Daniel N Wilson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9008114/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nature Reviews Microbiology, 2014, 12, 35-48.	28.6	790
2	A new system for naming ribosomal proteins. Current Opinion in Structural Biology, 2014, 24, 165-169.	5.7	481
3	Structures of the human and Drosophila 80S ribosome. Nature, 2013, 497, 80-85.	27.8	474
4	Translation Elongation Factor EF-P Alleviates Ribosome Stalling at Polyproline Stretches. Science, 2013, 339, 82-85.	12.6	393
5	Head swivel on the ribosome facilitates translocation by means of intra-subunit tRNA hybrid sites. Nature, 2010, 468, 713-716.	27.8	336
6	The Structure and Function of the Eukaryotic Ribosome. Cold Spring Harbor Perspectives in Biology, 2012, 4, a011536-a011536.	5.5	330
7	Tetracycline antibiotics and resistance mechanisms. Biological Chemistry, 2014, 395, 559-575.	2.5	324
8	The oxazolidinone antibiotics perturb the ribosomal peptidyl-transferase center and effect tRNA positioning. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13339-13344.	7.1	285
9	Dissection of the Mechanism for the Stringent Factor RelA. Molecular Cell, 2002, 10, 779-788.	9.7	275
10	The A–Z of bacterial translation inhibitors. Critical Reviews in Biochemistry and Molecular Biology, 2009, 44, 393-433.	5.2	273
11	Translational Regulation via L11: Molecular Switches on the Ribosome Turned On and Off by Thiostrepton and Micrococcin. Molecular Cell, 2008, 30, 26-38.	9.7	269
12	Structural Insight into Nascent Polypeptide Chain–Mediated Translational Stalling. Science, 2009, 326, 1412-1415.	12.6	263
13	Cryo-EM structure and rRNA model of a translating eukaryotic 80S ribosome at 5.5-â,,« resolution. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19748-19753.	7.1	196
14	The Highly Conserved LepA IsÂa Ribosomal Elongation Factor that Back-Translocates the Ribosome. Cell, 2006, 127, 721-733.	28.9	192
15	α-Helical nascent polypeptide chains visualized within distinct regions of the ribosomal exit tunnel. Nature Structural and Molecular Biology, 2010, 17, 313-317.	8.2	187
16	The Weird and Wonderful World of Bacterial Ribosome Regulation. Critical Reviews in Biochemistry and Molecular Biology, 2007, 42, 187-219.	5.2	186
17	The ribosomal tunnel as a functional environment for nascent polypeptide folding and translational stalling. Current Opinion in Structural Biology, 2011, 21, 274-282.	5.7	179
18	Structural Basis for Interaction of the Ribosome with the Switch Regions of GTP-Bound Elongation Factors. Molecular Cell, 2007, 25, 751-764.	9.7	168

#	Article	IF	CITATIONS
19	Distinct XPPX sequence motifs induce ribosome stalling, which is rescued by the translation elongation factor EF-P. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15265-15270.	7.1	167
20	The bacterial translation stress response. FEMS Microbiology Reviews, 2014, 38, 1172-1201.	8.6	165
21	Ribosomal Proteins in the Spotlight. Critical Reviews in Biochemistry and Molecular Biology, 2005, 40, 243-267.	5.2	159
22	Structural basis for potent inhibitory activity of the antibiotic tigecycline during protein synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3812-3816.	7.1	152
23	Structural basis for TetM-mediated tetracycline resistance. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16900-16905.	7.1	151
24	The proline-rich antimicrobial peptide Onc112 inhibits translation by blocking and destabilizing the initiation complex. Nature Structural and Molecular Biology, 2015, 22, 470-475.	8.2	148
