
Ingrid Dahlman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9009644/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of n-6 PUFAs compared with SFAs on liver fat, lipoproteins, and inflammation in abdominal obesity: a randomized controlled trial. American Journal of Clinical Nutrition, 2012, 95, 1003-1012.	4.7	391
2	Overfeeding Polyunsaturated and Saturated Fat Causes Distinct Effects on Liver and Visceral Fat Accumulation in Humans. Diabetes, 2014, 63, 2356-2368.	0.6	306
3	Adipose Tissue MicroRNAs as Regulators of CCL2 Production in Human Obesity. Diabetes, 2012, 61, 1986-1993.	0.6	263
4	A Unique Role of Monocyte Chemoattractant Protein 1 among Chemokines in Adipose Tissue of Obese Subjects. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 5834-5840.	3.6	183
5	A Human-Specific Role of Cell Death-Inducing DFFA (DNA Fragmentation Factor-Â)-Like Effector A (CIDEA) in Adipocyte Lipolysis and Obesity. Diabetes, 2005, 54, 1726-1734.	0.6	168
6	Downregulation of Electron Transport Chain Genes in Visceral Adipose Tissue in Type 2 Diabetes Independent of Obesity and Possibly Involving Tumor Necrosis Factor-Â. Diabetes, 2006, 55, 1792-1799.	0.6	162
7	Regulatory variants at KLF14 influence type 2 diabetes risk via a female-specific effect on adipocyte size and body composition. Nature Genetics, 2018, 50, 572-580.	21.4	143
8	Changes in adipose tissue gene expression with energy-restricted diets in obese women1–4,. American Journal of Clinical Nutrition, 2005, 81, 1275-1285.	4.7	142
9	Impact of polyunsaturated and saturated fat overfeeding on the DNA-methylation pattern in human adipose tissue: a randomized controlled trial1–3. American Journal of Clinical Nutrition, 2017, 105, 991-1000.	4.7	127
10	Adipose tissue pathways involved in weight loss of cancer cachexia. British Journal of Cancer, 2010, 102, 1541-1548.	6.4	114
11	Leveraging Cross-Species Transcription Factor Binding Site Patterns: From Diabetes Risk Loci to Disease Mechanisms. Cell, 2014, 156, 343-358.	28.9	113
12	Potential role of milk fat globule membrane in modulating plasma lipoproteins, gene expression, and cholesterol metabolism in humans: a randomized study. American Journal of Clinical Nutrition, 2015, 102, 20-30.	4.7	110
13	An AMP-activated protein kinase–stabilizing peptide ameliorates adipose tissue wasting in cancer cachexia in mice. Nature Medicine, 2016, 22, 1120-1130.	30.7	106
14	Functional annotation of the human fat cell secretome. Archives of Physiology and Biochemistry, 2012, 118, 84-91.	2.1	96
15	Weight Gain and Impaired Glucose Metabolism in Women Are Predicted by Inefficient Subcutaneous Fat Cell Lipolysis. Cell Metabolism, 2018, 28, 45-54.e3.	16.2	95
16	Early B Cell Factor 1 Regulates Adipocyte Morphology and Lipolysis in White Adipose Tissue. Cell Metabolism, 2014, 19, 981-992.	16.2	90
17	Genome wide association study identifies KCNMA1contributing to human obesity. BMC Medical Genomics, 2011, 4, 51.	1.5	87
18	The fat cell epigenetic signature in post-obese women is characterized by global hypomethylation and differential DNA methylation of adipogenesis genes. International Journal of Obesity, 2015, 39, 910-919	3.4	85

#	Article	IF	CITATIONS
19	Changes in Subcutaneous Fat Cell Volume and Insulin Sensitivity After Weight Loss. Diabetes Care, 2014, 37, 1831-1836.	8.6	84
20	Quantitative trait loci disposing for both experimental arthritis and encephalomyelitis in the DA rat; impact on severity of myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis and antibody isotype pattern. European Journal of Immunology, 1998, 28, 2188-2196.	2.9	67
21	Liver X Receptor (LXR) Regulates Human Adipocyte Lipolysis. Journal of Biological Chemistry, 2011, 286, 370-379.	3.4	65
22	Adipose tissue transcriptomics and epigenomics in low birthweight men and controls: role of high-fat overfeeding. Diabetologia, 2016, 59, 799-812.	6.3	64
