Tony Mroczkowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9008190/publications.pdf

Version: 2024-02-01

95 papers

3,118 citations

30 h-index 52 g-index

96 all docs 96 docs citations

96 times ranked 3266 citing authors

#	Article	IF	CITATIONS
1	The Karl G. Jansky Very Large Array Sky Survey (VLASS). Science Case and Survey Design. Publications of the Astronomical Society of the Pacific, 2020, 132, 035001.	3.1	337
2	Astrophysics with the Spatially and Spectrally Resolved Sunyaev-Zeldovich Effects. Space Science Reviews, 2019, 215, 1.	8.1	120
3	The Atacama Cosmology Telescope: A Catalog of >4000 Sunyaev–Zel'dovich Galaxy Clusters. Astrophysical Journal, Supplement Series, 2021, 253, 3.	7.7	118
4	MUSTANG HIGH ANGULAR RESOLUTION SUNYAEV-ZEL'DOVICH EFFECT IMAGING OF SUBSTRUCTURE IN FOUR GALAXY CLUSTERS. Astrophysical Journal, 2011, 734, 10.	4.5	103
5	The Physics of Galaxy Cluster Outskirts. Space Science Reviews, 2019, 215, 1.	8.1	102
6	CLASH: MASS DISTRIBUTION IN AND AROUND MACS J1206.2-0847 FROM A FULL CLUSTER LENSING ANALYSIS. Astrophysical Journal, 2012, 755, 56.	4.5	101
7	SUNYAEV-ZEL'DOVICH-MEASURED PRESSURE PROFILES FROM THE BOLOCAM X-RAY/SZ GALAXY CLUSTER SAMPLE. Astrophysical Journal, 2013, 768, 177.	4.5	88
8	LoCuSS: THE SUNYAEV–ZEL'DOVICH EFFECT AND WEAK-LENSING MASS SCALING RELATION. Astrophysical Journal, 2012, 754, 119.	4.5	79
9	CLASH: COMPLETE LENSING ANALYSIS OF THE LARGEST COSMIC LENS MACS J0717.5+3745 AND SURROUNDING STRUCTURES. Astrophysical Journal, 2013, 777, 43.	4.5	79
10	CMB-S4: Forecasting Constraints on Primordial Gravitational Waves. Astrophysical Journal, 2022, 926, 54.	4.5	79
11	Observations of Highâ€Redshift Xâ€Ray Selected Clusters with the Sunyaevâ€Zel'dovich Array. Astrophysical Journal, 2007, 663, 708-716.	4.5	78
12	Atacama Cosmology Telescope: Combined kinematic and thermal Sunyaev-Zel'dovich measurements from BOSS CMASS and LOWZ halos. Physical Review D, 2021, 103, .	4.7	76
13	APPLICATION OF A SELF-SIMILAR PRESSURE PROFILE TO SUNYAEV-ZEL'DOVICH EFFECT DATA FROM GALAXY CLUSTERS. Astrophysical Journal, 2009, 694, 1034-1044.	4.5	72
14	A MEASUREMENT OF THE KINETIC SUNYAEV-ZEL'DOVICH SIGNAL TOWARD MACS J0717.5+3745. Astrophysical Journal, 2013, 778, 52.	4.5	70
15	Comparison of pressure profiles of massive relaxed galaxy clusters using the Sunyaev–Zel'dovich and x-ray data. New Journal of Physics, 2012, 14, 025010.	2.9	64
16	Atacama Cosmology Telescope: Modeling the gas thermodynamics in BOSS CMASS galaxies from kinematic and thermal Sunyaev-Zel'dovich measurements. Physical Review D, 2021, 103, .	4.7	60
17	A MULTI-WAVELENGTH STUDY OF THE SUNYAEV-ZEL'DOVICH EFFECT IN THE TRIPLE-MERGER CLUSTER MACS J0717.5+3745 WITH MUSTANG AND BOLOCAM. Astrophysical Journal, 2012, 761, 47.	4.5	59
18	THREE-DIMENSIONAL MULTI-PROBE ANALYSIS OF THE GALAXY CLUSTER A1689. Astrophysical Journal, 2015, 806, 207.	4.5	56