25	Dissecting the Ribosomal Inhibition Mechanisms of Edeine and Pactamycin. Molecular Cell, 2004, 13, 113-124.	9.7	145
26	Nascent peptides that block protein synthesis in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E878-87.	7.1	137
27	Translation regulation via nascent polypeptide-mediated ribosome stalling. Current Opinion in Structural Biology, 2016, 37, 123-133.	5.7	137
28	SecM-Stalled Ribosomes Adopt an Altered Geometry at the Peptidyl Transferase Center. PLoS Biology, 2011, 9, e1000581.	5.6	132
29	Target- and Resistance-Based Mechanistic Studies with TP-434, a Novel Fluorocycline Antibiotic. Antimicrobial Agents and Chemotherapy, 2012, 56, 2559-2564.	3.2	132
30	Proline-rich antimicrobial peptides targeting protein synthesis. Natural Product Reports, 2017, 34, 702-711.	10.3	132
31	The stringent factor RelA adopts an open conformation on the ribosome to stimulate ppGpp synthesis. Nucleic Acids Research, 2016, 44, 6471-6481.	14.5	129
32	Interaction of Era with the 30S Ribosomal Subunit. Molecular Cell, 2005, 18, 319-329.	9.7	128
33	An antimicrobial peptide that inhibits translation by trapping release factors on the ribosome. Nature Structural and Molecular Biology, 2017, 24, 752-757.	8.2	123
34	Localization of eukaryote-specific ribosomal proteins in a 5.5-â,,« cryo-EM map of the 80S eukaryotic ribosome. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19754-19759.	7.1	122
35	Structural Basis for Polyproline-Mediated Ribosome Stalling and Rescue by the Translation Elongation Factor EF-P. Molecular Cell, 2017, 68, 515-527.e6.	9.7	118
36	The antibiotic kasugamycin mimics mRNA nucleotides to destabilize tRNA binding and inhibit canonical translation initiation. Nature Structural and Molecular Biology, 2006, 13, 871-878.	8.2	116

#	Article	IF	CITATIONS
37	Arginine-rhamnosylation as new strategy to activate translation elongation factor P. Nature Chemical Biology, 2015, 11, 266-270.	8.0	116
38	Molecular basis for erythromycin-dependent ribosome stalling during translation of the ErmBL leader peptide. Nature Communications, 2014, 5, 3501.	12.8	115
39	High heterogeneity within the ribosomal proteins of the Arabidopsis thaliana 80S ribosome. Plant Molecular Biology, 2005, 57, 577-591.	3.9	114
40	Structural Basis for Translational Stalling by Human Cytomegalovirus and Fungal Arginine Attenuator Peptide. Molecular Cell, 2010, 40, 138-146.	9.7	106
41	Structure of the hypusinylated eukaryotic translation factor eIF-5A bound to the ribosome. Nucleic Acids Research, 2016, 44, 1944-1951.	14.5	106
42	Structure of the Bacillus subtilis 70S ribosome reveals the basis for species-specific stalling. Nature Communications, 2015, 6, 6941.	12.8	105
43	X-ray crystallography study on ribosome recycling: the mechanism of binding and action of RRF on the 50S ribosomal subunit. EMBO Journal, 2005, 24, 251-260.	7.8	104
44	Drug Sensing by the Ribosome Induces Translational Arrest via Active Site Perturbation. Molecular Cell, 2014, 56, 446-452.	9.7	104
45	A combined cryo-EM and molecular dynamics approach reveals the mechanism of ErmBL-mediated translation arrest. Nature Communications, 2016, 7, 12026.	12.8	103
46	Maintaining the Ribosomal Reading Frame. Cell, 2004, 118, 45-55.	28.9	102
47	Cryo-EM study of the spinach chloroplast ribosome reveals the structural and functional roles of plastid-specific ribosomal proteins. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19315-19320.	7.1	101
