Justin G Teeguarden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9008650/publications.pdf

Version: 2024-02-01

69 papers

4,746 citations

38 h-index 95266 68 g-index

69 all docs

69 docs citations

69 times ranked 6522 citing authors

#	Article	IF	CITATIONS
1	Risk assessment of predicted serum concentrations of bisphenol A in children and adults following treatment with dental composite restoratives, dental sealants, or orthodontic adhesives using physiologically based pharmacokinetic modeling. Regulatory Toxicology and Pharmacology, 2021, 120, 104839.	2.7	8
2	leapR: An R Package for Multiomic Pathway Analysis. Journal of Proteome Research, 2021, 20, 2116-2121.	3.7	6
3	Night shift schedule causes circadian dysregulation of DNA repair genes and elevated DNA damage in humans. Journal of Pineal Research, 2021, 70, e12726.	7.4	46
4	Evaluation of <i>In Silico</i> Multifeature Libraries for Providing Evidence for the Presence of Small Molecules in Synthetic Blinded Samples. Journal of Chemical Information and Modeling, 2019, 59, 4052-4060.	5.4	13
5	Modulation of susceptibility to lung bacterial infection by engineered nanomaterials: In vitro and in vivo correspondence based on macrophage phagocytic function. NanoImpact, 2019, 14, 100155.	4.5	5
6	ISiCLE: A Quantum Chemistry Pipeline for Establishing in Silico Collision Cross Section Libraries. Analytical Chemistry, 2019, 91, 4346-4356.	6.5	74
7	Quantification of Carbon Nanotube Doses in Adherent Cell Culture Assays Using UV-VIS-NIR Spectroscopy. Nanomaterials, 2019, 9, 1765.	4.1	11
8	Comparative estrogenicity of endogenous, environmental and dietary estrogens in pregnant women II: Total estrogenicity calculations accounting for competitive protein and receptor binding and potency. Food and Chemical Toxicology, 2019, 125, 341-353.	3.6	9
9	Refining the aggregate exposure pathway. Environmental Sciences: Processes and Impacts, 2018, 20, 428-436.	3.5	15
10	Exposure assessment of process-related contaminants in food by biomarker monitoring. Archives of Toxicology, 2018, 92, 15-40.	4.2	40
11	Aggregate exposure pathways in support of risk assessment. Current Opinion in Toxicology, 2018, 9, 8-13.	5.0	25
12	Comparative estrogenicity of endogenous, environmental and dietary estrogens in pregnant women I: Serum levels, variability and the basis for urinary biomonitoring of serum estrogenicity. Food and Chemical Toxicology, 2018, 115, 511-522.	3.6	5
13	Advancements in Life Cycle Human Exposure and Toxicity Characterization. Environmental Health Perspectives, 2018, 126, 125001.	6.0	44
14	All that is silver is not toxic: silver ion and particle kinetics reveals the role of silver ion aging and dosimetry on the toxicity of silver nanoparticles. Particle and Fibre Toxicology, 2018, 15, 47.	6.2	69
15	ISD3: a particokinetic model for predicting the combined effects of particle sedimentation, diffusion and dissolution on cellular dosimetry for in vitro systems. Particle and Fibre Toxicology, 2018, 15, 6.	6.2	65
16	Transgenerational inheritance of neurobehavioral and physiological deficits from developmental exposure to benzo[a]pyrene in zebrafish. Toxicology and Applied Pharmacology, 2017, 329, 148-157.	2.8	101
17	PIXiE: an algorithm for automated ion mobility arrival time extraction and collision cross section calculation using global data association. Bioinformatics, 2017, 33, 2715-2722.	4.1	10
18	Integrating ion mobility spectrometry into mass spectrometry-based exposome measurements: what can it add and how far can it go?. Bioanalysis, 2017, 9, 81-98.	1.5	66