#	Article	IF	CITATIONS
19	Mapping the kinetic Sunyaev-Zel'dovich effect toward MACS J0717.5+3745 with NIKA. Astronomy and Astrophysics, 2017, 598, A115.	5.1	49
20	GALAXY CLUSTER SCALING RELATIONS BETWEEN BOLOCAM SUNYAEV–ZEL'DOVICH EFFECT AND <i>CHANDRA</i> AND <i>CHANDRA</i> ASTROPHYSICAL JOURNAL, 2015, 806, 18.	4.5	48
21	Chandra and JVLA Observations of HST Frontier Fields Cluster MACS J0717.5+3745. Astrophysical Journal, 2017, 835, 197.	4.5	46
22	LoCuSS: A COMPARISON OF SUNYAEV-ZEL'DOVICH EFFECT AND GRAVITATIONAL-LENSING MEASUREMENTS OF GALAXY CLUSTERS. Astrophysical Journal, 2009, 701, L114-L118.	4.5	44
23	FRONTIER FIELDS CLUSTERS: <i>CHANDRA < /i> AND JVLA VIEW OF THE PRE-MERGING CLUSTER MACS J0416.1-2403. Astrophysical Journal, 2015, 812, 153.</i>	4.5	44
24	The Abell 3391/95 galaxy cluster system. Astronomy and Astrophysics, 2021, 647, A2.	5.1	43
25	VLA Radio Observations of the HST Frontier Fields Cluster Abell 2744: The Discovery of New Radio Relics. Astrophysical Journal, 2017, 845, 81.	4.5	41
26	RADIO EMISSION FROM RED-GIANT HOT JUPITERS. Astrophysical Journal, 2016, 820, 122.	4.5	37
27	SUNYAEV-ZEL'DOVICH EFFECT OBSERVATIONS OF STRONG LENSING GALAXY CLUSTERS: PROBING THE OVERCONCENTRATION PROBLEM. Astrophysical Journal, 2011, 737, 74.	4.5	36
28	LUPUS I OBSERVATIONS FROM THE 2010 FLIGHT OF THE BALLOON-BORNE LARGE APERTURE SUBMILLIMETER TELESCOPE FOR POLARIMETRY. Astrophysical Journal, 2014, 784, 116.	4.5	33
29	Horn-coupled, commercially-fabricated aluminum lumped-element kinetic inductance detectors for millimeter wavelengths. Review of Scientific Instruments, 2014, 85, 123117.	1.3	32
30	MUSTANG 2: A Large Focal Plane Array for the 100Âm Green Bank Telescope. Journal of Low Temperature Physics, 2014, 176, 808-814.	1.4	32
31	J1649+2635: a grand-design spiral with a large double-lobed radio source. Monthly Notices of the Royal Astronomical Society, 2015, 446, 4176-4185.	4.4	31
32	Dust opacity variations in the pre-stellar core L1544. Astronomy and Astrophysics, 2019, 623, A118.	5.1	29
33	Radio and X-Ray Observations of the Luminous Fast Blue Optical Transient AT 2020xnd. Astrophysical Journal, 2022, 926, 112.	4.5	29
34	Imaging the Thermal and Kinematic Sunyaev–Zel'dovich Effect Signals in a Sample of 10 Massive Galaxy Clusters: Constraints on Internal Velocity Structures and Bulk Velocities. Astrophysical Journal, 2019, 880, 45.	4.5	28
35	THE CONTRIBUTION OF RADIO GALAXY CONTAMINATION TO MEASUREMENTS OF THE SUNYAEV-ZEL'DOVICH DECREMENT IN MASSIVE GALAXY CLUSTERS AT 140 GHz WITH BOLOCAM. Astrophysical Journal, 2013, 764, 152.	4.5	25
36	Pressure Profiles and Mass Estimates Using High-resolution Sunyaev–Zel'dovich Effect Observations of Zwicky 3146 with MUSTANG-2. Astrophysical Journal, 2020, 891, 90.	4.5	25