23	Linkage Analysis of Myelin Oligodendrocyte Glycoprotein-Induced Experimental Autoimmune Encephalomyelitis in the Rat Identifies a Locus Controlling Demyelination on Chromosome 18. Human Molecular Genetics, 1999, 8, 2183-2190.	2.9	62
24	?2-Heremans?Schmid glycoprotein gene polymorphisms are associated with adipocyte insulin action. Diabetologia, 2004, 47, 1974-1979.	6.3	62
25	The epigenetic signature of systemic insulin resistance in obese women. Diabetologia, 2016, 59, 2393-2405.	6.3	62
26	Plexin D1 determines body fat distribution by regulating the type V collagen microenvironment in visceral adipose tissue. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4363-4368.	7.1	61
27	Long Non-Coding RNAs Associated with Metabolic Traits in Human White Adipose Tissue. EBioMedicine, 2018, 30, 248-260.	6.1	61
28	MicroRNA profiling links miR-378 to enhanced adipocyte lipolysis in human cancer cachexia. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E267-E274.	3.5	57
29	LXR is a negative regulator of glucose uptake in human adipocytes. Diabetologia, 2013, 56, 2044-2054.	6.3	54
30	The epigenetic signature of subcutaneous fat cells is linked to altered expression of genes implicated in lipid metabolism in obese women. Clinical Epigenetics, 2015, 7, 93.	4.1	54
31	Liver X receptor gene polymorphisms and adipose tissue expression levels in obesity. Pharmacogenetics and Genomics, 2006, 16, 881-889.	1.5	53
32	Candidate gene analysis and exome sequencing confirm LBX1 as a susceptibility gene for idiopathic scoliosis. Spine Journal, 2015, 15, 2239-2246.	1.3	53
33	Obesity and polymorphisms in genes regulating human adipose tissue. International Journal of Obesity, 2007, 31, 1629-1641.	3.4	52
34	Genome-wide linkage analysis of chronic relapsing experimental autoimmune encephalomyelitis in the rat identifies a major susceptibility locus on chromosome 9. Journal of Immunology, 1999, 162, 2581-8.	0.8	52
35	The CIDEA Gene V115F Polymorphism Is Associated With Obesity in Swedish Subjects. Diabetes, 2005, 54, 3032-3034.	0.6	51
36	MicroRNA-193b Controls Adiponectin Production in Human White Adipose Tissue. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E1084-E1088.	3.6	51

#	Article	IF	CITATIONS
37	Numerous Genes in Loci Associated With Body Fat Distribution Are Linked to Adipose Function. Diabetes, 2016, 65, 433-437.	0.6	50
38	Age-Induced Reduction in Human Lipolysis: A Potential Role for Adipocyte Noradrenaline Degradation. Cell Metabolism, 2020, 32, 1-3.	16.2	42
39	β1-Adrenoceptor gene polymorphism predicts long-term changes in body weight. International Journal of Obesity, 2005, 29, 458-462.	3.4	40
40	Relationship between β-2 adrenoceptor gene haplotypes and adipocyte lipolysis in women. International Journal of Obesity, 2004, 28, 185-190.	3.4	38
41	Mesoderm-specific transcript (MEST) is a negative regulator of human adipocyte differentiation. International Journal of Obesity, 2015, 39, 1733-1741.	3.4	38
42	The Adipose Transcriptional Response to Insulin Is Determined by Obesity, Not Insulin Sensitivity. Cell Reports, 2016, 16, 2317-2326.	6.4	35
43	Semaphorin 3C is a novel adipokine linked to extracellular matrix composition. Diabetologia, 2013, 56, 1792-1801.	6.3	33
44	The effect of different sources of fish and camelina sativa oil on immune cell and adipose tissue mRNA expression in subjects with abnormal fasting glucose metabolism: a randomized controlled trial. Nutrition and Diabetes, 2019, 9, 1.	3.2	33
45	Adipose and Circulating CCL18 Levels Associate With Metabolic Risk Factors in Women. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 4021-4029.	3.6	32
46	Estrogen receptor alpha gene variants associate with type 2 diabetes and fasting plasma glucose. Pharmacogenetics and Genomics, 2008, 18, 967-975.	1.5	31
47	Linkage analysis in multiple sclerosis of chromosomal regions syntenic to experimental autoimmune disease loci. European Journal of Human Genetics, 2001, 9, 458-463.	2.8	30
48	Apolipoprotein M: a novel adipokine decreasing with obesity and upregulated by calorie restriction. American Journal of Clinical Nutrition, 2019, 109, 1499-1510.	4.7	30