#	Article	IF	Citations
19	Implications of Bioremediation of Polycyclic Aromatic Hydrocarbon-Contaminated Soils for Human Health and Cancer Risk. Environmental Science & Technology, 2017, 51, 9458-9468.	10.0	82
20	Urine and serum biomonitoring of exposure to environmental estrogens II: Soy isoflavones and zearalenone in pregnant women. Food and Chemical Toxicology, 2016, 95, 19-27.	3.6	42
21	SPE-IMS-MS: An automated platform for sub-sixty second surveillance of endogenous metabolites and xenobiotics in biofluids. Clinical Mass Spectrometry, 2016, 2, 1-10.	1.9	63
22	Urine and serum biomonitoring of exposure to environmental estrogens I: Bisphenol A in pregnant women. Food and Chemical Toxicology, 2016, 92, 129-142.	3.6	51
23	Expanding on Successful Concepts, Models, and Organization. Environmental Science & Expanding on Successful Concepts, Models, and Organization. Environmental Science & Expanding on Successful Concepts, Models, and Organization. Environmental Science & Expanding on Successful Concepts, Models, and Organization. Environmental Science & Expanding on Successful Concepts, Models, and Organization. Environmental Science & Expanding on Successful Concepts, Models, and Organization. Environmental Science & Expanding on Successful Concepts, Models, and Organization. Environmental Science & Expanding on Successful Concepts	10.0	1
24	Completing the Link between Exposure Science and Toxicology for Improved Environmental Health Decision Making: The Aggregate Exposure Pathway Framework. Environmental Science & Emp; Technology, 2016, 50, 4579-4586.	10.0	96
25	Passive samplers accurately predict PAH levels in resident crayfish. Science of the Total Environment, 2016, 544, 782-791.	8.0	21
26	24-hour human urine and serum profiles of bisphenol A: Evidence against sublingual absorption following ingestion in soup. Toxicology and Applied Pharmacology, 2015, 288, 131-142.	2.8	66
27	Comparative Risks of Aldehyde Constituents in Cigarette Smoke Using Transient Computational Fluid Dynamics/Physiologically Based Pharmacokinetic Models of the Rat and Human Respiratory Tracts. Toxicological Sciences, 2015, 146, 65-88.	3.1	45
28	24-hour human urine and serum profiles of bisphenol A following ingestion in soup: Individual pharmacokinetic data and emographics. Data in Brief, 2015, 4, 83-86.	1.0	19
29	Development of a physiologically based pharmacokinetic model for assessment of human exposure to bisphenol A. Toxicology and Applied Pharmacology, 2015, 289, 442-456.	2.8	66
30	Comparative iron oxide nanoparticle cellular dosimetry and response in mice by the inhalation and liquid cell culture exposure routes. Particle and Fibre Toxicology, 2014, 11, 46.	6.2	49
31	Iron oxide nanoparticle agglomeration influences dose rates and modulates oxidative stress-mediated dose–response profiles <i>in vitro</i> . Nanotoxicology, 2014, 8, 663-675.	3.0	81
32	A proposal for assessing study quality: Biomonitoring, Environmental Epidemiology, and Short-lived Chemicals (BEES-C) instrument. Environment International, 2014, 73, 195-207.	10.0	81
33	Low-dose gold nanoparticles exert subtle endocrine-modulating effects on the ovarian steroidogenic pathway <i>ex vivo</i> i>independent of oxidative stress. Nanotoxicology, 2014, 8, 856-866.	3.0	10
34	An integrated approach for the in vitro dosimetry of engineered nanomaterials. Particle and Fibre Toxicology, 2014, 11, 20.	6.2	184
35	A systematic review of Bisphenol A "low dose―studies in the context of human exposure: A case for establishing standards for reporting "low-dose―effects of chemicals. Food and Chemical Toxicology, 2013, 62, 935-948.	3.6	84
36	Are typical human serum BPA concentrations measurable and sufficient to be estrogenic in the general population?. Food and Chemical Toxicology, 2013, 62, 949-963.	3.6	82

#	Article	IF	Citations
37	A multi-route model of nicotine–cotinine pharmacokinetics, pharmacodynamics and brain nicotinic acetylcholine receptor binding in humans. Regulatory Toxicology and Pharmacology, 2013, 65, 12-28.	2.7	20
38	Physiologically-based pharmacokinetic model for Fentanyl in support of the development of Provisional Advisory Levels. Toxicology and Applied Pharmacology, 2013, 273, 464-476.	2.8	29
39	Comparison of PBTK model and biomarker based estimates of the internal dosimetry of acrylamide. Food and Chemical Toxicology, 2013, 58, 506-521.	3. 6	20
40	Magnetic particle detection (MPD) for in-vitro dosimetry. Biosensors and Bioelectronics, 2013, 43, 88-93.	10.1	11
41	Dysregulation of Macrophage Activation Profiles by Engineered Nanoparticles. ACS Nano, 2013, 7, 6997-7010.	14.6	135
42	Nonlinear responses for chromosome and gene level effects induced by vinyl acetate monomer and its metabolite, acetaldehyde in TK6 cells. Environmental and Molecular Mutagenesis, 2013, 54, 755-768.	2.2	10
43	Exposure Conditions and Pharmacokinetic Principles: Interpreting Bisphenol A Absorption in the Canine Oral Cavity. Environmental Health Perspectives, 2013, 121, A323.	6.0	4
44	Adhering to Fundamental Principles of Biomonitoring, BPA Pharmacokinetics, and Mass Balance Is No "Flawâ€. Toxicological Sciences, 2012, 125, 321-325.	3.1	8
45	Aerosolized ZnO Nanoparticles Induce Toxicity in Alveolar Type II Epithelial Cells at the Air-Liquid Interface. Toxicological Sciences, 2012, 125, 450-461.	3.1	58
46	In-vitro cell exposure studies for the assessment of nanoparticle toxicity in the lungâ€"A dialog between aerosol science and biology. Journal of Aerosol Science, 2011, 42, 668-692.	3.8	264
47	Comparative Proteomics and Pulmonary Toxicity of Instilled Single-Walled Carbon Nanotubes, Crocidolite Asbestos, and Ultrafine Carbon Black in Mice. Toxicological Sciences, 2011, 120, 123-135.	3.1	103
48	Twenty-Four Hour Human Urine and Serum Profiles of Bisphenol A during High-Dietary Exposure. Toxicological Sciences, 2011, 123, 48-57.	3.1	192
49	ISDD: A computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies. Particle and Fibre Toxicology, 2010, 7, 36.	6.2	397
50	Benchmark calculations from summarized data: an example. Environmental and Ecological Statistics, 2009, 16, 13-24.	3.5	4
51	Macrophage Responses to Silica Nanoparticles are Highly Conserved Across Particle Sizes. Toxicological Sciences, 2009, 107, 553-569.	3.1	207
52	A PBPK Model for Evaluating the Impact of Aldehyde Dehydrogenase Polymorphisms on Comparative Rat and Human Nasal Tissue Acetaldehyde Dosimetry. Inhalation Toxicology, 2008, 20, 375-390.	1.6	35
53	Derivation of an Inhalation Reference Concentration Based upon Olfactory Neuronal Loss in Male Rats following Subchronic Acetaldehyde Inhalation. Inhalation Toxicology, 2008, 20, 245-256.	1.6	21
54	Particokinetics In Vitro: Dosimetry Considerations for In Vitro Nanoparticle Toxicity Assessments. Toxicological Sciences, 2007, 95, 300-312.	3.1	668