48	Target protection as a key antibiotic resistance mechanism. Nature Reviews Microbiology, 2020, 18, 637-648.	28.6	100
49	A Snapshot of the 30S Ribosomal Subunit Capturing mRNA via the Shine-Dalgarno Interaction. Structure, 2007, 15, 289-297.	3.3	94
50	Interplay between the Ribosomal Tunnel, Nascent Chain, and Macrolides Influences Drug Inhibition. Chemistry and Biology, 2010, 17, 504-514.	6.0	94
51	Bacterial Protein Synthesis as a Target for Antibiotic Inhibition. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a025361.	6.2	94
52	The Ribosome through the Looking Glass. Angewandte Chemie - International Edition, 2003, 42, 3464-3486.	13.8	92
53	Structure of a hibernating 100S ribosome reveals an inactive conformation of the ribosomal protein S1. Nature Microbiology, 2018, 3, 1115-1121.	13.3	92
54	Structural Aspects of RbfA Action during Small Ribosomal Subunit Assembly. Molecular Cell, 2007, 28, 434-445.	9.7	90

#	Article	IF	CITATIONS
55	The Dolphin Proline-Rich Antimicrobial Peptide Tur1A Inhibits Protein Synthesis by Targeting the Bacterial Ribosome. Cell Chemical Biology, 2018, 25, 530-539.e7.	5.2	90
56	Structure of the mammalian antimicrobial peptide Bac7(1–16) bound within the exit tunnel of a bacterial ribosome. Nucleic Acids Research, 2016, 44, 2429-2438.	14.5	89
57	The Binding Mode of the Trigger Factor on the Ribosome: Implications for Protein Folding and SRP Interaction. Structure, 2005, 13, 1685-1694.	3.3	88
58	The Role of 23S Ribosomal RNA Residue A2451 in Peptide Bond Synthesis Revealed by AtomicÂMutagenesis. Chemistry and Biology, 2008, 15, 485-492.	6.0	88
59	Translational stalling at polyproline stretches is modulated by the sequence context upstream of the stall site. Nucleic Acids Research, 2014, 42, 10711-10719.	14.5	88
60	Entropic Contribution of Elongation Factor P to Proline Positioning at the Catalytic Center of the Ribosome. Journal of the American Chemical Society, 2015, 137, 12997-13006.	13.7	88
61	The Mechanisms of Action of Ribosome-Targeting Peptide Antibiotics. Frontiers in Molecular Biosciences, 2018, 5, 48.	3.5	84
62	Mechanisms of SecM-Mediated Stalling in the Ribosome. Biophysical Journal, 2012, 103, 331-341.	0.5	82
63	Lys34 of translation elongation factor EF-P is hydroxylated by YfcM. Nature Chemical Biology, 2012, 8, 695-697.	8.0	81
64	The force-sensing peptide VemP employs extreme compaction and secondary structure formation to induce ribosomal stalling. ELife, 2017, 6, .	6.0	81
65	Distinct tRNA Accommodation Intermediates Observed on the Ribosome with the Antibiotics Hygromycin A and A201A. Molecular Cell, 2015, 58, 832-844.	9.7	79
66	Structure of Gcn1 bound to stalled and colliding 80S ribosomes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	79
67	Structural basis for antibiotic resistance mediated by the <i>Bacillus subtilis</i> ABCF ATPase VmlR. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8978-8983.	7.1	78
68	Species-specific antibiotic-ribosome interactions: implications for drug development. Biological Chemistry, 2005, 386, 1239-52.	2.5	77
69	Translational termination efficiency in both bacteria and mammals is regulated by the base following the stop codon. Biochemistry and Cell Biology, 1995, 73, 1095-1103.	2.0	76
70	Structure of the <i>Bacillus subtilis</i> hibernating 100S ribosome reveals the basis for 70S dimerization. EMBO Journal, 2017, 36, 2061-2072.	7.8	74
71	EF-G-Dependent GTPase on the Ribosome. Conformational Change and Fusidic Acid Inhibition. Biochemistry, 2006, 45, 2504-2514.	2.5	73