49	Congenic mapping confirms a locus on rat chromosomeÂ10 conferring strong protection against myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis. Immunogenetics, 2001, 53, 410-415.	2.4	29
50	Expression of FBN1 during adipogenesis: Relevance to the lipodystrophy phenotype in Marfan syndrome and related conditions. Molecular Genetics and Metabolism, 2016, 119, 174-185.	1.1	29
51	Comprehensive functional screening of miRNAs involved in fat cell insulin sensitivity among women. American Journal of Physiology - Endocrinology and Metabolism, 2017, 312, E482-E494.	3.5	29
52	Adipocyte Expression of SLC19A1 Links DNA Hypermethylation to Adipose Tissue Inflammation and Insulin Resistance. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 710-721.	3.6	29
53	Depot-specific differences in fatty acid composition and distinct associations with lipogenic gene expression in abdominal adipose tissue of obese women. International Journal of Obesity, 2017, 41, 1295-1298.	3.4	26
54	Thyroid-Stimulating Hormone, Degree of Obesity, and Metabolic Risk Markers in a Cohort of Swedish Children with Obesity. Hormone Research in Paediatrics, 2017, 88, 140-146.	1.8	26

#	Article	IF	CITATIONS
55	Global transcriptome profiling identifies KLF15 and SLC25A10 as modifiers of adipocytes insulin sensitivity in obese women. PLoS ONE, 2017, 12, e0178485.	2.5	26
56	Circulating Carnosine Dipeptidase 1 Associates with Weight Loss and Poor Prognosis in Gastrointestinal Cancer. PLoS ONE, 2015, 10, e0123566.	2.5	25
57	Functional and genetic analysis in type 2 diabetes of Liver X receptor alleles – a cohort study. BMC Medical Genetics, 2009, 10, 27.	2.1	24
58	FAM13A and POM121C are candidate genes for fasting insulin: functional follow-up analysis of a genome-wide association study. Diabetologia, 2018, 61, 1112-1123.	6.3	24
59	Screening of potential adipokines identifies S100A4 as a marker of pernicious adipose tissue and insulin resistance. International Journal of Obesity, 2018, 42, 2047-2056.	3.4	24
60	Epigenetic regulation of diabetogenic adipose morphology. Molecular Metabolism, 2019, 25, 159-167.	6.5	24
61	Saturated fatty acids in human visceral adipose tissue are associated with increased 11- β-hydroxysteroid-dehydrogenase type 1 expression. Lipids in Health and Disease, 2015, 14, 42.	3.0	23
62	MicroRNA-196a links human body fat distribution to adipose tissue extracellular matrix composition. EBioMedicine, 2019, 44, 467-475.	6.1	22
63	Exome sequencing followed by genotyping suggests SYPL2 as a susceptibility gene for morbid obesity. European Journal of Human Genetics, 2015, 23, 1216-1222.	2.8	21
64	Insulin action is severely impaired in adipocytes of apparently healthy overweight and obese subjects. Journal of Internal Medicine, 2019, 285, 578-588.	6.0	21
65	A Common Haplotype in the G-Protein–Coupled Receptor Gene GPR74 Is Associated with Leanness and Increased Lipolysis. American Journal of Human Genetics, 2007, 80, 1115-1124.	6.2	20
66	Effects of a healthy Nordic diet on gene expression changes in peripheral blood mononuclear cells in response to an oral glucose tolerance test in subjects with metabolic syndrome: a SYSDIET sub-study. Genes and Nutrition, 2016, 11, 3.	2.5	20
67	Longâ€ŧerm changes in adipose tissue gene expression following bariatric surgery. Journal of Internal Medicine, 2020, 288, 219-233.	6.0	20
68	Effects of Genetic Loci Associated with Central Obesity on Adipocyte Lipolysis. PLoS ONE, 2016, 11, e0153990.	2.5	19
69	Epigenetic Regulation of PLIN 1 in Obese Women and its Relation to Lipolysis. Scientific Reports, 2017, 7, 10152.	3.3	19
70	Genetics of Adipose Tissue Biology. Progress in Molecular Biology and Translational Science, 2010, 94, 39-74.	1.7	18
71	Improved metabolism and body composition beyond normal levels following gastric bypass surgery: a longitudinal study. Journal of Internal Medicine, 2019, 285, 92-101.	6.0	18