#	Article	IF	Citations
55	Submicrometer and Nanoscale Inorganic Particles Exploit the Actin Machinery To Be Propelled along Microvilli-like Structures into Alveolar Cells. ACS Nano, 2007, 1, 463-475.	14.6	42
56	Experimental Toxicology: Carcinogenesis. , 2005, , 457-490.		1
57	Evaluation of Oral and Intravenous Route Pharmacokinetics, Plasma Protein Binding, and Uterine Tissue Dose Metrics of Bisphenol A: A Physiologically Based Pharmacokinetic Approach. Toxicological Sciences, 2005, 85, 823-838.	3.1	130
58	Evaluation of the Potential Impact of Age- and Gender-Specific Pharmacokinetic Differences on Tissue Dosimetry 2Current address: Novartis Pharmaceuticals, East Hanover, NJ 07936 Toxicological Sciences, 2004, 79, 381-393.	3.1	158
59	Computational Modeling of Serum-Binding Proteins and Clearance in Extrapolations Across Life Stages and Species for Endocrine Active Compounds. Risk Analysis, 2004, 24, 751-770.	2.7	42
60	Interspecies Dose Extrapolation for Inhaled Dimethyl Sulfate: A PBPK Model-Based Analysis using Nasal Cavity N7-Methylguanine Adducts. Inhalation Toxicology, 2004, 16, 593-605.	1.6	12
61	Evaluation of the Potential Impact of Age- and Gender-Specific Lung Morphology and Ventilation Rate on the Dosimetry of Vapors. Inhalation Toxicology, 2003, 15, 987-1016.	1.6	63
62	Route-Specific Differences in Distribution Characteristics of Octamethylcyclotetrasiloxane in Rats: Analysis Using PBPK Models. Toxicological Sciences, 2003, 71, 41-52.	3.1	31
63	Evaluation of the Potential Impact of Age- and Gender-Specific Lung Morphology and Ventilation Rate on the Dosimetry of Vapors. Inhalation Toxicology, 2003, 15, 987-1016.	1.6	2
64	Review and Evaluation of the Potential Impact of Age- and Gender-Specific Pharmacokinetic Differences on Tissue Dosimetry. Critical Reviews in Toxicology, 2002, 32, 329-389.	3.9	99
65	Development of a Physiologically Based Pharmacokinetic Model for Estradiol in Rats and Humans: A Biologically Motivated Quantitative Framework for Evaluating Responses to Estradiol and Other Endocrine-Active Compounds. Toxicological Sciences, 2002, 69, 60-78.	3.1	44
66	Dose-Response Modeling of Cytochrome P450 Induction in Rats by Octamethylcyclotetrasiloxane. Toxicological Sciences, 2002, 67, 159-172.	3.1	29
67	PHYSIOLOGICALLY BASED PHARMACOKINETIC MODELING OF STYRENE AND STYRENE OXIDE RESPIRATORY-TRACT DOSIMETRY IN RODENTS AND HUMANS. Inhalation Toxicology, 2002, 14, 789-834.	1.6	73
68	Quantitation of Multistage Carcinogenesis in Rat Liver. Toxicologic Pathology, 1996, 24, 119-128.	1.8	68
69	The quantitation of altered hepatic foci during multistage hepatocarcinogenesis in the rat: Transforming growth factor $\hat{l}\pm$ expression as a marker for the stage of progression. Cancer Letters, 1995, 93, 73-83.	7.2	31