72	Stall no more at polyproline stretches with the translation elongation factors EFâ€P and IFâ€5A. Molecular Microbiology, 2016, 99, 219-235.	2.5	70

#	Article	IF	CITATIONS
73	PSRP1 Is Not a Ribosomal Protein, but a Ribosome-binding Factor That Is Recycled by the Ribosome-recycling Factor (RRF) and Elongation Factor G (EF-G). Journal of Biological Chemistry, 2010, 285, 4006-4014.	3.4	66
74	A new tRNA intermediate revealed on the ribosome during EF4-mediated back-translocation. Nature Structural and Molecular Biology, 2008, 15, 910-915.	8.2	65
75	Prokaryotic ribosomes recode the HIV-1gag-pol-1 frameshift sequence by an E/P site post-translocation simultaneous slippage mechanism. Nucleic Acids Research, 1995, 23, 1487-1494.	14.5	64
76	Intracellular Antimicrobial Peptides Targeting the Protein Synthesis Machinery. Advances in Experimental Medicine and Biology, 2019, 1117, 73-89.	1.6	63
77	The ABC of Ribosome-Related Antibiotic Resistance. MBio, 2016, 7, .	4.1	62
78	Blast from the Past: Reassessing Forgotten Translation Inhibitors, Antibiotic Selectivity, and Resistance Mechanisms to Aid Drug Development. Molecular Cell, 2016, 61, 3-14.	9.7	60
79	Promiscuous behaviour of archaeal ribosomal proteins: Implications for eukaryotic ribosome evolution. Nucleic Acids Research, 2013, 41, 1284-1293.	14.5	59
80	The E-site story: the importance of maintaining two tRNAs on the ribosome during protein synthesis. Cellular and Molecular Life Sciences, 2006, 63, 2725-2737.	5.4	58
81	Cryo-EM structure of the tetracycline resistance protein TetM in complex with a translating ribosome at 3.9-Ã resolution. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5401-5406.	7.1	58
82	On the specificity of antibiotics targeting the large ribosomal subunit. Annals of the New York Academy of Sciences, 2011, 1241, 1-16.	3.8	57
83	Structural basis for the interaction of protein S1 with the Escherichia coli ribosome. Nucleic Acids Research, 2015, 43, 661-673.	14.5	56
84	Protein Synthesis at Atomic Resolution: Mechanistics of Translation in the Light of Highly Resolved Structures for the Ribosome. Current Protein and Peptide Science, 2002, 3, 1-53.	1.4	56
85	Myticalins: A Novel Multigenic Family of Linear, Cationic Antimicrobial Peptides from Marine Mussels (Mytilus spp.). Marine Drugs, 2017, 15, 261.	4.6	54
86	Structural Basis for Ribosome Rescue in Bacteria. Trends in Biochemical Sciences, 2017, 42, 669-680.	7.5	53
87	The alarmones (p)ppGpp are part of the heat shock response of Bacillus subtilis. PLoS Genetics, 2020, 16, e1008275.	3.5	52
88	Microarray Analysis of Postictal Transcriptional Regulation of Neuropeptides. Journal of Molecular Neuroscience, 2005, 25, 285-298.	2.3	48
89	New Features of the Ribosome and Ribosomal Inhibitors: Non-Enzymatic Recycling, Misreading and Back-Translocation. Journal of Molecular Biology, 2008, 380, 193-205.	4.2	48
90	Visualization of translation termination intermediates trapped by the ApidaecinÂ137 peptide during RF3-mediated recycling of RF1. Nature Communications, 2018, 9, 3053.	12.8	48

#	Article	IF	CITATIONS
91	Ribosome Rescue Pathways in Bacteria. Frontiers in Microbiology, 2021, 12, 652980.	3.5	46
92	Structures of the orthosomycin antibiotics avilamycin and evernimicin in complex with the bacterial 70S ribosome. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7527-7532.	7.1	45