72	Low Bone Mineral Density and Risk for Osteoporotic Fractures in Patients with Chronic Pancreatitis. Nutrients, 2021, 13, 2386.	4.1	17

#	Article	IF	CITATIONS
73	Whole-Exome Sequencing Suggests <i>LAMB3</i> as a Susceptibility Gene for Morbid Obesity. Diabetes, 2016, 65, 2980-2989.	0.6	16
74	Family history of diabetes is associated with enhanced adipose lipolysis: Evidence for the implication of epigenetic factors. Diabetes and Metabolism, 2018, 44, 155-159.	2.9	16
75	An Isocaloric Nordic Diet Modulates RELA and TNFRSF1A Gene Expression in Peripheral Blood Mononuclear Cells in Individuals with Metabolic Syndrome—A SYSDIET Sub-Study. Nutrients, 2019, 11, 2932.	4.1	16
76	Allograft inflammatory factor 1 (AIF-1) is a new human adipokine involved in adipose inflammation in obese women. BMC Endocrine Disorders, 2013, 13, 54.	2.2	13
77	LRIG proteins regulate lipid metabolism via BMP signaling and affect the risk of type 2 diabetes. Communications Biology, 2021, 4, 90.	4.4	12
78	Genome-wide association study of adipocyte lipolysis in the GENetics of adipocyte lipolysis (GENiAL) cohort. Molecular Metabolism, 2020, 34, 85-96.	6.5	11
79	The long noncoding RNA ADIPINT regulates human adipocyte metabolism via pyruvate carboxylase. Nature Communications, 2022, 13, .	12.8	11
80	Polygenic control of autoimmune peripheral nerve inflammation in rat. Journal of Neuroimmunology, 2001, 119, 166-174.	2.3	10
81	Healthy Nordic Diet Modulates the Expression of Genes Related to Mitochondrial Function and Immune Response in Peripheral Blood Mononuclear Cells from Subjects with Metabolic Syndrome–A SYSDIET Subâ€6tudy. Molecular Nutrition and Food Research, 2019, 63, e1801405.	3.3	10
82	Prospective analyses of white adipose tissue gene expression in relation to long-term body weight changes. International Journal of Obesity, 2020, 44, 377-387.	3.4	9
83	Adiposeâ€specific inactivation of thyroid stimulating hormone receptors in mice modifies body weight, temperature and gene expression in adipocytes. Physiological Reports, 2020, 8, e14538.	1.7	9
84	Allele-specific quantitative proteomics unravels molecular mechanisms modulated by cis-regulatory PPARG locus variation. Nucleic Acids Research, 2017, 45, 3266-3279.	14.5	8
85	Evaluation of the Genetic Association Between Adult Obesity and Neuropsychiatric Disease. Diabetes, 2019, 68, 2235-2246.	0.6	7
86	Genome-Wide Association Study of Diabetogenic Adipose Morphology in the GENetics of Adipocyte Lipolysis (GENiAL) Cohort. Cells, 2020, 9, 1085.	4.1	7
87	A Common β ₂ â€Adrenoceptor Gene Haplotype Protects against Obesity in Swedish Women. Obesity, 2005, 13, 1645-1650.	4.0	6
88	Vitamin D status and bone health in immigrant versus Swedish women during pregnancy and the post-partum period. Journal of Musculoskeletal Neuronal Interactions, 2013, 13, 464-9.	0.1	6
89	Datasets of genes coexpressed with FBN1 in mouse adipose tissue and during human adipogenesis. Data in Brief, 2016, 8, 851-857.	1.0	3
90	Shared genetic loci for body fat storage and adipocyte lipolysis in humans. Scientific Reports, 2022, 12, 3666.	3.3	3

#	Article	IF	CITATIONS
91	Exocrine and Endocrine Insufficiency in Autoimmune Pancreatitis: A Matter of Treatment or Time?. Journal of Clinical Medicine, 2022, 11, 3724.	2.4	3
92	Comment on the article "A saturated fatty acid–rich diet induces an obesity-linked proinflammatory gene expression profile in adipose tissue of subjects at risk of metabolic syndromeâ€: American Journal of Clinical Nutrition, 2011, 93, 668-669.	4.7	1
93	Quantitative trait loci disposing for both experimental arthritis and encephalomyelitis in the DA rat; impact on severity of myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis and antibody isotype pattern. European Journal of Immunology, 1998, 28, 2188-2196.	2.9	1
94	Long-term improvement of adipocyte insulin action during body weight relapse after bariatric surgery: a longitudinal cohort study. Surgery for Obesity and Related Diseases, 2022, , .	1.2	1