#	Article	IF	Citations
37	A MEASUREMENT OF ARCMINUTE ANISOTROPY IN THE COSMIC MICROWAVE BACKGROUND WITH THE SUNYAEV-ZEL'DOVICH ARRAY. Astrophysical Journal, 2010, 713, 82-89.	4.5	23
38	THE ATACAMA COSMOLOGY TELESCOPE: HIGH-RESOLUTION SUNYAEV-ZEL'DOVICH ARRAY OBSERVATIONS OF ACT SZE-SELECTED CLUSTERS FROM THE EQUATORIAL STRIP. Astrophysical Journal, 2012, 751, 12.	4.5	23
39	ALMA Band 5 receiver cartridge. Astronomy and Astrophysics, 2018, 611, A98.	5.1	23
40	Wideband 67â^'116 GHz receiver development for ALMA Band 2. Astronomy and Astrophysics, 2020, 634, A46.	5.1	23
41	High-resolution VLA low radio frequency observations of the Perseus cluster: radio lobes, mini-halo, and bent-jet radio galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5791-5805.	4.4	23
42	Discovery of the correspondence between intra-cluster radio emission and a high pressure region detected through the Sunyaev-Zel'dovich effect. Astronomy and Astrophysics, 2011, 534, L12.	5.1	22
43	The discovery of radio halos in the frontier fields clusters Abell S1063 and Abell 370. Astronomy and Astrophysics, 2020, 636, A3.	5.1	22
44	GALAXY CLUSTERS AT <i>z</i> ⩾ 1: GAS CONSTRAINTS FROM THE SUNYAEV–ZEL'DOVICH ARRAY. Astrophysical Journal Letters, 2010, 723, L78-L83.	8.3	21
45	ON R â°' W1 AS A DIAGNOSTIC TO DISCOVER OBSCURED ACTIVE GALACTIC NUCLEI IN WIDE-AREA X-RAY SURVEYS. Astrophysical Journal, 2016, 818, 88.	4.5	21
46	Galaxy Cluster Pressure Profiles as Determined by Sunyaev Zel'dovich Effect Observations with MUSTANG and Bolocam. II. Joint Analysis of 14 Clusters. Astrophysical Journal, 2017, 838, 86.	4.5	21
47	A NEW APPROACH TO OBTAINING CLUSTER MASS FROM SUNYAEV–ZEL'DOVICH EFFECT OBSERVATIONS. Astrophysical Journal Letters, 2011, 728, L35.	8.3	20
48	Photon noise from chaotic and coherent millimeter-wave sources measured with horn-coupled, aluminum lumped-element kinetic inductance detectors. Applied Physics Letters, 2016, 108, .	3.3	20
49	PECULIAR VELOCITY CONSTRAINTS FROM FIVE-BAND SZ EFFECT MEASUREMENTS TOWARD RX J1347.5â^'1145 WITH MUSIC AND BOLOCAM FROM THE CSO. Astrophysical Journal, 2016, 820, 101.	4.5	20
50	A MULTI-WAVELENGTH MASS ANALYSIS OF RCS2 J232727.6-020437, A â^1/43 × 10 ¹⁵ <i>M</i> _⊙ GALAXY CLUSTER AT <i>z</i> = 0.7. Astrophysical Journal, 2015, 814, 21.	4.5	19
51	GALAXY CLUSTER PRESSURE PROFILES, AS DETERMINED BY SUNYAEV-ZELDOVICH EFFECT OBSERVATIONS WITH MUSTANG AND BOLOCAM. I. JOINT ANALYSIS TECHNIQUE. Astrophysical Journal, 2015, 807, 121.	4.5	19
52	Constraints on the Mass, Concentration, and Nonthermal Pressure Support of Six CLASH Clusters from a Joint Analysis of X-Ray, SZ, and Lensing Data. Astrophysical Journal, 2018, 861, 71.	4.5	19
53	An ALMA+ACA measurement of the shock in the Bullet Cluster. Astronomy and Astrophysics, 2019, 628, A100.	5.1	19
54	RADIO SOURCES FROM A 31 GHz SKY SURVEY WITH THE SUNYAEV-ZEL'DOVICH ARRAY. Astrophysical Journal, 2010, 716, 521-529.	4.5	18