93	Localization of the Trigger Factor Binding Site on the Ribosomal 50S Subunit. Journal of Molecular Biology, 2003, 326, 887-897.	4.2	44
94	Fragments of the Nonlytic Proline-Rich Antimicrobial Peptide Bac5 Kill Escherichia coli Cells by Inhibiting Protein Synthesis. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	44
95	Wnt/β-catenin and LIF/Stat3 signaling pathways converge on Sp5 to promote mouse embryonic stem cell self-renewal. Journal of Cell Science, 2016, 129, 269-76.	2.0	43
96	Tetracenomycin X inhibits translation by binding within the ribosomal exit tunnel. Nature Chemical Biology, 2020, 16, 1071-1077.	8.0	43
97	Structural and mechanistic basis for translation inhibition by macrolide and ketolide antibiotics. Nature Communications, 2021, 12, 4466.	12.8	43
98	Probing Translation with Small-Molecule Inhibitors. Chemistry and Biology, 2010, 17, 633-645.	6.0	42
99	Ribosomal crystallography: Peptide bond formation and its inhibition. Biopolymers, 2003, 70, 19-41.	2.4	41
100	A Conserved Proline Triplet in Val-tRNA Synthetase and the Origin of Elongation Factor P. Cell Reports, 2014, 9, 476-483.	6.4	41
101	Structural basis for (p)ppGpp-mediated inhibition of the GTPase RbgA. Journal of Biological Chemistry, 2018, 293, 19699-19709.	3.4	41
102	Structural Basis for Bacterial Ribosome-Associated Quality Control by RqcH and RqcP. Molecular Cell, 2021, 81, 115-126.e7.	9.7	41
103	Mapping Functionally Important Motifs SPF and GGQ of the Decoding Release Factor RF2 to the Escherichia coli Ribosome by Hydroxyl Radical Footprinting. Journal of Biological Chemistry, 2003, 278, 15095-15104.	3.4	40
104	Structural basis of ABCF-mediated resistance to pleuromutilin, lincosamide, and streptogramin A antibiotics in Gram-positive pathogens. Nature Communications, 2021, 12, 3577.	12.8	40
105	Deacylated tRNA is released from the E site upon A site occupation but before GTP is hydrolyzed by EF-Tu. Nucleic Acids Research, 2005, 33, 5291-5296.	14.5	39
106	Structural basis for ArfA–RF2-mediated translation termination on mRNAs lacking stop codons. Nature, 2017, 541, 546-549.	27.8	39
107	Structural Basis for Regulation of the Opposing (p)ppGpp Synthetase and Hydrolase within the Stringent Response Orchestrator Rel. Cell Reports, 2020, 32, 108157.	6.4	39
108	Nonâ€Hydrolyzable RNA–Peptide Conjugates: A Powerful Advance in the Synthesis of Mimics for 3′â€₽eptidyl tRNA Termini. Angewandte Chemie - International Edition, 2009, 48, 4056-4060.	13.8	38

#	Article	IF	CITATIONS
109	Differential Effects of Thiopeptide and Orthosomycin Antibiotics on Translational GTPases. Chemistry and Biology, 2011, 18, 589-600.	6.0	37
110	Molecular Basis for the Selectivity of Antituberculosis Compounds Capreomycin and Viomycin. Antimicrobial Agents and Chemotherapy, 2011, 55, 4712-4717.	3.2	36
111	Prolineâ€Rich Peptides with Improved Antimicrobial Activity against <i>E. coli</i> , <i>K. pneumoniae</i> , and <i>A. baumannii</i> . ChemMedChem, 2019, 14, 2025-2033.	3.2	35
112	Cryo-EM structure of the spinach chloroplast ribosome reveals the location of plastid-specific ribosomal proteins and extensions. Nucleic Acids Research, 2016, 45, gkw1272.	14.5	33
113	Hierarchical recruitment of ribosomal proteins and assembly factors remodels nucleolar pre-60S ribosomes. Journal of Cell Biology, 2018, 217, 2503-2518.	5.2	33
114	Release factor-dependent ribosome rescue by BrfA in the Gram-positive bacterium Bacillus subtilis. Nature Communications, 2019, 10, 5397.	12.8	32
