a novel adipokine linked to extracellular matrix composition. Diabetologia, 2013, 56, 1792-1801.	2.9	33
64	Allograft inflammatory factor 1 (AIF-1) is a new human adipokine involved in adipose inflammation in obese women. BMC Endocrine Disorders, 2013, 13, 54.	0.9	13
65	Vitamin D status and bone health in immigrant versus Swedish women during pregnancy and the post-partum period. Journal of Musculoskeletal Neuronal Interactions, 2013, 13, 464-9.	0.1	6
66	Effects of n-6 PUFAs compared with SFAs on liver fat, lipoproteins, and inflammation in abdominal obesity: a randomized controlled trial. American Journal of Clinical Nutrition, 2012, 95, 1003-1012.	2.2	391
67	Adipose Tissue MicroRNAs as Regulators of CCL2 Production in Human Obesity. Diabetes, 2012, 61, 1986-1993.	0.3	263
68	Functional annotation of the human fat cell secretome. Archives of Physiology and Biochemistry, 2012, 118, 84-91.	1.0	96
69	Genome wide association study identifies KCNMA1contributing to human obesity. BMC Medical Genomics, 2011, 4, 51.	0.7	87
70	Liver X Receptor (LXR) Regulates Human Adipocyte Lipolysis. Journal of Biological Chemistry, 2011, 286, 370-379.	1.6	65
71	Comment on the article "A saturated fatty acid–rich diet induces an obesity-linked proinflammatory gene expression profile in adipose tissue of subjects at risk of metabolic syndrome― American Journal of Clinical Nutrition, 2011, 93, 668-669.	2.2	1
72	Adipose tissue pathways involved in weight loss of cancer cachexia. British Journal of Cancer, 2010, 102, 1541-1548.	2.9	114

#	Article	IF	CITATIONS
73	Genetics of Adipose Tissue Biology. Progress in Molecular Biology and Translational Science, 2010, 94, 39-74.	0.9	18
74	Functional and genetic analysis in type 2 diabetes of Liver X receptor alleles – a cohort study. BMC Medical Genetics, 2009, 10, 27.	2.1	24
75	Estrogen receptor alpha gene variants associate with type 2 diabetes and fasting plasma glucose. Pharmacogenetics and Genomics, 2008, 18, 967-975.	0.7	31
76	A Common Haplotype in the G-Protein–Coupled Receptor Gene GPR74 Is Associated with Leanness and Increased Lipolysis. American Journal of Human Genetics, 2007, 80, 1115-1124.	2.6	20
77	Obesity and polymorphisms in genes regulating human adipose tissue. International Journal of Obesity, 2007, 31, 1629-1641.	1.6	52
78	Liver X receptor gene polymorphisms and adipose tissue expression levels in obesity. Pharmacogenetics and Genomics, 2006, 16, 881-889.	0.7	53
79	Downregulation of Electron Transport Chain Genes in Visceral Adipose Tissue in Type 2 Diabetes Independent of Obesity and Possibly Involving Tumor Necrosis Factor-Â. Diabetes, 2006, 55, 1792-1799.	0.3	162
80	A Human-Specific Role of Cell Death-Inducing DFFA (DNA Fragmentation Factor-Â)-Like Effector A (CIDEA) in Adipocyte Lipolysis and Obesity. Diabetes, 2005, 54, 1726-1734.	0.3	168
81	The CIDEA Gene V115F Polymorphism Is Associated With Obesity in Swedish Subjects. Diabetes, 2005, 54, 3032-3034.	0.3	51
82	A Common β ₂ â€Adrenoceptor Gene Haplotype Protects against Obesity in Swedish Women. Obesity, 2005, 13, 1645-1650.	4.0	6
83	β1-Adrenoceptor gene polymorphism predicts long-term changes in body weight. International Journal of Obesity, 2005, 29, 458-462.	1.6	40
84	Changes in adipose tissue gene expression with energy-restricted diets in obese women1–4,. American Journal of Clinical Nutrition, 2005, 81, 1275-1285.	2.2	142
85	A Unique Role of Monocyte Chemoattractant Protein 1 among Chemokines in Adipose Tissue of Obese Subjects. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 5834-5840.	1.8	183
86	Relationship between β-2 adrenoceptor gene haplotypes and adipocyte lipolysis in women. International Journal of Obesity, 2004, 28, 185-190.	1.6	38
87	?2-Heremans?Schmid glycoprotein gene polymorphisms are associated with adipocyte insulin action. Diabetologia, 2004, 47, 1974-1979.	2.9	62
88	Congenic mapping confirms a locus on rat chromosomeÂ10 conferring strong protection against myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis. Immunogenetics, 2001, 53, 410-415.	1.2	29
89	Linkage analysis in multiple sclerosis of chromosomal regions syntenic to experimental autoimmune disease loci. European Journal of Human Genetics, 2001, 9, 458-463.	1.4	30
90	Polygenic control of autoimmune peripheral nerve inflammation in rat. Journal of Neuroimmunology, 2001, 119, 166-174.	1.1	10

#	Article	IF	CITATIONS
91	Linkage Analysis of Myelin Oligodendrocyte Glycoprotein-Induced Experimental Autoimmune Encephalomyelitis in the Rat Identifies a Locus Controlling Demyelination on Chromosome 18. Human Molecular Genetics, 1999, 8, 2183-2190.	1.4	62
92	Genome-wide linkage analysis of chronic relapsing experimental autoimmune encephalomyelitis in the rat identifies a major susceptibility locus on chromosome 9. Journal of Immunology, 1999, 162, 2581-8.	0.4	52
93	Quantitative trait loci disposing for both experimental arthritis and encephalomyelitis in the DA rat; impact on severity of myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis and antibody isotype pattern. European Journal of Immunology, 1998, 28, 2188-2196.	1.6	67
94	Quantitative trait loci disposing for both experimental arthritis and encephalomyelitis in the DA rat; impact on severity of myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis and antibody isotype pattern. European Journal of Immunology, 1998, 28, 2188-2196.	1.6	1