#	Article	IF	Citations
55	THE DISCOVERY OF LENSED RADIO AND X-RAY SOURCES BEHIND THE FRONTIER FIELDS CLUSTER MACSÂJ0717.5+3745 WITH THE JVLA AND CHANDRA. Astrophysical Journal, 2016, 817, 98.	4.5	17
56	A joint ALMA–Bolocam–Planck SZ study of the pressure distribution in RXÂJ1347.5â^'1145. Monthly Notices of the Royal Astronomical Society, 2019, 487, 4037-4056.	4.4	17
57	MAKO: a pathfinder instrument for on-sky demonstration of low-cost 350 micron imaging arrays. Proceedings of SPIE, 2012, , .	0.8	16
58	FRONTIER FIELDS CLUSTERS: DEEP CHANDRA OBSERVATIONS OF THE COMPLEX MERGER MACSÂJ1149.6+2223. Astrophysical Journal, 2016, 819, 113.	4.5	16
59	MUSTANG2: a large focal plan array for the 100 meter Green Bank Telescope. Proceedings of SPIE, 2014, ,	0.8	15
60	Development of a Microwave SQUID-Multiplexed TES Array for MUSTANG-2. Journal of Low Temperature Physics, 2016, 184, 460-465.	1.4	15
61	A high-resolution view of the filament of gas between AbellÂ399 and AbellÂ401 from the Atacama Cosmology Telescope and MUSTANG-2. Monthly Notices of the Royal Astronomical Society, 2022, 510, 3335-3355.	4.4	14
62	The effect of helium sedimentation on galaxy cluster masses and scaling relations. Astronomy and Astrophysics, 2011, 533, A6.	5.1	13
63	MEASUREMENTS OF THE SUNYAEV–ZEL'DOVICH EFFECT IN MACS J0647.7+7015 AND MACS J1206.2–08 HIGH ANGULAR RESOLUTION WITH MUSTANG. Astrophysical Journal, 2015, 809, 185.	347_AT 4.5	12
64	The Massive and Distant Clusters of WISE Survey. X. Initial Results from a Sunyaev–Zeldovich Effect Study of Massive Galaxy Clusters at zÂ>Â1 Using MUSTANG2 on the GBT. Astrophysical Journal, 2020, 902, 144.	4.5	12
65	COMPARISON OF PRESTELLAR CORE ELONGATIONS AND LARGE-SCALE MOLECULAR CLOUD STRUCTURES IN THE LUPUS I REGION. Astrophysical Journal, 2014, 791, 43.	4.5	11
66	WSPEC: A Waveguide Filter-Bank Focal Plane Array Spectrometer for Millimeter Wave Astronomy and Cosmology. Journal of Low Temperature Physics, 2016, 184, 114-122.	1.4	11
67	Active gas features in three HSC-SSP CAMIRA clusters revealed by high angular resolution analysis of MUSTANG-2 SZE and XXL X-ray observations. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1701-1732.	4.4	11
68	Electron capture byNe2+ions from atomic hydrogen. Physical Review A, 2003, 68, .	2.5	10
69	The Massive and Distant Clusters of WISE Survey. Astronomy and Astrophysics, 2020, 638, A70.	5.1	10
70	The MUSTANG Galactic Plane Survey (MGPS90) Pilot. Astrophysical Journal, Supplement Series, 2020, 248, 24.	7.7	10
71	COSMOLOGICAL CONSTRAINTS FROM A 31 GHz SKY SURVEY WITH THE SUNYAEV-ZEL'DOVICH ARRAY. Astrophysical Journal, 2011, 732, 28.	4.5	9
72	The MESAS Project: Long-wavelength Follow-up Observations of Sirius A. Astrophysical Journal, 2019, 875, 55.	4.5	9