115	Time-Resolved Binding of Azithromycin to Escherichia coli Ribosomes. Journal of Molecular Biology, 2009, 385, 1179-1192.	4.2	31
116	Antibioticâ€induced ribosomal assembly defects result from changes in the synthesis of ribosomal proteins. Molecular Microbiology, 2011, 80, 54-67.	2.5	31
117	Codon-Anticodon Interaction at the P Site Is a Prerequisite for tRNA Interaction with the Small Ribosomal Subunit. Journal of Biological Chemistry, 2002, 277, 19095-19105.	3.4	29
118	SnapShot: Antibiotic Inhibition of Protein Synthesis I. Cell, 2009, 138, 1248-1248.e1.	28.9	29
119	Translational arrest by a prokaryotic signal recognition particle is mediated by RNA interactions. Nature Structural and Molecular Biology, 2015, 22, 767-773.	8.2	29
120	Proteomic Characterization of Archaeal Ribosomes Reveals the Presence of Novel Archaeal-Specific Ribosomal Proteins. Journal of Molecular Biology, 2011, 405, 1215-1232.	4.2	28
121	A role for the Saccharomyces cerevisiae ABCF protein New1 in translation termination/recycling. Nucleic Acids Research, 2019, 47, 8807-8820.	14.5	26
122	Mechanism of ribosome rescue by alternative ribosome-rescue factor B. Nature Communications, 2020, 11, 4106.	12.8	26
123	Structural basis for PoxtA-mediated resistance to phenicol and oxazolidinone antibiotics. Nature Communications, 2022, 13, 1860.	12.8	25
124	Shine–Dalgarno interaction prevents incorporation of noncognate amino acids at the codon following the AUG. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10715-10720.	7.1	24
125	Identification of Distinct Thiopeptide-Antibiotic Precursor Lead Compounds Using Translation Machinery Assays. Chemistry and Biology, 2009, 16, 1087-1096.	6.0	24
126	Deciphering the Translation Initiation Factor 5A Modification Pathway in Halophilic Archaea. Archaea, 2016, 2016, 1-14.	2.3	24

#	Article	IF	CITATIONS
127	Coupling of 5S RNP rotation with maturation of functional centers during large ribosomal subunit assembly. Nature Communications, 2020, 11, 3751.	12.8	24
128	Peptide Inhibitors of Bacterial Protein Synthesis with Broad Spectrum and SbmA-Independent Bactericidal Activity against Clinical Pathogens. Journal of Medicinal Chemistry, 2020, 63, 9590-9602.	6.4	24
129	Molecular Mimicry in the Decoding of Translational Stop Signals. Progress in Molecular Biology and Translational Science, 2003, 74, 83-121.	1.9	23
130	Repurposing tRNAs for nonsense suppression. Nature Communications, 2021, 12, 3850.	12.8	22
131	Polyamines Affect Diversely the Antibiotic Potency. Journal of Biological Chemistry, 2004, 279, 26518-26525.	3.4	21
132	Biosynthesis of the Aminocyclitol Subunit of Hygromycin A in Streptomyces hygroscopicus NRRL 2388. Chemistry and Biology, 2009, 16, 1180-1189.	6.0	21
133	The ribosomal binding and peptidyl-tRNA hydrolysis functions of Escherichia coli release factor 2 are linked through residue 246. Rna, 2000, 6, 1704-1713.	3.5	20
134	Enhanced SnapShot: Antibiotic Inhibition of Protein Synthesis II. Cell, 2009, 139, 212-212.e1.	28.9	20
135	On the Mechanism of Action of 9-O-Arylalkyloxime Derivatives of 6-O-Mycaminosyltylonolide, a New Class of 16-Membered Macrolide Antibiotics. Molecular Pharmacology, 2006, 70, 1271-1280.	2.3	19
136	Yeast translation elongation factor eEF3 promotes late stages of tRNA translocation. EMBO Journal, 2021, 40, e106449.	7.8	19
137	The how and Y of cold shock. Nature Structural and Molecular Biology, 2004, 11, 1026-1028.	8.2	18