#	Article	IF	Citations
73	The mergers in Abell 2256: displaced gas and its connection to the radio-emitting plasma. Monthly Notices of the Royal Astronomical Society, 2020, 495, 5014-5026.	4.4	9
74	MERGHERS pilot: MeerKAT discovery of diffuse emission in nine massive Sunyaev–Zel'dovich-selected galaxy clusters from ACT. Monthly Notices of the Royal Astronomical Society, 2021, 504, 1749-1758.	4.4	9
75	MULTI-WAVELENGTH OBSERVATIONS OF THE DISSOCIATIVE MERGER IN THE GALAXY CLUSTER CIZA J0107.7+5408. Astrophysical Journal, 2016, 823, 94.	4.5	9
76	Thermodynamic evolution of the $z=1.75$ galaxy cluster IDCS J1426.5+3508. Monthly Notices of the Royal Astronomical Society, 2021, 505, 5896-5909.	4.4	8
77	Atacama Cosmology Telescope measurements of a large sample of candidates from the Massive and Distant Clusters of WISE Survey. Astronomy and Astrophysics, 2021, 653, A135.	5.1	8
78	Large Molecular Gas Reservoirs in Star-forming Cluster Galaxies. Astrophysical Journal, 2019, 882, 132.	4.5	8
79	Confirmation of Enhanced Long-wavelength Dust Emission in OMC 2/3. Astrophysical Journal, 2020, 893, 13.	4.5	8
80	The VLA Lowâ€Band Ionosphere and Transient Experiment (VLITE): Ionospheric Signal Processing and Analysis. Radio Science, 2019, 54, 1002-1035.	1.6	7
81	JOINT ANALYSIS OF X-RAY AND SUNYAEV–ZEL'DOVICH OBSERVATIONS OF GALAXY CLUSTERS USING AN ANALYTIC MODEL OF THE INTRACLUSTER MEDIUM. Astrophysical Journal, 2012, 748, 113.	4.5	7
82	X-Ray Emission from the Jets and Lobes of the Spiderweb. Astrophysical Journal, 2022, 928, 59.	4.5	7
83	The Massive and Distant Clusters of WISE Survey. IX. High Radio Activity in a Merging Cluster. Astrophysical Journal, 2020, 898, 145.	4.5	6
84	The Detector System for the Stratospheric Kinetic Inductance Polarimeter (Skip). Journal of Low Temperature Physics, 2014, 176, 741-748.	1.4	5
85	Multiwavelength view of SPT-CL J2106-5844. Astronomy and Astrophysics, 2021, 650, A153.	5.1	5
86	A space mission to map the entire observable universe using the CMB as a backlight. Experimental Astronomy, 2021, 51, 1555-1591.	3.7	4
87	A LEKID-based CMB instrument design for large-scale observations in Greenland. Proceedings of SPIE, 2014, , .	0.8	3
88	RESOLVING THE MERGING <i>PLANCK</i> CLUSTER PLCK G147.3-16.6 WITH GISMO. Astrophysical Journal Letters, 2015, 808, L6.	8.3	3
89	A Titanium Nitride Absorber for Controlling Optical Crosstalk in Horn-Coupled Aluminum LEKID Arrays for Millimeter Wavelengths. Journal of Low Temperature Physics, 2016, 184, 154-160.	1.4	3
90	Observations of compact sources in galaxy clusters using MUSTANG2. Monthly Notices of the Royal Astronomical Society, 2021, 508, 2600-2612.	4.4	3

#	Article	IF	CITATIONS
91	A Multiwavelength Dynamical State Analysis of ACT-CL J0019.6+0336. Galaxies, 2021, 9, 97.	3.0	2
92	The velocity structure of the intracluster medium during a major merger: Simulated microcalorimeter observations. Astronomy and Astrophysics, 2022, 663, A76.	5.1	2
93	An ACA 1 mm survey of HzRGs in the ELAIS-S1: survey description and first results. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5259-5278.	4.4	1
94	A Study of 90 GHz Dust Emissivity on Molecular Cloud and Filament Scales. Astrophysical Journal, 2022, 929, 102.	4.5	1
95	Aluminum LEKIDs for millimeter-wave radio astronomy. , 2014, , .		0