138	Amythiamicinâ€D and Related Thiopeptides as Inhibitors of the Bacterial Elongation Factor EFâ€Tu: Modification of the Amino Acid at Carbon Atom C2 of Ringâ€C Dramatically Influences Activity. ChemMedChem, 2013, 8, 1954-1962.	3.2	18
139	Context-specific action of macrolide antibiotics on the eukaryotic ribosome. Nature Communications, 2021, 12, 2803.	12.8	18
140	Insights into the Mode of Action of Novel Fluoroketolides, Potent Inhibitors of Bacterial Protein Synthesis. Antimicrobial Agents and Chemotherapy, 2014, 58, 472-480.	3.2	17
141	Distinct Mode of Interaction of a Novel Ketolide Antibiotic That Displays Enhanced Antimicrobial Activity. Antimicrobial Agents and Chemotherapy, 2009, 53, 1411-1419.	3.2	15
142	Entrapment of DNA in an intersubunit tunnel system of a single-stranded DNA-binding protein. Nucleic Acids Research, 2014, 42, 6698-6708.	14.5	15
143	On the use of the antibiotic chloramphenicol to target polypeptide chain mimics to the ribosomal exit tunnel. Biochimie, 2013, 95, 1765-1772.	2.6	14
144	RelBE or not to be. Nature Structural and Molecular Biology, 2005, 12, 282-284.	8.2	13

3

#	Article	IF	CITATIONS
145	The Natural Product Elegaphenone Potentiates Antibiotic Effects against <i>Pseudomonas aeruginosa</i> . Angewandte Chemie - International Edition, 2019, 58, 8581-8584.	13.8	13
146	Functions and interplay of the tRNA-binding sites of the ribosome. Biochemical Society Transactions, 2002, 30, 133-140.	3.4	12
147	Das Ribosom unter der Lupe. Angewandte Chemie, 2003, 115, 3586-3610.	2.0	12
148	Total Synthesis and Structural Revision of the Antibiotic Tetrapeptide GE81112A. Angewandte Chemie - International Edition, 2018, 57, 12157-12161.	13.8	12
149	The Oxazolidinone Class of Drugs FindÂTheirÂOrientation on the Ribosome. Molecular Cell, 2007, 26, 460-462.	9.7	11
150	RqcH and RqcP catalyze processive poly-alanine synthesis in a reconstituted ribosome-associated quality control system. Nucleic Acids Research, 2021, 49, 8355-8369.	14.5	11
151	Antibiotics and the Inhibition of Ribosome Function. , 2006, , 449-527.		9
152	The 23S Ribosomal RNA From Pyrococcus furiosus Is Circularly Permuted. Frontiers in Microbiology, 2020, 11, 582022.	3.5	9
153	Factor-Mediated Termination of Protein Synthesis: a Welcome Return to the Mainstream of Translation. , 0, , 495-508.		9
154	Characterization of Cetacean Proline-Rich Antimicrobial Peptides Displaying Activity against ESKAPE Pathogens. International Journal of Molecular Sciences, 2020, 21, 7367.	4.1	8
155	The cyclic octapeptide antibiotic argyrin B inhibits translation by trapping EF-G on the ribosome during translocation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2114214119.	7.1	8
156	Peptides in the Ribosomal Tunnel Talk Back. Molecular Cell, 2011, 41, 247-248.	9.7	7
157	The DARC site: a database of aligned ribosomal complexes. Nucleic Acids Research, 2012, 40, D495-D500.	14.5	7
158	Bifunctional Nitrone-Conjugated Secondary Metabolite Targeting the Ribosome. Journal of the American Chemical Society, 2020, 142, 18369-18377.	13.7	7
159	The Final Step of Hygromycin A Biosynthesis, Oxidation of C-5″-Dihydrohygromycin A, Is Linked to a Putative Proton Gradient-Dependent Efflux. Antimicrobial Agents and Chemotherapy, 2009, 53, 5163-5172.	3.2	6
160	Total Synthesis and Biological Evaluation of Paenilamicins from the Honey Bee Pathogen <i>Paenibacillus larvae</i> . Journal of the American Chemical Society, 2022, 144, 288-296.	13.7	6
161	Antimicrobial peptides target ribosomes. Oncotarget, 2015, 6, 16826-16827.	1.8	4

162 The Work of Chaperones. , 2006, , 529-562.

#	Article	IF	CITATIONS
163	Totalsynthese und Strukturkorrektur des antibiotisch wirksamen Tetrapeptids GE81112A. Angewandte Chemie, 2018, 130, 12334-12338.	2.0	3
164	The Mechanism of Recoding in Pro- and Eukaryotes. , 2006, , 397-428.		2
165	Structure of the Ribosome. , 2006, , 53-84.		2
166	Less Is More for Leaderless mRNA Translation. Molecular Cell, 2009, 33, 141-142.	9.7	2
167	Ribosome Rescue, Nearing the End. Cell, 2014, 156, 866-867.	28.9	2
168	Der Naturstoff Elegaphenon verstÄ fk t antibiotische Effekte gegen <i>Pseudomonas aeruginosa</i> . Angewandte Chemie, 2019, 131, 8670-8674.	2.0	2
169	The E Site and Its Importance for Improving Accuracy and Preventing Frameshifts. Nucleic Acids and Molecular Biology, 2010, , 345-362.	0.2	2
170	Regulation of Ribosome Biosynthesis in Escherichia coli. , 2006, , 429-448.		1
171	The Elongation Cycle. , 2006, , 323-366.		1
172	Termination and Ribosome Recycling. , 2006, , 367-395.		1
173	Structures of Nascent Polypeptide Chain-Dependent-Stalled Ribosome Complexes. , 2014, , 45-59.		1
174	Wnt/β-catenin and LIF–Stat3 signaling pathways converge on Sp5 to promote mouse embryonic stem cell self-renewal. Development (Cambridge), 2016, 143, e1.1-e1.1.	2.5	1
175	Putting the antibiotics chloramphenicol and linezolid into context. Nature Structural and Molecular Biology, 2022, 29, 79-81.	8.2	1
176	The Ribosome Through the Looking Glass. ChemInform, 2003, 34, no.	0.0	0
177	2P594 The antibiotic kasugamycin mimics mRNA nucleotides to destabilize tRNA binding and inhibit canonical translation initiation(55. Drug design and delivery,Poster Session,Abstract,Meeting) Tj ETQq1 1 0.784	31 ⊕rg BT	Overlock 10
178	tRNA and Synthetases. , 2006, , 145-184.		0
179	ErmBL Translation on the Ribosome in the Presence of Erythromycin is Stalled by Inhibition of Peptide Bond Formation. Biophysical Journal, 2016, 110, 234a.	0.5	0
180	Ribosomes Structure and Mechanisms in Regulation of Protein Synthesis Part I. Journal of Molecular Biology, 2016, 428, 2133.	4.2	0

181Editorial. Journal of Molecular Biology, 2016, 428, 3557.4.2	Ο
182 Knud Hermann Nierhaus 1941–2016. Nature Structural and Molecular Biology, 2016, 23, 503-504. 8.2	0
183The binding mode of the trigger factor on the ribosome: Implications for protein folding and SRP0.5183interaction. FASEB Journal, 2006, 20, A965.0.5	Ο
184 Nascent polypeptide chains within the ribosomal tunnel analyzed by cryo-EM. , 2011, , 393-404.	0
¹⁸⁵ Functions and interplay of the tRNA-binding sites of the ribosome. Biochemical Society Transactions, 3.4	Ο